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    Abstract—In this paper, the hardware implementation of the 
RSA public-key cryptographic algorithm is presented. The RSA 
cryptographic algorithm is depends on the computation of repeated 
modular exponentials. 

The Montgomery algorithm is used and modified to reduce 
hardware resources and to achieve reasonable operating speed for 
FPGA. An efficient architecture for modular multiplications based on 
the array multiplier is proposed. We have implemented a RSA 
cryptosystem based on Montgomery algorithm. As a result, it is 
shown that proposed architecture contributes to small area and 
reasonable speed. 
 

Keywords—RSA, Cryptosystem, Montgomery, Implementation. 
FPGA. 

I. INTRODUCTION 
N a secure telecommunications network such as is   
increasingly required for electronic commerce and internet 

privacy; security requirements include confidentiality, 
authentication, data integrity and non-repudiation. These 
services are offered by public key cryptosystems, the most 
popular of which is the RSA encryption scheme [1]. The 
fundamental operation of the algorithm is modular 
exponentiation which is achieved by repeated modular 
multiplications. The Montgomery modular multiplication 
algorithm [2] is often used to perform these calculations. 
However, the high bit lengths required to provide adequate 
security (1024 bits is considered secure against attack in the 
near future), mean a high hardware throughput is difficult to 
achieve. 

An efficient algorithm for the calculation of  (Ax B) mod M 
was developed by P. L. Montgomery [4], and forms the  basis 
of the designs presented here. It should be noted that 
Montgomery's algorithm only works if the modulus is 
relatively prime to the radix, although this is always the case 
in RSA. 

The objective of this work is the modeling and 
implementation on FPGAs the RSA cryptosystem while 
basing on the Montgomery Multiplication. 

This paper is organized as follows: Section 2 presents the 
RSA algorithm and Montgomery multiplication.  Section 3 
presents the implementation architecture of Montgomery 
Multiplication while using the double adder architecture. 
Sections 4, 5 present the modular exponentiation architecture.  
Then, Sections 6, 7 present results of simulation. , and finally 
some conclusions are drawn in Section 8. 
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II.  MONTGOMERY MODULAR MULTIPLICATION 

A. The RSA Algorithm 
Suppose Alice wishes to send a secret message to Bob. In a 

secret key system, Alice and Bob need to know the same 
secret key and so it must be communicated via some secure 
channel. In a public key system, Bob broadcasts his public key 
and Alice can use it to encode a message. The design of the 
cryptosystem is such that only Bob can decode the encrypted 
message, but no exchange of secret keys is necessary. 
    In the RSA cryptosystem, [3] Alice must first find Bob's 
public key M, E which are the modulus and exponent 
respectively. She calculates the cipher-text ( C ) from the 
plaintext ( P ) by: 
 

                                C = PE (mod M)                                (1) 
 
To decode the message, Bob uses his private key (D) to 
recover the plain text by: 
 

                                  P = CD (mod M)                                (2) 
 
To generate the key, two large prime numbers P and Q 
are first generated, and two equations are used to calculate D, 
E and M: 
 

M = PQ 
                             DE ≡ 1  (mod (P - 1)(Q - 1))                    (3) 
 
where E is relatively prime to (P - 1) (Q - 1). In practice, E is 
often chosen to be a small number which reduces the amount 
of computation required to perform encryption. The strength 
of RSA depends on the key size k, the number of bits in M. 
Breaking RSA is believed to be as hard as factorizing M to P, 
Q which is intractable for k ≥ 1024 with current Technology 
[4]. 
 

B. Description of the Montgomery Algorithm     
The encryption and decryption operations are, indeed, of 

modular exponentiation operations. The exponentiation 
operation is a succession of modular products, it is clear that 
the efficiency of this last is going to determine the 
performance of the system because the Montgomery algorithm 
achieves the modular multiplication of effective way, and it is 
easily adaptable to the material implementation. 

The MonPro2 function calculates the Montgomery 
Multiplication:    
 

MonPro2 (A, B, M) =ABr -1 Mod M 
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Fig. 1 Algorithm 2: MonPro2 
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III.  MONTGOMERY ARCHITECTURE 
A. Block Diagram  
This block present, the Montgomery multiplication  

MonPro2 (A, B, M), therefore it contains three variable of 
entrances A, B and M and a signal clock (CLK) and two 
signals of RST commands and LOAD for the loading  
variables and  R exit that represent the result of calculation. 
Finally this algorithm is going to calculate the operation 
following: AB (2n)-1mod N.   

 
Fig. 2 Diagram block of the Montgomery multiplication 

 
B. Double Adder Architectures  
The architecture of double adder represents the 

Montgomery multiplication based on the algorithm (2), 
therefore she is constituted of two adders of 8 bits and two 
multipliers (A.bi and M.qi). 
 

 
Fig. 3  MonArch1: Montgomery architecture based on the algorithm 

2 
 

To remove the dependency of qi on the addition of biA and 
Si-1, A can be shifted up 1 bit, thus forcing the LSB of Si-1 + 
biA to always be zero, as illustrated in figure 4. However, this 
extra factor of 2 must be removed by an extra iteration, 
meaning that the number of clock cycles is again equal to n + 
1 [4]. 
 

 
Fig. 4 Montgomery multiplier architecture based on algorithm (2) 

 

IV. MODULAR EXPONENTIATION 
     The modular exponentiation is executed by the repeated 
modular multiplications [4]. There are two common 
algorithms that can be to use: The binary method of L-R and 
the binary method of R-L. These are given in algorithms (4) & 
(5), where P is the E plaintext is the exhibitor, M is the 
module, C is constant and equal to  22n mod M, and R is the 
result.   

Algorithm 2: MonPro2(A, B, M) 
MonPro2 (A,B,M) 
{ 
S-1:= 0; 
For i = 0 to n - 1 do 
         qi := (Si-1+biA) Mod 2 ; (LSB of Sum) 
         Si := (Si-1 + qiM + biA)/2 ; 
end For 
Return Sn-1; 
}
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Fig. 5 Algorithm L-R 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6  R-L algorithm 
 

In the algorithm (4), the square and Multiply  are operations 
that must be executed sequentially, and therefore 
multiplications must be executed in series, it means that all 
two are operations that can be executed in the same multiplier, 
simple to achieve point of view material, so one optimizes the 
surface of implantation.   

In the algorithm (5), the square and multiplied it are some 
independent operations, and can be executed in parallel. Thus, 
less 50% cycles of clocks are required to accomplish the 
modular exponentiation. However, the two physical 
multipliers are required to achieve the acceleration of the 
algorithm. Therefore, products of surface x speed of the two 
algorithms are very similar. For our work, the algorithm of R-
L (the algorithm (5)) will be used since the primary goal is to 
increase the binary debit of the exponentiation in real time for 
encrypt and to decrypt data.    

V. EXPONENTIATOR ARCHITECTURE 
The fundamental operation some modular exponentiation is 

the repeated modular multiplication, in the RSA cryptosystem 
this exponentiation is based on the modular multiplication of 
Montgomery, two operations are necessary for the modular 
exponentiation, in the first, operation(Mapping) it is necessary 
to convert data of P entrance (message of origin) in P r mod 
M. After this result, the modular exponentiation becomes 
PerMod M. In the second operation, the process re-mapping is 
executed. It calculates the function Monpro (1, R, M) finally to 
remove the supplementary factor r, one can reach the wanted 
result that is:  P eMod M. We apply the method binary R-L 
(right - left) that consists to optimize the speed while adopting 
the multiplication of Montgomery to the modular 
exponentiation. 
 

A. Modular Exponentiation   
Modular exponentiation block is considered as the 

operation of cryptography to all entrances that are the message 
of P origin, the key deprives (e, M) and  R exit that represents 
encrypt message.   

 
 

Fig. 7 Diagram block of the modular exponentiation 
 

 
Fig. 8 Architecture - MonExp2 

 
This figure present the architecture of implantation of the 

modular exponentiation Monexp2, indeed, it presents the 
different constituent blocks of our application. This figure 
represents all stages of calculation MonExp2 (P, ε, M), the 
first stage dedicated to the initialization indeed, (Mapping): 

 
Modular 
exponentiation  

P (Message)  

M 
e 

       R (Message 

crypté)  

Algorithme 4 :L-R Algorithme :MonExp1( P,ε,M ) 

MonExp1 ( P, ε, M) 

{ 

         C := 22n Mod M ; 

        P:=  Monpro  (C  ,P,M ) ;     ( Mapping ) 

        R := Monpro  (C  ,1 ,M ) ; 

        for i: =k-1 downto 0 do 

               R := Monpro  ( R,R,M );   ( Square ) 

               if  (εi=1)  then 

                    R := Monpro  ( R,P,M );  ( Multiply ) 

               end if  

        end for 

        R := Monpro  ( 1,R, M );  ( Re-Mapping ) 

         Return R; 

}

Algorithme 5 :R-L Algorithme :MonExp2 ( P,ε,M ) 

MonExp2 (P, ε, M) 

{ 

         C: = 22n Mod M; 

        P:=  Monpro  ( P, ε, M ) ;        ( Mapping ) 

        R: = Monpro (c, 1, M); 

        For i: =0 to k-1 do 

                     if  (εi = 1)  then 

                            R: = Monpro (R, P, M); (Multiply) 

                     end if  

                            P: = Monpro (P, P, M);   (Square) 

        end For 

        R: = Monpro (1, R, M);    (Re-Mapping ) 

         Return R; 

}



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:8, 2008

1650

 

 

         C: = 22n Mod M; 
        P: = Monpro (C, P, M);                            
        R: = Monpro (C, 1, M); 
 

The second is reserved to the modular exponentiation to 
calculate the intermediate parameters   (R, P) while using the 
key (e) [4]. Finally the third stage (Re-Mapping), is reserved 
to the calculation of encrypt signal. 
 

R: = Monpro (1, R, M). 

 
Fig. 9 RSA cryptosystem based on the Montgomery algorithm 
 

VI.  APPLICATION 
In this part, we have developed our application. Indeed, to 

lead the correct results it has been necessary to pass by 
various stages. First, we started with developing programs in 
VHDL for all blocks of the application. Then, we used 
MAX+PLUS II [5] software to compile and simulate our 
system. The elements of our application are regrouped to 
implant the architecture of the algorithm monpro2. Fig. 10 
shows entrances and exits of this block; Figs. 11 and 12 
present algorithm simulation’s results. 

 

 
 

Fig. 10 Block of the Montgomery multiplication  
 

 
 
 
 
 
 
 
 
 

Fig. 11 Monpro2 (8, 8, 21) 
 
 
 
 
 

 
 
 
 
 

 
Fig. 12 Monpro2 (11, 11, 21) 

 

Figs. 11 and 12 represent the results of simulations of the 
Montgomery multiplication Monpro2, indeed in this part, we 
tried to verify this multiplication while using examples and to 
visualize commands signals while basing on the logic of 
algorithm 2.     

 

 
 

Fig. 13 Monexp2 
 

This figure presents the block diagram of the algorithm of 
the modular exponentiation Monexp2. 
 

 
Fig. 14 Simulation   Monexp2 (2, 17,21) 

 
Fig. 14 presents the result of main program simulation 

(monexp2) that permits to encrypt a 8 bits message. It 
visualizes the different signals permitting manage of the 
modular exponentiation algorithm considering the public-key 
value KEY [7  ...0]. Then, we have used a key of 17, module 
M of 21 and a message of 2. Program execution presents an 
encrypt message equal to 11[6].   
 

VII.  RESULTS 
We used in our implantation the programmable circuit 

MAX 9000 - EPM9320LC84-15. Table I shows the number of 
Configurable Logic Block (CLB) occupied for the 
implementation of the architecture Monexp2, Input/Outputs 
blocks (I/OB) and the clock frequency. 
 

TABLE I 
RESULTS OF THE IMPLANTATION 

Architectur
e  

Length 
of key Frequency I/OB No.CLB

S 

Monpro2 8 bits  20MHZ 34 114 
(35%) 

Monexp2 8 bits  20 MHZ 34 224 
(70%) 

 
We have chosen an optimal architecture that permits to use 

224 CLBs (70%) and 34 Input/Output Block of this circuit 
with a clock frequency of 20 MHz [8].   
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VIII.  CONCLUSION 
We proposed an efficient design to implement an optimized 

RSA cryptosystem for restricted system [9].  Reconfiguration 
can be used to load the values of M, C, and possibly E or D in 
the design before encryption or decryption beginning. 
Generally this is not always performing with many 
exponentiation calculations being executed with the same 
values of M,C, E, and D. Also, by having both E and D stored 
in registers, digital signatures can be appended to messages by 
simply encrypting part (or all ) of the plaintext with the 
sender's private key[9], and then reloading this ciphertext into 
the encryptor to further encrypt it with the recipient's public 
key. To decrypt this message the receiver must first decrypt it 
with his own private key and then with the senders public key 
to confirm its origin. 
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