
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:8, 2008

1647

 Abstract—In this paper, the hardware implementation of the
RSA public-key cryptographic algorithm is presented. The RSA
cryptographic algorithm is depends on the computation of repeated
modular exponentials.

The Montgomery algorithm is used and modified to reduce
hardware resources and to achieve reasonable operating speed for
FPGA. An efficient architecture for modular multiplications based on
the array multiplier is proposed. We have implemented a RSA
cryptosystem based on Montgomery algorithm. As a result, it is
shown that proposed architecture contributes to small area and
reasonable speed.

Keywords—RSA, Cryptosystem, Montgomery, Implementation.
FPGA.

I. INTRODUCTION
N a secure telecommunications network such as is
increasingly required for electronic commerce and internet

privacy; security requirements include confidentiality,
authentication, data integrity and non-repudiation. These
services are offered by public key cryptosystems, the most
popular of which is the RSA encryption scheme [1]. The
fundamental operation of the algorithm is modular
exponentiation which is achieved by repeated modular
multiplications. The Montgomery modular multiplication
algorithm [2] is often used to perform these calculations.
However, the high bit lengths required to provide adequate
security (1024 bits is considered secure against attack in the
near future), mean a high hardware throughput is difficult to
achieve.

An efficient algorithm for the calculation of (Ax B) mod M
was developed by P. L. Montgomery [4], and forms the basis
of the designs presented here. It should be noted that
Montgomery's algorithm only works if the modulus is
relatively prime to the radix, although this is always the case
in RSA.

The objective of this work is the modeling and
implementation on FPGAs the RSA cryptosystem while
basing on the Montgomery Multiplication.

This paper is organized as follows: Section 2 presents the
RSA algorithm and Montgomery multiplication. Section 3
presents the implementation architecture of Montgomery
Multiplication while using the double adder architecture.
Sections 4, 5 present the modular exponentiation architecture.
Then, Sections 6, 7 present results of simulation. , and finally
some conclusions are drawn in Section 8.

Authors are with Laboratory of Electronics, Department of Physics,
Faculty of Sciences of Tunis, 2092, El-Manar, Tunisia (e-mails:
ridha_ghayoula_fst@yahoo.fr, hajlamjed@yahoo.fr, korkobi_talel@yahoo.fr,
traii_moncef@yahoo.fr).

II. MONTGOMERY MODULAR MULTIPLICATION

A. The RSA Algorithm
Suppose Alice wishes to send a secret message to Bob. In a

secret key system, Alice and Bob need to know the same
secret key and so it must be communicated via some secure
channel. In a public key system, Bob broadcasts his public key
and Alice can use it to encode a message. The design of the
cryptosystem is such that only Bob can decode the encrypted
message, but no exchange of secret keys is necessary.
 In the RSA cryptosystem, [3] Alice must first find Bob's
public key M, E which are the modulus and exponent
respectively. She calculates the cipher-text (C) from the
plaintext (P) by:

 C = PE (mod M) (1)

To decode the message, Bob uses his private key (D) to
recover the plain text by:

 P = CD (mod M) (2)

To generate the key, two large prime numbers P and Q
are first generated, and two equations are used to calculate D,
E and M:

M = PQ
 DE ≡ 1 (mod (P - 1)(Q - 1)) (3)

where E is relatively prime to (P - 1) (Q - 1). In practice, E is
often chosen to be a small number which reduces the amount
of computation required to perform encryption. The strength
of RSA depends on the key size k, the number of bits in M.
Breaking RSA is believed to be as hard as factorizing M to P,
Q which is intractable for k ≥ 1024 with current Technology
[4].

B. Description of the Montgomery Algorithm
The encryption and decryption operations are, indeed, of

modular exponentiation operations. The exponentiation
operation is a succession of modular products, it is clear that
the efficiency of this last is going to determine the
performance of the system because the Montgomery algorithm
achieves the modular multiplication of effective way, and it is
easily adaptable to the material implementation.

The MonPro2 function calculates the Montgomery
Multiplication:

MonPro2 (A, B, M) =ABr -1 Mod M

 Ridha Ghayoula, ElAmjed Hajlaoui, Talel Korkobi, Mbarek Traii, Hichem Trabelsi

FPGA Implementation of RSA Cryptosystem

I

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:8, 2008

1648

Fig. 1 Algorithm 2: MonPro2

Where:
1

2
0

k i
A aii

−
∑=
=

,
1

2
0

k i
B bii

−
∑=
=

,
1

2
0

k i
M mii

−
∑=
=

, , {0,1}a b mi i i ∈

With M is an integer of k-bit (ie: 0 2
k

Mp p), ,A B Mp and n

is equal to k +2 and S are remainders (ie: 0 2
k

S≤ p).

III. MONTGOMERY ARCHITECTURE
A. Block Diagram
This block present, the Montgomery multiplication

MonPro2 (A, B, M), therefore it contains three variable of
entrances A, B and M and a signal clock (CLK) and two
signals of RST commands and LOAD for the loading
variables and R exit that represent the result of calculation.
Finally this algorithm is going to calculate the operation
following: AB (2n)-1mod N.

Fig. 2 Diagram block of the Montgomery multiplication

B. Double Adder Architectures
The architecture of double adder represents the

Montgomery multiplication based on the algorithm (2),
therefore she is constituted of two adders of 8 bits and two
multipliers (A.bi and M.qi).

Fig. 3 MonArch1: Montgomery architecture based on the algorithm

2

To remove the dependency of qi on the addition of biA and
Si-1, A can be shifted up 1 bit, thus forcing the LSB of Si-1 +
biA to always be zero, as illustrated in figure 4. However, this
extra factor of 2 must be removed by an extra iteration,
meaning that the number of clock cycles is again equal to n +
1 [4].

Fig. 4 Montgomery multiplier architecture based on algorithm (2)

IV. MODULAR EXPONENTIATION
 The modular exponentiation is executed by the repeated
modular multiplications [4]. There are two common
algorithms that can be to use: The binary method of L-R and
the binary method of R-L. These are given in algorithms (4) &
(5), where P is the E plaintext is the exhibitor, M is the
module, C is constant and equal to 22n mod M, and R is the
result.

Algorithm 2: MonPro2(A, B, M)
MonPro2 (A,B,M)
{
S-1:= 0;
For i = 0 to n - 1 do
 qi := (Si-1+biA) Mod 2 ; (LSB of Sum)
 Si := (Si-1 + qiM + biA)/2 ;
end For
Return Sn-1;
}

Add

Add

 bN-1 ………………….. b0

 SN-1 ………………….. S0

 MN-1 ………………….. M0

M [N-1… 0]

B [N-1… 0]

A [N-1… 0]

 AN-1 ………………….. A0

LSB qi

Abi [N-1… 0]

MSB… LSB+1

 Abi

 +n~bit adder

 +n~bit adder

Mqi

Si-1(N-1),…,Si-1(0)

MSB,…,LSB+1

M

A bi

LSB
qi

 A B M

 RST AB (2n)-1 mod M

 R

LOAD

CLK

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:8, 2008

1649

Fig. 5 Algorithm L-R

Fig. 6 R-L algorithm

In the algorithm (4), the square and Multiply are operations
that must be executed sequentially, and therefore
multiplications must be executed in series, it means that all
two are operations that can be executed in the same multiplier,
simple to achieve point of view material, so one optimizes the
surface of implantation.

In the algorithm (5), the square and multiplied it are some
independent operations, and can be executed in parallel. Thus,
less 50% cycles of clocks are required to accomplish the
modular exponentiation. However, the two physical
multipliers are required to achieve the acceleration of the
algorithm. Therefore, products of surface x speed of the two
algorithms are very similar. For our work, the algorithm of R-
L (the algorithm (5)) will be used since the primary goal is to
increase the binary debit of the exponentiation in real time for
encrypt and to decrypt data.

V. EXPONENTIATOR ARCHITECTURE
The fundamental operation some modular exponentiation is

the repeated modular multiplication, in the RSA cryptosystem
this exponentiation is based on the modular multiplication of
Montgomery, two operations are necessary for the modular
exponentiation, in the first, operation(Mapping) it is necessary
to convert data of P entrance (message of origin) in P r mod
M. After this result, the modular exponentiation becomes
PerMod M. In the second operation, the process re-mapping is
executed. It calculates the function Monpro (1, R, M) finally to
remove the supplementary factor r, one can reach the wanted
result that is: P eMod M. We apply the method binary R-L
(right - left) that consists to optimize the speed while adopting
the multiplication of Montgomery to the modular
exponentiation.

A. Modular Exponentiation
Modular exponentiation block is considered as the

operation of cryptography to all entrances that are the message
of P origin, the key deprives (e, M) and R exit that represents
encrypt message.

Fig. 7 Diagram block of the modular exponentiation

Fig. 8 Architecture - MonExp2

This figure present the architecture of implantation of the

modular exponentiation Monexp2, indeed, it presents the
different constituent blocks of our application. This figure
represents all stages of calculation MonExp2 (P, ε, M), the
first stage dedicated to the initialization indeed, (Mapping):

Modular
exponentiation

P (Message)

M
e

 R (Message

crypté)

Algorithme 4 :L-R Algorithme :MonExp1(P,ε,M)

MonExp1 (P, ε, M)

{

 C := 22n Mod M ;

 P:= Monpro (C ,P,M) ; (Mapping)

 R := Monpro (C ,1 ,M) ;

 for i: =k-1 downto 0 do

 R := Monpro (R,R,M); (Square)

 if (εi=1) then

 R := Monpro (R,P,M); (Multiply)

 end if

 end for

 R := Monpro (1,R, M); (Re-Mapping)

 Return R;

}

Algorithme 5 :R-L Algorithme :MonExp2 (P,ε,M)

MonExp2 (P, ε, M)

{

 C: = 22n Mod M;

 P:= Monpro (P, ε, M) ; (Mapping)

 R: = Monpro (c, 1, M);

 For i: =0 to k-1 do

 if (εi = 1) then

 R: = Monpro (R, P, M); (Multiply)

 end if

 P: = Monpro (P, P, M); (Square)

 end For

 R: = Monpro (1, R, M); (Re-Mapping)

 Return R;

}

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:8, 2008

1650

 C: = 22n Mod M;
 P: = Monpro (C, P, M);
 R: = Monpro (C, 1, M);

The second is reserved to the modular exponentiation to
calculate the intermediate parameters (R, P) while using the
key (e) [4]. Finally the third stage (Re-Mapping), is reserved
to the calculation of encrypt signal.

R: = Monpro (1, R, M).

Fig. 9 RSA cryptosystem based on the Montgomery algorithm

VI. APPLICATION
In this part, we have developed our application. Indeed, to

lead the correct results it has been necessary to pass by
various stages. First, we started with developing programs in
VHDL for all blocks of the application. Then, we used
MAX+PLUS II [5] software to compile and simulate our
system. The elements of our application are regrouped to
implant the architecture of the algorithm monpro2. Fig. 10
shows entrances and exits of this block; Figs. 11 and 12
present algorithm simulation’s results.

Fig. 10 Block of the Montgomery multiplication

Fig. 11 Monpro2 (8, 8, 21)

Fig. 12 Monpro2 (11, 11, 21)

Figs. 11 and 12 represent the results of simulations of the
Montgomery multiplication Monpro2, indeed in this part, we
tried to verify this multiplication while using examples and to
visualize commands signals while basing on the logic of
algorithm 2.

Fig. 13 Monexp2

This figure presents the block diagram of the algorithm of
the modular exponentiation Monexp2.

Fig. 14 Simulation Monexp2 (2, 17,21)

Fig. 14 presents the result of main program simulation

(monexp2) that permits to encrypt a 8 bits message. It
visualizes the different signals permitting manage of the
modular exponentiation algorithm considering the public-key
value KEY [7 ...0]. Then, we have used a key of 17, module
M of 21 and a message of 2. Program execution presents an
encrypt message equal to 11[6].

VII. RESULTS
We used in our implantation the programmable circuit

MAX 9000 - EPM9320LC84-15. Table I shows the number of
Configurable Logic Block (CLB) occupied for the
implementation of the architecture Monexp2, Input/Outputs
blocks (I/OB) and the clock frequency.

TABLE I
RESULTS OF THE IMPLANTATION

Architectur
e

Length
of key Frequency I/OB No.CLB

S

Monpro2 8 bits 20MHZ 34 114
(35%)

Monexp2 8 bits 20 MHZ 34 224
(70%)

We have chosen an optimal architecture that permits to use

224 CLBs (70%) and 34 Input/Output Block of this circuit
with a clock frequency of 20 MHz [8].

Modular
Exponentiation

Mapping

Encrypt message

Plaintext

Re-Mapping

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:8, 2008

1651

VIII. CONCLUSION
We proposed an efficient design to implement an optimized

RSA cryptosystem for restricted system [9]. Reconfiguration
can be used to load the values of M, C, and possibly E or D in
the design before encryption or decryption beginning.
Generally this is not always performing with many
exponentiation calculations being executed with the same
values of M,C, E, and D. Also, by having both E and D stored
in registers, digital signatures can be appended to messages by
simply encrypting part (or all) of the plaintext with the
sender's private key[9], and then reloading this ciphertext into
the encryptor to further encrypt it with the recipient's public
key. To decrypt this message the receiver must first decrypt it
with his own private key and then with the senders public key
to confirm its origin.

REFERENCES
[1] R. L. Rivest, A. Shamir, and L. Adleman. “A Method for obtaining

digital signatures and public-Key cryptosystems”. Comm. ACM, 21:120
126,1978.

[2] Schneier Bruce, Cryptographie appliquée - Algorithmes, protocoles et
codes source en C - 2ème édition, International Thomson Publishing
France, 1997-Applied Cryptography - Protocols, Algorithms, and Source
Code in C - 2nd Edition.

[3] Bouallegue Ridha, Hamdi Omessaad « Sécurité des Crypto Systèmes ».
ENIT; SUPCOM, Tunis, Tunisie.2003.

[4] Alan Daly and William Marnane “Efficient Architectures for
implementing Montgomery Modular Multiplication and RSA Modular
Exponentiation on Reconfigurable Logic”. -University College Cork
Ireland 2001.

[5] Young Sae Kim, Woo Seok Kang, Jun Rim Choi “Implementation of
1024-bit modular processor for RSA cryptosystem” School of Electronic
and Electrical Engineering, Kyungpook National University,
Korea.2001.

[6] John Fry - Martin Langhammer. “RSA & Public Key Cryptography in
FPGA”2000.

[7] A.Mazzero, L.Romano “FPGA-based Implementation of a serial
RSA” processor, G.P.Saggese-Universita‘degli Studi Napoli “Federico
II” 2002.

[8] Tom Kean “Cryptography Rights Management of FPGA Intellectual
Property Cores” Edinburgh EH8 8YB United Kingdom.1999.

[9] S.H. Tang, K.S. Tsui and P.H.W. Leong “Modular Exponentiation
using Parallel Multipliers” The Chinese University of Hong Kong
Shatin, NT, Hong Kong 2001.

Ridha Ghayoula received the degree in automatic electric
engineering in 2002 and the M.S. degree in electronics device
from the Faculty of Sciences of Tunis, Tunisia, in 2005, He is
currently working toward the Ph.D. degree in electrical
engineering at the Faculty of Sciences of Tunis. His current

research interests include intelligent antennas and microwave integrated
circuits.

