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Abstract—Stable nonzero populations without random deaths 

caused by the Verhulst factor (Verhulst-free) are a rarity. Majority 
either grow without bounds or die of excessive harmful mutations. 
To delay the accumulation of bad genes or diseases, a new 
environmental parameter Γ is introduced in the simulation. Current 
results demonstrate that stability may be achieved by setting Γ = 0.1. 
These steady states approach a maximum size that scales inversely 
with reproduction age. 
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I. INTRODUCTION 
PREVIOUS WORK [1] demonstrates the possibility of 
obtaining finite populations without imposing the 

concept of a carrying capacity (or the Verhulst factor). The 
model utilizes the bit-string technique presented in [2]. Each 
individual in a population is described by a 32-bit string of 
binary numbers - a chronological genome. The string is read 
in sequence, one bit for each iteration. Whenever a new bit is 
read, a genetic characteristic is expressed and the individual's 
age is increased by one unit. A 1 on the ith bit indicates a 
harmful mutation or disease whose effects are felt beginning 
at age i until death. The bit-string is set at birth and is held 
constant throughout the individual's lifetime. For simplicity, 
the population is considered asexual. An offspring copies the 
genes of its parent and acquires additional mutations that are 
set at randomly chosen bit locations.  

Without the concept of a carrying capacity, a slight increase 
in birth rate can cause populations to tend towards infinity, as 
in the Malthusian growth model [3]. Existing Verhulst-free 
steady states are thus limited to a highly specialized case - 
individuals that breed once at a fixed age (semelparous) and 
produce only one offspring.  About half of these cases, 
however, exhibit mutational meltdown. When very few births 
fail to balance the effects of harmful genetic mutations, 
populations approximate an exponential decay and die [4], [5]. 
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Our primary goal is to explore further cases of non-zero 

Verhulst-free steady states. In population modeling, the 
Verhulst factor acts as a “catch all” parameter that accounts 
for all possible environmental interactions. Without the 
concept of a carrying capacity, population evolution is 
governed only by genetic mechanisms. To incorporate back 
environmental effects into the simulation, we introduce a new 
parameter, Γ. At each time of reproduction, a randomly 
chosen good gene mutates with probability p=exp(-1/Γ). Here, 
we investigate whether the delay in mutation accumulation, as 
introduced through the parameter Γ and its associated 
probability, is enough prevent population extinction via 
mutational meltdown.  

II. METHODOLOGY 
We implement the 32-bit model described in [1] using a 

Fortran code. The evolutionary process for an initial 
population, N0, of 1000 perfect newborns (no bad mutations) 
is summarized in Fig. 1. 
 

 
Fig. 1 Flowchart of the evolutionary process 
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In the Verhulst-free case, deaths are due only to genetic 
reasons. An individual dies when the total number of active 
diseases equals the mutations threshold, T, or upon reaching 
the maximum age, which is equivalent to the bit-string length. 
In this case, 32. Surviving adults are allowed one offspring 
each. As in semelparous species, reproduction is restricted to a 
fixed age, R.  

 

 
Fig. 2 Extinct populations associated with T=5, R=7 

 
During the birth process, the newborn copies the genes of 

its parent. A random bit position is then selected. If the chosen 
bit contains a good gene, it is mutated according to the 
probability,  

Γ−= /1ep . (1) 
We consider only deleterious mutations. This is because 

bad mutations are several times more frequent in nature than 
good ones [6]. Thus, if the selected bit already contains a bad 
gene or disease, its value (or state) is retained. Furthermore, 
we focus on the T ≤ R case and observe the effect of varying 
Γ on the resulting populations. 

III. RESULTS AND DISCUSSION 
Fig. 2 presents extinction cases associated with T ≤ R. 

Simulated populations are observed to increase at the onset. 
But as harmful genetic mutations accumulate, they tend to die 
out. Extinction happens at an earlier time when Γ is larger. As 
expected, smaller Γ values (lower mutation probabilities) 
result in more persistent populations. This scenario may be 
related to the accumulation of somatic mutations in 
Drosophila melanogaster (or fruit fly) [7]. Somatic mutations 
occur more frequently at higher temperatures, thereby 
decreasing significantly the lifespan of the fruit flies. The 
parameter Γ may thus be associated to the temperature of the 
environment.   

The latter part of these curves (Fig. 2) may be fitted with an 
exponential function of the form, 

 
tetN α−∝)(  (2) 

 
where α is the decay rate. In Fig. 3, we plot the α-values 
against the mutation probability given by Eq. 2. Best-fit yields 

a line with a positive slope. The line becomes less steep at 
higher mutation thresholds, T. The effect, therefore, of the 
parameter Γ on the simulated populations diminishes at higher 
threshold values, when individuals are more tolerant of 
harmful mutations or are more resilient to diseases. 
 

 
Fig. 3 Decay rate, α, versus the mutation probability, p=e-1/Γ 

 

 
Fig. 4 Steady states associated with T ≤ R and Γ = 0.1 

 
Nonzero steady states are found by setting Γ to 0.1. Fig. 4 

illustrates stable populations associated with different 
reproduction ages. Note that a stable population may be 
single-valued (as with R=16) or may cycle between two or 
more values (as with R=7 and 10). Simulation results also 
show that for a given $R$ value, populations approach a 
maximum size that is independent of the mutation threshold. 
The maximum steady state value, Nmax, obtained using 
different reproduction ages are presented in Fig. 5. 
Reproductive delays (higher R), in general, cause smaller 
populations. From the best fit, we can deduce  

 

0max N
R
LN ⎟

⎠
⎞

⎜
⎝
⎛=  (3) 

 
where L is the bit-string length and N0 is the size of the initial 
population. In our simulation, L and N0 have values equivalent 
to 32 and 1000, respectively.  
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Fig. 5 Variation of the maximum population size with reproduction 

age, R 

IV. SUMMARY AND CONCLUSION 
The model presented in [1] was modified to include a new 

parameter Γ, in the hope of finding more nonzero steady states 
without imposing a carrying capacity (or random deaths by the 
Verhulst factor).  The parameter Γ may be treated as an 
environmental factor that affects the accumulation of harmful 
genetic mutations in the genome. 

In Verhulst-free simulations, the T ≤ R case is generally 
associated with mutational meltdown. The rate of extinction is 
slow down with decreasing Γ. Nonzero steady states are 
obtained by setting Γ = 0.1. Simulated populations approach a 
maximum value that scales is inversely proportional to the 
value of the reproduction age. 
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