
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:11, 2010

1426

A contractor for the symmetric solution set
Milan Hladı́k

Abstract—The symmetric solution set Σsym is the set of all
solutions to the linear systems Ax = b, where A is symmetric and
lies between some given bounds A and A, and b lies between b and b.
We present a contractor for Σsym, which is an iterative method that
starts with some initial enclosure of Σsym (by means of a cartesian
product of intervals) and sequentially makes the enclosure tighter. Our
contractor is based on polyhedral approximation and solving a series
of linear programs. Even though it does not converge to the optimal
bounds in general, it may significantly reduce the overestimation. The
efficiency is discussed by a number of numerical experiments.

Keywords—Linear interval systems, solution set, interval matrix,
symmetric matrix.

I. INTRODUCTION

Let us consider an n × n linear system of equations

Ax = b,

where A and b perturb within some given bounds as follows:

A ≤ A ≤ A and b ≤ b ≤ b,

and the relations are understood componentwise. Introducing
the interval matrix

A := [A, A] = {A ∈ R
n×n

| A ≤ A ≤ A},

and the interval vector

b := [b, b] = {b ∈ R
n
| b ≤ b ≤ b},

the interval linear system reads

Ax = b, A ∈ A, b ∈ b.

The solution set Σ to this interval system is defined as the set
of all possible solutions, that is

Σ := {x | Ax = b, A ∈ A, b ∈ b}

It is known that checking non-emptiness of Σ is NP-hard
problem as well as computing its interval hull (the smallest
interval vector containing Σ) [12]. To find a tight enclosure
to Σ is a basic problem in the discipline of interval computing.
We focus on the symmetric solution set Σsym, which is
defined as

Σsym := {x | Ax = b, A ∈ A, A = AT , b ∈ b}.

Linear systems with symmetric matrices arise naturally in
many engineering problems. Interval analysis approach was
used e.g. in truss mechanics [18] and nodal analysis for linear
electrical circuits [11], [29]. Symmetric matrices appear in
eigenvalue problems [14]; our approach enables to compute
tight approximation of eigenvectors of symmetric interval

M. Hladı́k is with the Department of Applied Mathematics, Faculty of
Mathematics and Physics, Charles University, Malostranské nám. 25, 11800,
Prague, Czech Republic, e-mail: (see milan.hladik@matfyz.cz)

matrices. Another kinds of applications involve Markov chains
[9], for instance.

The dependences due to the symmetry of A induce that
Σsym is very hard to sharply approximate, and it is still a
challenging problem. As Σsym ⊆ Σ, any enclosure of Σ is
also an enclosure of Σsym. However, the symmetry must be
taken into account since the overestimation of Σ over Σsym

caused by relaxing the symmetry condition can be arbitrarily
large [13]. Characterization of Σsym was developed in [3],
[4], [5], [7], [13].

Due to the mentioned difficulties, it is not surprising that
there are few methods for finding a tight enclosure of Σsym.
Basically, there were two approaches studied. The Cholesky
method adapted to interval data was studied in [6], [7], [8] and
extended to block matrices in [27], [28]. Inclusion methods for
linear interval systems with more general dependences were
discussed e.g. by Jansson [15], Rump [25], Popova et al. [20],
[21], [22] or by Kolev [16], [17].

Let us introduce some notations. The midpoint and the
radius of an interval matrix A is defined respectively as

Ac :=
1

2
(A + A), AΔ :=

1

2
(A − A),

and similarly for interval vectors. By an enclosure of a set we
mean an arbitrary superset. The sign of a real number x is
defined as sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 otherwise.
Strict lexicographic ordering of vectors is denoted by ≺lex ;
it means u≺lex v if for some k we have ui = vi, i < k, and
uk < vk. Finally, Ai,. isolates the i-th row of a matrix A, and
diag(z) stands for a diagonal matrix with entries z1, . . . , zn.

II. METHOD

Our method is based on a description of Σsym by means
of a nonlinear system of inequalities [13]. The system is
linearized by a McCormick-like method [1] and the polyhedral
approximation of Σsym is used for iterative contracting in a
similar way as presented in [10]: we calculate an interval hull
of the polyhedral approximation and use the bounds for the
next iteration. The basic scheme of the algorithm is presented
below.

Let us discuss the steps of Algorithm 1 in detail. Step 1 re-
quires some initial interval enclosure of Σsym. Since Σsym ⊆

Σ we can utilize any interval enclosure to Σ as well. There
are numbers of solvers for interval linear systems [2], [19],
[23].

The improvement in Step 7 is measured by the ratio of
component sums of (xi)

Δ
and (xi−1)

Δ
, respectively. We

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:11, 2010

1427

Algorithm 1 (Symmetric solution set contractor)

1: Compute an initial interval enclosure x0 ⊇ Σsym;
2: i := 0;
3: repeat
4: compute a polyhedral enclosure P of Σsym by us-

ing xi;
5: i := i + 1;
6: compute the interval hull xi of P ;
7: until improvement is nonsignificant;
8: return xi;

terminate the loop when
n∑

j=1

(xi
j)

Δ

n∑
j=1

(xi−1
j)

Δ

> 0.99

comes true.
In step 6, the interval hull xi of P is easily calculated by

solving 2n linear programs: the bounds of xi consists of the
minimum and the maximum of each coordinate over P .

Step 4 will be more troublesome. First we remind the
description of Σsym by Hladı́k [13].

Theorem 1 (Hladı́k, 2008). The symmetric solution set Σsym

is described by the following system of inequalities

AΔ
|x| + bΔ

≥ |bc
− Acx|, (1)

n∑
i,j=1

aΔ
ij |xixj(pi − qj)| +

n∑
i=1

bΔ
i |xi(pi + qi)|

≥

∣∣∣∣∣
n∑

i=1

(bc
i − Ac

i,.x)xi(pi − qi)

∣∣∣∣∣
(2)

for all vectors p, q ∈ {0, 1}n \ {0, 1} such that

p≺lex q and (p = 1 − q ∨ ∃i : pi = qi = 0). (3)

In order to enclose Σsym by a polyhedral set we have
to linearize the constraints (1)–(2). Linearization of bilinear
terms is done by means of Adjiman et al [1], and linearization
of absolute value is adopted from Beaumont [10].

Theorem 2 (Adjiman et al., 1998). For every x ∈ x ⊂ R and
y ∈ y ⊂ R we have

xy ≤ xy + yx − xy,

xy ≤ xy + yx − xy,

xy ≥ xy + yx − xy,

xy ≥ xy + yx − xy.

Theorem 3 (Beaumont, 1998). For every x ∈ x ⊂ R with
x < x we have

|x| ≤ αx + β, (4)

where

α =
|x| − |x|

x − x
and β =

x|x| − x|x|

x − x
.

Moreover, if x ≥ 0 or x ≤ 0 then (4) holds as equation.

Let xk be an interval enclosure of Σsym. The first system
(1) in the description of Σsym is linearized by the Beaumont
method [10]. Define vectors α, β ∈ R

n componentwise by

αi :=

⎧⎨
⎩

|xk
|−|xk

|

xk
−xk

if xk
i < xk

i ,

sgn(xk
i) if xk

i = xk
i ,

βi :=

⎧⎨
⎩

xk
|xk

|−xk
|x|

k

xk
−xk

if xk
i < xk

i ,

0 if xk
i = xk

i .

Then each solution to (1) satisfies the system of 2n inequalities
[10]

(Ac
− AΔ diag(α)) x ≤ b + AΔβ,

(−Ac
− AΔ diag(α)) x ≤ −b + AΔβ.

Now let turn our attention to the second system (2). Let
p, q ∈ {0, 1}n \ {0, 1} satisfying (3), and we linearize the
terms of (1) as follows:

1. The second term in (2) is easy to linearize. By Theorem 3,
for each summand of the sum we have

bΔ
i |xi(pi + qi)| ≤ bΔ

i |(pi + qi)|αixi + bΔ
i |(pi + qi)|βi.

2. A linear upper bound for the first term in (2) is obtained
by applying both Theorems 2 and 3:

|xixj(pi − qj)|

≤ |pi − qj |(αixi + βi)(αjxj + βj) (5)

= |pi − qj |(αiαjxixj + βjαixi + βiαjxj + βiβj)

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|pi − qj |
(
αiαj(xixj + xjxi − xixj)+

+βjαixi + βiαjxj + βiβj

)
if αiαj ≥ 0,

|pi − qj |
(
αiαj(xixj + xjxi − xixj)+

+βjαixi + βiαjxj + βiβj

)
if αiαj ≥ 0,

|pi − qj |
(
αiαj(xixj + xjxi − xixj)+

+βjαixi + βiαjxj + βiβj

)
if αiαj < 0,

|pi − qj |
(
αiαj(xixj + xjxi − xixj)+

+βjαixi + βiαjxj + βiβj

)
if αiαj < 0.

(6)

In any case, whether αiαj is negative or non-negative,
we have the choice of two inequalities which to use. We
discuss this point later.

3. The inequality (2) has the equivalent form

n∑
i,j=1

aΔ
ij |xixj(pi − qj)| +

n∑
i=1

bΔ
i |xi(pi + qi)|

≥

n∑
i=1

(bc
i − Ac

i,.x)xi(pi − qi),

(7)

n∑
i,j=1

aΔ
ij |xixj(pi − qj)| +

n∑
i=1

bΔ
i |xi(pi + qi)|

≥ −

n∑
i=1

(bc
i − Ac

i,.x)xi(pi − qi).

(8)

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:11, 2010

1428

The right-hand side of the first inequality is linearized in
the following way

n∑
i=1

(bc
i − Ac

i,.x)xi(pi − qi)

=

n∑
i=1

bc
ixi(pi − qi) −

n∑
i=1

n∑
j=1

ac
i,jxixj(pi − qi),

where the bilinear term is approximated

− ac
i,j(pi − qi)xixj

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ac
i,j(pi − qi)(xixj + xjxi − xixj)

if ac
i,j(pi − qi) ≥ 0,

−ac
i,j(pi − qi)(xixj + xjxi − xixj)

if ac
i,j(pi − qi) ≥ 0,

−ac
i,j(pi − qi)(xixj + xjxi − xixj)

if ac
i,j(pi − qi) < 0,

−ac
i,j(pi − qi)(xixj + xjxi − xixj)

if ac
i,j(pi − qi) < 0.

(9)

For the right-hand side of (8) we proceed accordingly:

−

n∑
i=1

(bc
i − Ac

i,.x)xi(pi − qi)

= −

n∑
i=1

bc
ixi(pi − qi) +

n∑
i=1

n∑
j=1

ac
i,jxixj(pi − qi),

where

ac
i,j(pi − qi)xixj

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ac
i,j(pi − qi)(xixj + xjxi − xixj)

if ac
i,j(pi − qi) ≥ 0,

ac
i,j(pi − qi)(xixj + xjxi − xixj)

if ac
i,j(pi − qi) ≥ 0,

ac
i,j(pi − qi)(xixj + xjxi − xixj)

if ac
i,j(pi − qi) < 0,

ac
i,j(pi − qi)(xixj + xjxi − xixj)

if ac
i,j(pi − qi) < 0.

(10)

In (6) we have two inequalities which we can choose and
the same is true for (9) and (10). The choice is independent for
O(n2) terms. So, if we considered all possible cases then the
resulting system would consist of O(2n2

) inequalities. This is
a tremendous number, and we had rather proceeded in another
way. We chose randomly one of the pair independently one
after another, and we did this run twice. Thus, for fixed p and
q, we linearized (1) by four inequalities.

It remains to select appropriate binary vectors p and q.
Again, we cannot consider all possibilities defined by (3)
since it would result in an exponentially large system. In our
experience, the following set of choices is efficient; therein,
ek denotes the k-th Cartesian unit vector.

(S1) p = ek and q = el, where k = 1, . . . , n, l = k+1, . . . , n;
(S2) p = ek and q = 1 − p, where k = 1, . . . , n;

(S3) make 1
4n2 +2n random selections of p, q ∈ {0, 1}n with

probabilities:

P (pi = 0) =
4

7
, P (pi = 1) =

3

7
,

P (qi = 0) = P (qi = 1) =
1

2
.

We consider more sophisticated selections, too. The interval
hull xi of P (step 6 of Algorithm 1) is determined by solving
2n linear programs. Each of the linear programs yields an
extremal point of P which is on the boundary of xi. For each
of such extremal points we construct binary vectors p and q
such that inequalities (7)–(8) are violated by as large amount
as possible. We discuss two ways: a simple fast heuristic and
a more expensive optimal selection.

Let x be any extremal point under discussion. We want to
find p and q such that the difference of the left-hand side and
right-hand side of the inequality (7) is as small as possible.
This inequality takes the form

n∑
i,j=1

cij |pi − qj | +

n∑
i=1

dipi +

n∑
i=1

fiqi ≥ 0, (11)

where

cij = aΔ
ij |xixj |,

di = bΔ
i |xi| − bc

ixi +

n∑
j=1

ac
ijxixj ,

fi = bΔ
i |xi| + bc

ixi −

n∑
j=1

ac
ijxixj .

The first idea is to choose p and q such that the second and
the third sum in (11) is minimal. That is, for i = 1, . . . , n, we
put

(S4) p1 = 1 if di < 0 and pi = 0 otherwise; q1 = 1 if fi < 0
and qi = 0 otherwise.

This simple heuristic doesn’t yield optimal solution in general.
To compute optimal vectors p and q we have to consider the
optimization problem

min

n∑
i,j=1

cij |pi − qj | +

n∑
i=1

dipi +

n∑
i=1

fiqi

subject to p, q ∈ {0, 1}n.

This integer nonlinear programming problem can be reformu-
lated as

min

n∑
i,j=1

cijrij +

n∑
i=1

dipi +

n∑
i=1

fiqi

subject to rij ≥ pi − qj , rij ≥ −pi + qj , pi, qj , rij ∈ {0, 1}.

The constraints force the additional variable rij to be at least
|pi − qj |. Since we have a minimization problem and cij ≥ 0
for all i, j ∈ {1, . . . , n}, the optimal solution always satisfies
rij = |pi−qj |. Moreover, since the constraint matrix is totally
unimodular, we can relax integrality conditions on variables,
and obtain a linear program

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:11, 2010

1429

(S5) min

n∑
i,j=1

cijrij +

n∑
i=1

dipi +

n∑
i=1

fiqi

subject to rij ≥ pi − qj , rij ≥ −pi + qj , 0 ≤

pi, qj , rij ≤ 1.

Even though linear programs are efficiently solvable, we have
a quadratic number of variables and calculation of p and
q is not very cheap. We discuss performance in detail in
Example 3.

In the following section, we test our contractor on a number
of examples. We employed selection rules (S1)–(S4), which
results in

(
n
2

)
+n+(1

4n2+2n)+2n instances of p and q. Thus
the total number of inequalities that define the polyhedron P

is

2n + 4
((n

2

)
+ n +

(
1
4n2 + 2n) + 2n

)
= 3n2 + 20n.

In Example 3 we compare it with a variant incorporating also
the selection rule (S5). In this case, we have 2n more instances
of p and q, and the total number of inequalities is

2n + 4
((n

2

)
+ n +

(
1
4n2 + 2n) + 2n + 2n

)
= 3n2 + 28n.

III. NUMERICAL EXPERIMENTS

The computations presented in this section were carried out
in MATLAB 7.7.0.471 (R2008b) on a machine with AMD
Athlon 64 X2 Dual Core Processor 4400+,
CPU 2.2 GHz, with 1004 MB RAM. Interval arithmetics and
basic interval functions were provided by the interval toolbox
INTLAB v5.3 [26], and some extended interval functions by
the Rohn’s package VERSOFT 10 [24]. However, for the
sake of simplicity, the non-verified floating point arithmetics
was used for the real value calculation.

Example 1. Consider an example by Alefeld and Mayer [6]

A =

(
4 [−1, 1]

[−1, 1] 4

)
, b =

(
6
6

)
.

Let an initial enclosure of Σsym be x0 = ([0, 3], [0, 3])T .
Calling Algorithm 1 we obtain a sequence of improving
enclosures as follows:

x0 = ([0, 3], [0, 3])T ,

x1 = ([1.0588, 2.0001], [1.0588, 2.0001])T ,

x2 = ([1.1670, 2.0001], [1.1670, 2.0001])T ,

x3 = ([1.1945, 2.0000], [1.1945, 2.0000])T ,

x4 = ([1.1991, 2.0000], [1.1991, 2.0000])T .

In four iterations we have a tight enclosure
([1.1991, 2.0000], [1.1991, 2.0000])T of Σsym. Note that
the real interval hull of Σsym is ([65 , 2], [65 , 2])T and the
interval hull of Σ is ([1817 , 2], [1817 , 2])T . According to [6],
Cholesky method yields ([1, 2], [98 , 2])T and Gaussian
elimination yields ([1, 2], [1817 , 2])T . Thus we improved both
enclosures.

Example 2. Consider the Behnke example from Rump [25,
pg. 48]

A =

(
3 [1, 2]

[1, 2] 3

)
, b =

(
[10, 10.5]
[10, 10.5]

)

Let an initial enclosure of Σsym be x0 = ([0.8, 4], [0.8, 4])T .
Calling Algorithm 1 we obtain the following sequence of
improving enclosures:

x0 = ([0.8, 4], [0.8, 4])T ,

x1 = ([1.2857, 3.0715], [1.2857, 3.0715])T ,

x2 = ([1.5496, 2.8411], [1.5496, 2.8411])T ,

x3 = ([1.6722, 2.7589], [1.6722, 2.7589])T ,

x4 = ([1.7192, 2.7348], [1.7192, 2.7348])T ,

x5 = ([1.7350, 2.7280], [1.7350, 2.7280])T ,

x6 = ([1.7401, 2.7260], [1.7401, 2.7260])T .

In six iterations we have a tight enclosure
([1.7401, 2.7260], [1.7401, 2.7260])T of Σsym.
Compare it with the interval hull of Σsym,
which is ([1.8, 2.6875], [1.8100, 2.688])T (and not
([1.8100, 2.688], [1.8100, 2.688])T stated in [25]).
The interval hull of Σ is ([97 , 43

14], [97 , 43
14])T �

([1.285, 3.072], [1.285, 3.072])T . The Rump inclusion
method gives ([1.623, 2.932], [1.623, 2.932])T .

Example 3. We carried out a number of randomly gener-
ated examples. They are summarized in Table I and II. The
dimension is denoted by n. The random interval matrices
were generated in the following way. First, entries of Ac were
chosen randomly and independently in [−10, 10] with uniform
distribution, and then we set Ac := Ac + (Ac)T + 20nI ,
where I stands for the identity matrix. Thus A is symmetric
and more or less diagonally dominant, which forces A to
consist of nonsingular matrices. Entries of the radius matrix
AΔ were generated randomly independently and uniformly in
[−R, R], where R > 0 was a parameter. Again, we symmetrize
AΔ := AΔ + (AΔ)T . Similarly we proceeded in case of the
right-hand side interval vector b. Entries of the midpoint vector
bc came randomly from [−10n, 10n] and entries of the radius
vector from [0, R].

In each setting of n and R we carried out a sequence of
runs the number of which is denoted by “iterations”. Based on
a sequence of runs we determined the average computing time
and cut off quotients. Cut off quotient is defined naturally as
a fraction of the volume that is cut off, i.e.

n∏
i=1

(x0
i)

Δ
−

n∏
i=1

(x∗

i)
Δ

n∏
i=1

(x0
i)

Δ

100%,

where x0 is an initial interval enclosure of Σsym and x∗ is
the resulting enclosure returned by our algorithm.

The initial solutions were obtained by calling the functions
verifylss and verintervalhull. The former is from
the INTLAB toolbox and computes fast interval enclosure of

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:11, 2010

1430

Σ, while the latter VERSOFT function calculates the verified
interval hull of Σ.

Table I contains results for the variant of the contractor that
incorporates selection rules (S1)–(S4), while Table II employs
the set of selection rules (S1)–(S5).

The last column in Table I reveals that the resulting interval
enclosures of Σsym are strictly inside the interval hull of Σ.
It means, our results are significantly better than an arbitrarily
accurate solver for Σ. This also certifies that dependencies in
the description of Σsym must be taken into account, otherwise
the solution is heavily overestimated.

Table I shows that the computation is rather slow. Never-
theless, it is tractable for quite high dimensions: Providing we
limit the number of iterations of the main loop of Algorithm 1
(steps 3–7), and we use an efficient linear programming solver
then our method runs in polynomial time.

IV. CONCLUSION

We presented a method for contracting an interval enclosure
of the symmetric solution set. It was based on a linear
relaxation. Tight approximation would lead to exponentially
large system of inequalities, so, in order to be our approach
tractable, we selected the most promising ones. This selection
was based on numerical experience as well as theoretical
analysis. However, another way of selection may possibly
improve the contractor efficiency.

Even though the computational cost of the proposed algo-
rithm is rather high, its complexity is still polynomial. Hence
we can solve much larger systems than the traditional branch
& bound approach was able to deal with.

REFERENCES

[1] C. S. Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier. A global
optimization method, αBB, for general twice-differentiable constrained
NLPs – I. Theoretical advances. Comput. Chem. Eng., 22(9):1137–1158,
1998.

[2] G. Alefeld and J. Herzberger. Introduction to interval computations.
Computer Science and Applied Mathematics. Academic Press, New
York, 1983.

[3] G. Alefeld, V. Kreinovich, and G. Mayer. On the shape of the symmetric,
persymmetric, and skew-symmetric solution set. SIAM J. Matrix Anal.
Appl., 18(3):693–705, 1997.

[4] G. Alefeld, V. Kreinovich, and G. Mayer. The shape of the solution
set for systems of interval linear equations with dependent coefficients.
Math. Nachr., 192:23–36, 1998.

[5] G. Alefeld, V. Kreinovich, and G. Mayer. On the solution sets of
particular classes of linear interval systems. J. Comput. Appl. Math.,
152(1-2):1–15, 2003.

[6] G. Alefeld and G. Mayer. The cholesky method for interval data. Linear
Algebra Appl., 194:161–182, 1993.

[7] G. Alefeld and G. Mayer. On the symmetric and unsymmetric solution
set of interval systems. SIAM J. Matrix Anal. Appl., 16(4):1223–1240,
1995.

[8] G. Alefeld and G. Mayer. New criteria for the feasibility of the cholesky
method with interval data. SIAM J. Matrix Anal. Appl., 30(4):1392–
1405, 2008.

[9] R. Araiza, G. Xiang, O. Kosheleva, and D. Škulj. Under interval
and fuzzy uncertainty, symmetric markov chains are more difficult to
predict. In M. Reformat and M. R. Berthold, editors, Proceedings
of the 26th International Conference of the North American Fuzzy
Information Processing Society NAFIPS’2007, pages 526–531, San
Diego, California, 2007.

[10] O. Beaumont. Solving interval linear systems with linear programming
techniques. Linear Algebra Appl., 281(1-3):293–309, 1998.

[11] A. Dreyer. Interval analysis of linear analog circuits. In Proceedings
of the 12th GAMM–IMACS Symposium on Scientific Computing, Com-
puter Artithmetic and Validated Numerics, SCAN 2006., page 14, Los
Alamitos, CA, USA, 2007. IEEE Computer Society.

[12] M. Fiedler, J. Nedoma, J. Ramı́k, J. Rohn, and K. Zimmermann. Linear
optimization problems with inexact data. Springer, New York, 2006.

[13] M. Hladı́k. Description of symmetric and skew-symmetric solution set.
SIAM J. Matrix Anal. Appl., 30(2):509–521, 2008.

[14] M. Hladı́k, D. Daney, and E. Tsigaridas. An algorithm for the real
interval eigenvalue problem. Research Report RR-6680, INRIA, France,
October 2008. http://hal.inria.fr/inria-00329714/en/.

[15] C. Jansson. Interval linear systems with symmetric matrices, skew-
symmetric matrices and dependencies in the right hand side. Comput.,
46(3):265–274, 1991.

[16] L. V. Kolev. An improved interval linearization for solving nonlinear
problems. Numer. Algorithms, 37(1-4):213–224, 2004.

[17] L. V. Kolev. Improvement of a direct method for outer solution of linear
parametric systems. Reliab. Comput., 12(3):193–202, 2006.

[18] Z. Kulpa, A. Pownuk, and I. Skalna. Analysis of linear mechanical
structures with uncertainties by means of interval methods. Comput.
Assist. Mech. Eng. Sci., 5(4):443–477, 1998.

[19] A. Neumaier. Interval methods for systems of equations. Cambridge
University Press, Cambridge, 1990.

[20] E. D. Popova. Parametric interval linear solver. Numer. Algorithms,
37(1-4):345–356, 2004.

[21] E. D. Popova. Solving linear systems whose input data are rational
functions of interval parameters. Lecture Notes in Computer Science,
4310:345–352, 2007.

[22] E. D. Popova and W. Krämer. Inner and outer bounds for the solution set
of parametric linear systems. J. Comput. Appl. Math., 199(2):310–316,
2007.

[23] J. Rohn. Systems of linear interval equations. Linear Algebra Appl.,
126(C):39–78, 1989.

[24] J. Rohn. VERSOFT: Verification software in MATLAB / INTLAB,
version 10, 2009. http://uivtx.cs.cas.cz/r̃ohn/matlab/.

[25] S. M. Rump. Verification methods for dense and sparse systems of
equations. In J. Herzberger, editor, Topics in Validated Computations,
Studies in Computational Mathematics, pages 63–136, Amsterdam,
1994. Elsevier. Proceedings of the IMACS-GAMM International Work-
shop on Validated Computations, University of Oldenburg.

[26] S. M. Rump. Intlab – interval laboratory, the matlab toolbox
for verified computations, version 5.3, 2006. http://www.ti3.tu-
harburg.de/rump/intlab/.

[27] U. Schäfer. Two ways to extend the Cholesky decomposition to block
matrices with interval entries. Reliab. Comput., 8(1):1–20, 2002.

[28] U. Schäfer. Aspects for a block version of the interval Cholesky
algorithm. J. Comput. Appl. Math., 152(1-2):481–491, 2003.

[29] C.-J. R. Shi and M. W. Tian. Simulation and sensitivity of linear analog
circuits under parameter variations by robust interval analysis. ACM
Transactions on Design Automation of Electronic Systems, 4(3):280–
312, 1999.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:11, 2010

1431

n R iterations average time verifylss cut off verintervalhull cut off
5 0.1 100 5.13 s 21.8 % 18.8 %
5 0.5 100 5.52 s 29.5 % 15.6 %
5 1 100 5.71 s 38.0 % 13.1 %

10 0.1 100 56.3 s 36.1 % 31.3 %
10 0.5 100 54.5 s 47.5 % 25.5 %
10 1 100 55.4 s 57.8 % 19.4 %
15 0.1 100 218 s 43.6 % 37.1 %
15 0.5 100 222 s 59.6 % 31.5 %
15 1 100 211 s 72.2 % 23.9 %
20 0.1 50 604 s 51.7 % 44.1 %
20 0.5 50 600 s 68.3 % 36.3 %
20 1 50 573 s 80.9 % 26.5 %
25 0.1 50 1318 s 57.7 % 49.3 %
25 0.5 50 1312 s 75.3 % 41.0 %
25 1 50 1250 s 86.9 % 30.8 %

TABLE I
AVERAGE COMPUTING TIME AND CUT OFF QUOTIENTS FOR RANDOM

RUNS AND SELECTION RULES

n R iterations average time verifylss cut off verintervalhull cut off
5 0.1 100 6.47 s 22.1 % 19.1 %
5 0.5 100 6.29 s 30.0 % 16.5 %
5 1 100 6.27 s 40.0 % 15.0 %

10 0.1 100 63.9 s 36.5 % 31.6 %
10 0.5 100 64.1 s 47.5 % 25.5 %
10 1 100 60.6 s 59.2 % 20.2 %
15 0.1 100 296 s 44.9 % 38.5 %
15 0.5 100 295 s 59.8 % 31.9 %
15 1 100 270 s 72.4 % 24.0 %
20 0.1 50 1025 s 52.1 % 44.5 %
20 0.5 50 1085 s 68.8 % 37.2 %
20 1 50 1045 s 81.0 % 27.6 %
25 0.1 50 3385 s 58.0 % 49.5 %
25 0.5 50 3430 s 75.7 % 41.5 %
25 1 50 3238 s 87.2 % 31.3 %

TABLE II
AVERAGE COMPUTING TIME AND CUT OFF QUOTIENTS FOR RANDOM

RUNS AND SELECTION RULES

(S1)–(S4)

(S1)–(S5)

