
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2406

Abstract—In any distributed systems, process scheduling plays a

vital role in determining the efficiency of the system. Process
scheduling algorithms are used to ensure that the components of the
system would be able to maximize its utilization and able to
complete all the processes assigned in a specified period of time.
This paper focuses on the development of comparative simulator for
distributed process scheduling algorithms. The objectives of the
works that have been carried out include the development of the
comparative simulator, as well as to implement a comparative study
between three distributed process scheduling algorithms; sender-
initiated, receiver-initiated and hybrid sender-receiver-initiated
algorithms. The comparative study was done based on the Average
Waiting Time (AWT) and Average Turnaround Time (ATT) of the
processes involved. The simulation results show that the performance
of the algorithms depends on the number of nodes in the system.

Keywords—Distributed Systems, Load Sharing, Process
Scheduling, AWT and ATT.

I. INTRODUCTION
CHEDULING plays an important role in distributed
systems in which it enhances overall system performance

metrics such as process completion time and processor
utilization [1]. From the research that has been carried out,
there are two main distributed process scheduling algorithm,
namely the sender-initiated and the receiver-initiated
algorithm [2]. The third algorithm which is a hybrid sender-
receiver algorithm as said to be the solution to overcome the
problem from the two algorithms [3]. The performance of all
three algorithms is benchmarked using the software simulator
developed in this project.

The basic idea behind distributed process scheduling is the
same as normal scheduling, which is to enhance overall

Manuscript received April 20 , 2006.
Nazleeni Samiha Haron, Anang Hudaya Muhamad Amin, Mohd Hilmi

Hasan and Izzatdin Abdul Aziz, are now with Information and
Communication Technology / Business Information Systems (ICT/BIS)
Programme of Universiti Teknologi Petronas, Perak, Malaysia. (e-mails :
nazleeni@petronas.com.my, ananghudaya@petronas.com.my ,
mhilmi_hasan@petronas.com.my and izzatdin@petronas.com.my).

Wirdhayu Mohd Wahid was a student of Information and Communication
Technology / Business Information Systems (ICT/BIS) Programme of
Universiti Teknologi Petronas, Perak, Malaysia. She is now with Konsortium
Jaya Sdn, Bhd, Shah Alam, Selangor, Malaysia. (e-mail :
wmw_ayu83@yahoo.com).

system performance metrics [4]. However, in distributed
systems the existence of multiple processing nodes poses a
challenging problem for scheduling processes onto processors,
and vice versa. This is because scheduling is not only done
locally, but globally across the system. Process created at one
node can migrate to other nodes in the system to redistribute
work load as to achieve improved system performance. One of
the main uses for global scheduling is to perform load sharing
between processors. Load sharing allows busy processors to
load some of their work to less busy, or even idle, processors
[5].

Load balancing is a special case of load sharing, in which
the goal of the global scheduling algorithm is to keep the load
even (or balanced) across all processors [6]. Sender-initiated
load sharing occurs when busy processors try to find idle
processors to load some work. Receiver-initiated load sharing
occurs when idle processors seek busy processors [7]. It is
now accepted wisdom that, while load sharing is worthwhile,
load balancing is generally not worth the extra effort, as the
small gain in execution time of the tasks is more than offset by
the effort expended in maintaining the balanced load.

Within the distributed system each individual node has its
own policy for deciding when to accept or remove tasks. The
characteristics of the distributed scheduling algorithm are
normally depended on the reason of its existence such as
information exchange, resource sharing, and increased
reliability through replication and increased performance
through parallelization [5]. A scheduling policy may be
thought of as having four distinct parts: the transfer policy, the
selection policy, the location policy, and the information
policy. The transfer policy decides when a node should
migrate a particular task, and the selection policy decides
which task to migrate. The location policy determines a
partner node for the task migration, and the information policy
triggers and contains the collection of system state form all
nodes: when, what and where [8].

Scheduling algorithms themselves can also be characterized
as being either static or dynamic [1]. The decisions are based
on both process characteristics and the current state of the
system. A static approach calculates (or pre-determines)
schedules for the system. It requires prior knowledge of a
process’s characteristics and requires little run-time overhead.
By comparison, a dynamic method determines schedules at
run-time thereby furnishing a more flexible system that can

Time Comparative Simulator for Distributed
Process Scheduling Algorithms

Nazleeni Samiha Haron, Anang Hudaya Muhamad Amin, Mohd Hilmi Hasan, Izzatdin Abdul Aziz,
and Wirdhayu Mohd Wahid

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2407

deal with non-predicted events. It has higher run-time cost but
can give greater processor utilization. In this paper, the
authors focus on the dynamic process scheduling algorithms
because it operates on load distribution strategy that is useful
in a system where the primary performance goal is in
maximizing of processors utilization as opposed to the
minimization of runtime for individual jobs [1][8].

In this project, we define a distributed system as the
interconnected collection of autonomous computers,
processes, or processors, which are referred to as ‘nodes’. To
qualify as “autonomous’, the nodes must at least be equipped
with their own private control, thus a parallel computer of
single-instruction does not qualify as distributed system. To
qualify as ‘interconnected’, the nodes must be able to
exchange information via network. A node contains
processor(s) and processor support hardware. This is termed
the internal environment. Also, each node has an interface to
its external environment. The external environment of a node
can contain other nodes (connected via an arbitrary network)
and interfaces to external sensors, actuators or other
controllable devices. The nodes in a system interact to achieve
a common objective [9]

The objectives of this project are twofold. Firstly, is to
conduct a comparative study among the three scheduling
algorithms, which are sender-initiated, receiver-initiated
algorithms and hybrid sender-receiver algorithm. From the
research, the characteristics of all algorithms and their merits
will be revealed. In order to prove this, the second objective of
this project is to design and build the comparative simulation
application that would be able to run and test each of the
algorithms mentioned.

The paper is organized in the following sections. Section 2
will describe more on the related works that have been carried
out by other people, and comparing those with the authors’
works. Section 3 will give a brief overview of the distributed
process scheduling algorithms. Section 4 describes the related
issues in the simulator development that has been carried out
in this project. Section 5 provides the detailed description of
the results obtained and some discussion on the related issues
being focused on. Finally, Section 6 provides conclusion to
this paper.

II. RELATED WORKS
Load sharing is essential in ensuring the smooth

performance of distributed systems. Therefore, considerable
efforts have been put in studying this topic using simulation,
prototypes and analytic models evaluating various
performance metrics. Most of the researchers [10-17] focus on
comparing between sender-initiated and receiver-initiated
scheduling algorithms and only a few studies [18-22] have
considered the hybrid of sender-and-receiver-initiated - in
addition to the sender-initiated and receiver-initiated
algorithms.

Comparison has been made by [1] to evaluate the
performance between sender-initiated policy and receiver-

initiated policy in terms of system workload. Their results
prove that sender-initiated policy is better than receiver-
initiated policy in light to moderate system loads while
receiver-initiated policy is better than sender-initiated policy
in high system loads. In addition, [3] and [4] have conducted a
study towards the performance of sender-initiated and
receiver-initiated policies in both homogenous and
heterogeneous distributed system with regards to First Come
First Serve (FCFS) and Round Robin (RR) scheduling
policies. Apart from that, the study also includes the impact of
variance in job service times and inter-arrival times. [5]
provides the explanation on performance sensitivity of the
sender-initiated and. receiver-initiated policies, to three
factors: node-scheduling policy, variance in job inter-arrival,
while [8] has reported the performance of several load sharing
policies based on their implementation of both sender initiated
and receiver initiated policies on a five node system connected
by a 10Mbps communication network. The major difference
that has been adopted by the authors in this study, as
compared to the previous related works is such that the study
focuses on evaluating the distributed scheduling algorithms
using the Average Waiting Time (AWT) and Average
Turnaround Time (ATT). AWT and AWT are believed to be
the important factors to indicate the efficiency of any
distributed systems.

On the other hand, [7] has conducted a study and compared
the sender-initiated, receiver-initiated and hybrid (it is called
symmetrical-initiated in this literature) policies pertaining to
system workload and the effect of probing to overall system
performance. [12] has also suggested a hybrid algorithm to
overcome the limitations of both sender-initiated and receiver-
initiated algorithms. In this research, the authors are focusing
on evaluating the performance of three scheduling algorithms
with regards to the AWT and ATT values obtained from the
simulation.

III. SCHEDULING ALGORITHMS
Scheduling plays an important role in distributed systems in

which it enhances overall system performance metrics such as
process completion time and processor utilization [8]. It will
increase speed of the execution of the workload and executed
more quickly with having the scheduling algorithm [2].

We will study three scheduling algorithms, which are
sender-initiated algorithm, receiver-initiated algorithm, and
hybrid sender-receiver algorithm. There are two triggers that
would initiate them – the creation of a new process and when
a process in queue finishes execution. In this study, we also
consider the threshold-based transfer policy to determine
when a processor should migrate a task or request for a task.
The queue length will be used as the indicator for the load.

A. Sender-Initiated Algorithm
For sender-initiated algorithm, there is a queue threshold

(ST), which can also be referred to as the maximum queue

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2408

threshold. When the queue length exceeds that of the
maximum queue threshold, the sender-initiated algorithm is
initiated. Fig. 1 shows the representation of sender-initiated
algorithm node’s queue.

Fig. 1 Representation of a Sender-initiated Algorithm Node’s Queue

B. Receiver-Initiated Algorithm
For receiver-initiated algorithm, the queue threshold (ST)

is also known as the minimum queue threshold. If the queue
length falls below this threshold, the receiver-initiated
algorithm is then initiated. Fig. 2 shows the representation of a
receiver-initiated algorithm node’s queue.

Fig. 2 Representation of a Receiver-initiated Algorithm Node’s

Queue

C. Hybrid Sender-Receiver-Initiated Algorithm
A hybrid sender-receiver node is one where both the

sender-initiated algorithm and receiver-initiated algorithm is
implemented. For this, the node would require two different
threshold values. One would define the maximum queue
length before the sender-initiated algorithm is executed and
the other the minimum queue length for the receiver-initiated
algorithm. As with the previous two algorithms, two events
trigger the hybrid algorithm – the arrival of a new process and
after the execution of a process. Fig. 3 shows the
representation of this hybrid algorithm.

Fig. 3 Representation of a Hybrid Sender-Receiver Node’s Queue

D. Performance Metrics
The simulator developed allows user to benchmark the

performance of all three algorithms in a controlled
environment based on AWT and ATT. The lower the ATT
and AWT, the better the performance. ATT and AWT are said

to be the best metrics to compare the performance of the
algorithms [1].AWT and ATT are computed as follows :

AWT = [(time process in system - service time)/n]

 ATT = [(waiting + service times)/n]
where n is number of nodes.

IV. SIMULATOR DEVELOPMENT

A. Use Case Design
Fig. 4 shows the system from the viewpoint of the user,

with user designated as an actor. User is able to perform the
following functions: control the simulator, change the
simulation parameters and display results. Simulation control
involves starting and stopping the simulator. Change
simulation parameters allows for the user to change several
parameters of the simulator including simulation type, number
of nodes, arrival and service time of processes, and simulation
run time. The last function is display results which, taking the
results of the previously ran test or a previously saved
simulation session, shows a comparative display between the
tests.

Fig. 4 Use Case Diagram (User’s Viewpoint)

Fig. 5 use-case diagram shows the system from the

viewpoint of the simulator itself. There is only one actor
involved, which is the Simulator. Simulator is the main entity,
and encompasses the overall control of the system. It controls
the simulation, gather simulation parameters, store statistical
data, and shows output to the user.

Fig. 5 Use Case Diagram (System’s Viewpoint)

Minimum Queue Threshold

START END

Queue Length

Maximum Queue Threshold

START END

Queue Length

Minimum Queue Threshold

START END

Queue Length

Maximum Queue Threshold

user

Control Simulator

Change Simulation
Parameter

Display Results

Simulator

Control Simulation

Get Parameter

Simulator

Simulator
Store Data

Store Data

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2409

B. Implementation
The simulator that has been developed is a Java-based

application that runs on Java Virtual Machine (JVM). The
advantage of having Java as a development platform is such
that it would be able to cater for all operating systems, having
JVM properly installed.

Before simulating the scheduling algorithms, the simulator
needs to be configured accordingly. The simulation setting
requires the user to enter the number of nodes, which
represents the processor and to specify the number of
generated process randomly. There are two modes of running
the simulation; single or comparative. Single simulation
allows us to see any one of the three algorithms’ performance
while a comparative simulation runs the three algorithms one
after another. Both simulation types output the results in a
graph (based on average turnaround time and average waiting
time).

When the simulator has started, the load sharing mechanism
of the processes will be shown. Fig. 6 shows how load sharing
is performed by each node depending on the respective
scheduling algorithm.

Fig. 6 Representation of a Node in terms of Load Sharing

Fig. 7 shows the simulator’s message window that displays
the real-time contextual data. It provides a textual display of
the running of the simulation such as the addition of a process,
the execution of a process, and the migration of a process are
displayed here. There are two buttons available at the bottom
of the window, the Close and Save button. Pressing Close will
close the Message Window, while pressing Save will save the
output of the Message Window to a file.

Fig. 7 Message Window

Popup window will appear right after the simulation
processes are completed and after all the nodes involved are
terminated. The window exhibits the results of the simulation
in two graphs of which each represents AWT and ATT
respectively. The graphs show plotted line of AWT and ATT
versus time.

V. RESULTS & DISCUSSION
In achieving the first objective of this project, the authors

have implemented three different test cases (see Table I), and
all the three scheduling algorithms; sender-initiated, receiver-
initiated, and hybrid sender-receiver-initiated are tested
against these test cases. The test cases differ in terms of the
number of nodes, which represents the system size. This
parameter was chosen due to the fact that an important feature
of any load sharing algorithm is that the performance should
maintain although the number of processors in the system
increases [23].

TABLE I
TEST CASES

Test Case Number of Node
1 2
2 10
3 50

In order to standardize the experiment and to ensure

comparable results, the authors have chosen a few parameters
to be invariant as shown in Table 2. The values chosen are
actually being determined from experimentation as well as
from the authors’ knowledge and are believed can produce
good comparable results .

TABLE II
INVARIANT VALUES OF THE SYSTEM PARAMETER

Parameter Values
No. of Generated Process 50 - 100
Queue Length 35
Upper Threshold 25
Lower Threshold 10
Process Arrival Time 200-600 ms
Process Burst Time 50-1000 ms

A. Test Case 1: Simulation using Two Nodes
For this test case, two nodes is selected as the parameter

because we want to see the performance of all the three
algorithms in the minimum scenario. Fig. 8 shows the results
of the simulation of distributed process scheduling by using
two nodes. It should be noted that the results shown that
hybrid sender-receiver-initiated algorithm executes more time
to complete all the processes generated, as compared to both
sender-initiated and receiver-initiated algorithms. This might
be due to the needs for the algorithm to evaluate both
minimum and maximum threshold values before any
processes could be executed. Sender-initiated has the lowest

Type of
algorithm

run

List of
Received
processes

List of Sent
processes

Progress Bar
represents as
queue length

Process ID

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2410

AWT and ATT and receiver-initiated has the highest AWT
and ATT values. This results has proven the claim of [10] that
under light loads (since only two nodes involved), the sender-
initiated algorithm will work well as compared to receiver-
initiated. The hybrid sender-receiver-initiated algorithm is
expected to have the identical or close ATT and AWT values
to sender-initiated algorithm. However, as shown in the
results, it does not perform well but instead it sits in the
middle of other two algorithms. This issue may exist due to
the small number of nodes used.

Fig. 8 Graphs for Comparative Simulation in Two Nodes
Environment

B. Test Case 2: Simulation using 10 Nodes
In order to demonstrate the performance of the algorithms

in a medium scale system, the authors choose to vary the
system size to 10 nodes. Fig. 9 shows the results of the
simulation by using 10 nodes. The results gained from this
comparative simulation show that all the algorithms achieved
almost similar ATT and AWT values.. However, the results
indicated that both sender-initiated and hybrid sender-
receiver-initiated algorithms incurred longer processing time.
This is true, since both algorithms required time to wait for
any processes to be placed in the queue.

C. Test case 3: Simulation using 50 Nodes
Fig. 10 shows the results of the simulation of distributed

process scheduling by using 50 nodes, which is the heaviest
and largest simulated system size. As compared to the
previous test cases, the results show a slight increased in both
ATT and AWT values for all algorithms implemented.
However, the ATT and AWT values are comparatively similar
to the values obtained from test case 2. This simply means that
there are no significant differences in the AWT and ATT
values for all algorithms.

 Fig. 9 Graphs for Comparative Simulation in 10 Nodes
Environment

 Fig. 10 Graphs for Comparative Simulation in 50 Nodes
Environment

From the test cases that have been carried out, it seems that

the number of nodes used in a single processing environment
plays an important role in determining the performance of the
three algorithms. The justification is such that the bigger the
number of nodes is being used; the graphs indicated that the
ATT and AWT values for each of the algorithms being
implemented are almost alike. The results prove the works of
[23-24] that the performance of the algorithms becomes
insensitive to the number of nodes as the number of the nodes
increases.

VI. CONCLUSION
The simulator developed allows user to benchmark the

performance of all three algorithms in a controlled
environment based on AWT and ATT. The expectations that
the hybrid algorithm generally works better are not true for
certain cases. From this project, it has been known that the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2411

number of nodes participated in a processing environment also
plays an important role in determining the efficiency of the
system.

Even though the software simulator is completed, a lot of
improvement can be done to make it work better. Currently
the simulator emulates distributed processors as threads. This
method is inferior to actually running simulation software on
multiple processors. The use of sockets and Remote Method
Invocation (RMI) can increase the accuracy of the simulator
and delivers more realistic results. The software can also be
improved by allowing the user to finely adjust each and every
parameters of the simulator. This was not implemented since
the major parameters are already present and was thought to
be enough for the simulator to work well.

Additional parameters at this time can be considered trivial
but would make a worthy addition in the future. Currently the
statistical output of the simulator is very much textual in
nature except for the graph presented. It is hoped that the
simulator’s output can be further enhance either by utilizing
more visual elements or using extensible markup language
(XML) to represent the data. XML allows the data to be used
in a variety of ways, either as an input for other
programs/parsers or for output purposes.

REFERENCES
[1] Tel, G., Introduction to Distributed Process Scheduling. 1998,

University of Cambridge..
[2] Chow, R. and T. Johnson, Distributed Operating Systems and

Algorithms. 1997: Addison-Wesley.
[3] Ramamritham, K. and J.A. Stankovic, Dynamic Task Scheduling in

Hard Real-Time Distributed Systems. IEEE Software, 2002. 1(3): p. 65-
75.

[4] Audsley, N. and A. Burns, Real -Time Scheduling, in Department of
Computer Science. 1994, University of York.

[5] Boger, M., Java in Distributed Systems. 2001: Wiley.
[6] Malik, S., Dynamic Load Balancing in a Network Workstations. 2003:

Prentice-Hall.
[7] Stankovic, J.A., Simulations of three adaptive, decentralized controlled,

job scheduling algorithms. Computer Networks, 1999. 8(3): p. 199-217.
[8] Chaptin, S.J., Distributed and Multiprocessor Scheduling. 2003,

University of Minnesota.
[9] Audsley, N., Scheduling Hard Real-Time Systems. 2000.
[10] Eager, D.L., E.D. Lazowska, and J. Zahorjan, A Comparison of

Receiver-Initiated and Sender-Initiated Adaptive Load Sharing. 1985,
University of Washington.

[11] Dandamudi, S.P. The Effect of Scheduling Discipline on Dynamic Load
Sharing in Heterogeneous Distributed Systems. in IEEE Int. Symp. on
Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS). 1997. Haifa, Israel.

[12] Dandamudi, S.P., The Effect of Scheduling Discipline on Sender-
Initiated and Receiver-Initiated Adaptive Load Sharing in Homogeneous
Distributed Systems. 1995, Carleton University.

[13] Dandamudi, S.P., Sensitivity evaluation of dynamic load sharing in
distributed systems. Concurrency, IEEE, 1998. Volume 6(3): p. 62 - 72.

[14] Dikshit, P., S.K. Tripathi, and P. Jalote, SAHAYOG: A Test Bed for
Evaluating Dynamic Load--Sharing Policies. Software -- Practise and
Experience, 1989. 5: p. 411-435.

[15] Svensson, A. Dynamic alternation between receiver-initiated and sender-
initiated load sharing. in International Conference on Databases, Parallel
Architectures and Their Applications (PARBASE-90). 1990.

[16] Dandamudi, S.P. and H. Hadavi. Performance Impact of I/O on Sender
Initiated and Receiver Initiated Adaptive Load Sharing in Distributed
Systems. in Int. Conf. Parallel and Distributed Computing Systems.
1996. Dijon, France.

[17] Kremien, O. and J. Kramer, Methodical analysis of adaptive load sharing
algorithms. Parallel and Distributed Systems, IEEE Transactions on,
1992. 3(6): p. 747-760.

[18] Shivaratri, N.G. and P. Krueger. Two Adaptive Location Policies for
Global Scheduling Algorithms. in IEEE International Conference on
Distributed Computing Systems (ICDCS). 1990.

[19] Krueger, P., Distributed Scheduling for a Changing Environment. 1988,
University of Wisconsin-Madison.

[20] Mirchandaney, R., D. Towsley, and J.A. Stankovic, Analysis of the
effects of delays on load sharing. Computers, IEEE Transactions on,
1989. 38(11): p. 1513 - 1525.

[21] Antonis, K., J.D. Garofalakis, and P.G. Spirakis. A Competitive
Symmetrical Transfer Policy for Load Sharing. in Proceedings of the 4th
International Euro-Par Conference on Parallel Processing. 1998.

[22] Dasgupta, P., A.K. Majumder, and P. Bhattacharya, V_THR: An
Adaptive Load--Balancing Algorithm. Journal of Parallel and
Distributed Computing. 42(2): p. 101-108.

[23] K. Benmohammed-Mahieddine and P. M. Dew, A Periodic
Symmetrically-Initiated Load Balancing Algorithm for Distributed
Systems, ACM SIGOPS Operating Systems Review, Vol. 28, No. 1,
1994, pp. 66--79.

[24] Y.T. Wang and R.J.T. Morris, Load Sharing in Distributed Systems,
IEEE Transactions on Computers C-34(3)pp. 204-217 (March 1985).

