
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:5, 2009

329

  
Abstract—Recent years have seen a growing trend towards the 

integration of multiple information sources to support large-scale 
prediction of protein-protein interaction (PPI) networks in model 
organisms. Despite advances in computational approaches, the 
combination of multiple “omic” datasets representing the same type 
of data, e.g. different gene expression datasets, has not been 
rigorously studied. Furthermore, there is a need to further investigate 
the inference capability of powerful approaches, such as fully-
connected Bayesian networks, in the context of the prediction of PPI 
networks. This paper addresses these limitations by proposing a 
Bayesian approach to integrate multiple datasets, some of which 
encode the same type of “omic” data to support the identification of 
PPI networks. The case study reported involved the combination of 
three gene expression datasets relevant to human heart failure (HF). 
In comparison with two traditional methods, Naive Bayesian and 
maximum likelihood ratio approaches, the proposed technique can 
accurately identify known PPI and can be applied to infer potentially 
novel interactions.   
 

Keywords—Bayesian network, Classification, Data integration, 
Protein interaction networks.  

I. INTRODUCTION 

ROTEIN-protein interactions (PPI) are crucial for many 
biological functions within the cell. These processes 

include signal transduction, protein folding, cell cycle control, 
DNA replication and transport [1]. The systematic 
identification of PPI networks will increase our understanding 
of health and disease, and will assist in the identification of 
novel biomarkers and therapeutic approaches. This has 
motivated efforts to map PPI on a proteomic-wide large-scale 
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[2]. For example, PPI maps have been produced for yeast [3, 
4], fruit fly [5] and human [6] through the use of experimental 
high-throughput technologies, including yeast two-hybrid 
(Y2H), Mass Spectrometry (MS) and Tandem Affinity 
Purification (TAP). However, these data are highly noisy or 
incomplete [7]. The limitations of using predictions obtained 
from a single information source (either experimental or 
computational) have been widely discussed [8]. 

In an attempt to obtain a better understanding of 
interactomes (the complete set of PPI in an organism), 
researchers [9, 10] have applied different computational 
approaches to integrate available PPI data for organisms to aid 
in describing interactomes (all possible PPI in an organism). It 
has been found that the integration of diverse “omic” features 
could significantly improve the inference of PPI networks [9-
12]. Some of the advantages of computationally integrating 
data sources for PPI inference are: when two or more diverse 
datasets support a prediction, confidence in the PPI prediction 
increases; diverse datasets may cover different areas of the 
interactome; and integrating diverse datasets may increase 
predictive coverage of the interactome [12].  

Different computational methods have been proposed to 
combine diverse heterogeneous datasets for the prediction of 
PPI networks [13-15]. For instance, a recent study in [14] 
provided an integrated analysis of human PPI using a Naïve 
Bayesian (NB) classifier. Four types of data were employed: 
homology derived PPI, gene co-expression, shared biological 
function and domain interaction. The Human Protein 
Reference Databases (HPRD) [16]was employed as the Gold 
Standard (GS), i.e. the set of known PPI used to implement 
and test the prediction model. Experimental methods 
confirmed protein interactions predicted by the framework. 
Scott et al. [13] constructed a probabilistic framework to 
integrate diverse features including co-expression, localization 
(proteins found in the same sub-cellular location are more 
likely to be interacting than proteins found in different sub-
cellular locations), domain-domain interactions. A total of 
37,606 PPI was predicted, 80% of these predicted PPI were 
not found in other human PPI databases. A recent study by Qi 
et al. [15] addressed the limitations imposed by missing data 
and feature redundancy for inferring PPI in human. A 
“mixture-of-features” framework was employed to predict 
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PPIs. Knowledge from biological experts was incorporated to 
aid in the prediction of PPI. This approach obtained better 
precision-recall results in comparison to other classifiers 
including NB, support vector machines and random forest. 
Furthermore, 18 potentially novel interactions were identified.  
 Recent studies have mainly focused on the development of 
different computational techniques to integrate diverse 
datasets extracted from different ”omic” features for the 
prediction of PPI networks. For instance: gene co-expression, 
shared biological function, homology derived PPI. The NB 
approach is perhaps one of most widely investigated models 
[9, 12, 17]. However, limited research has been performed 
where a fully-connected Bayesian approach is applied to 
integrate data sources for the inference of PPI networks. 
Furthermore, the combination of multiple datasets derived 
from sources with the same type of data hasn’t been 
rigorously studied. Recently, Rhodes et al. [14] proposed a 
maximum likelihood ratio (MLR) approach to analyzing 
multiple datasets representing gene co-expression values only, 
i.e. only the maximum likelihood ratio per gene co-expression 
data source per protein pair was considered.  
 The aims of our study are: to investigate a Bayesian 
Network (BN) approach to the integration of multiple 
datasets, including datasets derived from the same type of 
data, and b) to study its potential relevance in the inference of 
a disease-specific PPI network. To address these aims, we 
present a case study in human Heart Failure (HF). Heart 
failure (HF) is one of the main causes of death in the world 
[18]. Dilated cardiomyopathy (DCM) is a common cause of 
HF in Western countries [19]. Gene expression studies have 
provided useful insights into the causation of DCM [19], 
therefore three gene co-expression datasets obtained from 
different human DCM studies were investigated in this study. 
The MLR approach applied by Rhodes et al. [14] and the NB 
method are employed as comparative approaches to the BN 
method. Different methods to measure their predictive 
performance were applied: Receiver Operating Characteristic 
ROC curves; Partial ROC curves; and True Positive (TP) / 
False Positive (FP) ratio.  

The remainder of this paper is organized as follows. Section 
II briefly describes the data sources integrated in this study 
followed by a description of the methodologies applied. 
Section IV presents the results. The paper concludes with 
discussion of the results, the limitations of this study and 
future research. 

II. GOLD STANDARD AND PREDICTION FEATURES 
In this study, the GS reference data set has been constructed 

with information extracted from the HPRD [16]. In the study 
by Rhodes et al. [14], four types of “omic” data were 
integrated for the prediction of human PPI. These include: 
homology derived PPI, gene co-expression, shared biological 
function and domain interaction. We also investigated these 
types of data to compare our approach to the MLP approach 
employed by Rhodes et al. [14] and the NB approach [9, 12]. 
Three diverse predictive features: homology derived PPI, 
shared biological function and domain interaction have been 
obtained from the study by Qi et al. [15]. Furthermore, in 

order to support the prediction of PPI networks relevant to 
human heart failure, three gene expression data sets associated 
with DCM were obtained from the Gene Expression Omnibus 
(GEO) [20]. Predictive features extracted from all these 
datasets were analyzed and integrated in the task of PPI 
inference. A description of the GS and predictive features 
analyzed in this study are described below.    
  

A. Gold Standard 
A GS is a reference dataset that contains protein pairs that 

are known to interact (i.e. positive cases) and non-interacting 
protein pairs (i.e. negative cases). The selection of a GS is an 
important task as it may be employed to measure the 
reliability of the genomic features or to validate computational 
PPI predictions. In this study, the positive GS has been 
generated from PPI information extracted from the HPRD 
[16]. Previous studies including [13-15] have used the HPRD 
as a data source to construct GS. The HPRD contains 
information on PPI which have been manually curated from 
literature by expert biologists. There is no direct information 
on protein pairs that do not interact. Therefore, the negative 
GS in this study has been constructed by generating random 
protein pairs and removing protein pairs found in the positive 
GS. This GS has been applied in the previous study [15] and 
contains a total of 13,184 protein pairs in the positive GS and 
109,667 protein pairs in the negative GS.   

B. Features 
Six  “omic” features have been assessed for the integrative 

prediction of PPI in human. A description of each feature is 
provided below. The feature name has been shortened for 
easier representation throughout the paper. A summary of 
these features can also be found in table I. 
1)  Gene Ontology Biological Process (GOBP): the GOBP 

data source has been obtained through extracting 
similarity information between gene products annotated 
to the Gene Ontology (GO) biological process terms [21]. 
It is assumed that two proteins that function in the same 
biological process are more likely to interact than proteins 
from different processes [14]. The similarity between 
protein pairs was calculated by determining how many 
times both proteins are in the same functional class of the 
GO biological process hierarchy. The GOBP dataset 
contains a total of 58,538 protein pairs with similarity 
values ranging from 0 to 6. As the similarity value 
increases, the likelihood of an interacting protein pair also 
increases.  

2)  Homology (HOM): a protein exhibiting a function in one 
organism may exhibit the same function in a different 
organism [15]. The homology relationship between 
human proteins and yeast proteins are based on sequence 
alignment scores from PSI-BLAST [15]. Publically 
available PPI datasets were downloaded from the 
Database of Interacting Proteins (DIP) [22]. The HOM 
dataset contains 122,851 protein pairs with values ranging 
from 0 to 317.  
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TABLE I 
A DESCRIPTION OF THE GENOMIC FEATURES. THE FIRST COLUMN PROVIDES 
THE NAME OF THE FEATURE FOLLOWED BY THE SOURCE, THE BIOLOGICAL 

ASSUMPTION, COVERAGE OF THE GS AND A REFERENCE 
Feature Source Assumption Coverage 

of GS 
Ref 

GOBP Gene 
Ontology 
Biological 
Process 

Proteins found in the 
same biological 
process are more likely 
to interact than 
proteins found in 
different biological 
process.  

Ovlp  + / - 
10465/480
73 

[21] 

COE1 Gene co-
expression 

Interacting proteins 
often have similar co-
expression patterns, 
therefore interacting 
proteins are more 
likely to be co-
expressed 

Ovlp  + / -
13169/109
406 

[20] 

COE2 Gene co-
expression 

Interacting proteins 
often have similar co-
expression patterns, 
therefore interacting 
proteins are more 
likely to be co-
expressed. 

Ovlp  + / -
6148/3588
1 

[20] 

COE3 Gene co-
expression 

Interacting proteins 
often have similar co-
expression patterns, 
therefore interacting 
proteins are more 
likely to be co-
expressed. 

Ovlp  + / -
8424/6111
1 

[20] 

HOM Homology The function of 
proteins in model 
organisms often retains 
the same function in 
Human. Therefore a 
pair of interacting 
orthologs from a 
model organism is 
likely to be interacting 
in the Human 
organism. 

Ovlp  + / -
13184/109
667 

[15] 

DOM Domain Proteins usually 
involve interactions 
between protein 
domains.  

Ovlp  + / -
10456/498
19 

[15] 

GS Human 
Protein 
Reference 
Database 

Protein complex 
membership. 

GSP   
13184 
GSN  
109667 

[16] 

 
3)  Domain interaction (DOM): The study in [14] suggests 

that novel PPI could be predicted by identifying pairs of 
domains over-represented in known interacting proteins 
[15]. Based on the calculation of the hypergeometric 
distribution of domain co-occurrence in protein 
interaction pairs [15], the number of interaction domains 
shared by a protein pair was computed. The DOM data 
source consists of 60,275 protein pairs with values which 
range from 0 to 25. It is assumed that the higher the DOM 
value, the higher the likelihood of an interaction. 

4)  Gene Co-expression (COE1, COE2 and COE3): Protein 
pairs that interact often have similar gene expression 
patterns [14]. Therefore, protein pairs which are co-
expressed may be more likely to interact than protein 

pairs that are not co-expressed. Three microarray datasets 
analyzed in this case study have been obtained from the 
GEO [20], accession numbers: GDS1362, GDS2205 and 
GDS2206 (referred to as COE1, COE2 and COE3 
throughout the paper). These data sources were selected 
to highlight the performance of the BN in comparison to 
the NB and MLP approach when data sources of the same 
data type are integrated. COE1 was obtained from an 
oligo array experiment consisting of 12 samples: 5 
samples were obtained from non-failing heart patients and 
7 samples from DCM heart patients. COE2 was extracted 
from a cDNA array consisting of 28 samples: 15 samples 
were obtained from non-failing heart patients and 13 
samples from DCM heart patients. COE 3 was obtained 
from an oligo array containing 37 samples: 7 samples 
were obtained from non-failing heart patients, 20 from 
DCM heart patients. Samples were removed from the 
gene co-expression datasets if 50% or more of the co-
expression values were missing. Each gene co-expression 
dataset was normalized per chip and then per gene. 
Values were normalized between -1 and 1 by calculating 
the mean and standard deviation of the row (per chip) and 
then the column (per gene). The values in the COE1, 
COE2 and COE3 datasets were obtained by calculating 
the Pearson’s correlation co-efficient values between 
pairs of proteins. The COE1 contains 122,575 co-
expression values, COE2 a total of 42,029 co-expression 
values and COE3 69,535 co-expression values. The 
closer a gene co-expression value is to 1, the likelihood of 
an interaction increases. 

III. METHODOLOGY 
Previous studies including [9, 12] have employed the NB 

technique to integrate diverse predictive features for PPI 
inference. However, the NB assumes conditional 
independence between features. The study in [12] suggested 
that subtle correlations or dependencies between features may 
have an adverse effect upon the NB classification 
performance. This study applies a fully-connected Bayesian 
(FCB) approach to infer PPI networks, whereby dependencies 
between features are taken into consideration. By modeling 
relationships between multiple “omic” features we aim to 
illustrate the improvement in terms of classification 
performance in comparison to the NB and MLR approaches. 

A. A Bayesian Network Approach to Data Integration 
To determine the likelihood of an interaction between a pair 

of proteins, the FCB approach takes into consideration the 
predictive features available. The inference of PPI may be 
defined as a binary classification problem. An interacting 
protein pair can be represented as a “positive case” (pos)  and 
a non-interacting protein pair as a “negative case” (neg) . The 
feature values employed to predict PPI can be represented as 

1 2, ..., nf f f . To determine the probability that two proteins 
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are interacting given predictive evidence, the posterior odds of 
an interaction are calculated as follows: 
 

( | , , ..., )1 2
( , , ..., )1 2

( , , ..., ) ( ) / ( )1 2

P pos f f fn

L f f fn
L f f f P pos P negn

=
+

 (1) 

 
The ( )P pos  and ( )P neg  represent the prior probability of 
interacting and non-interacting protein pairs respectively. The 
likelihood-ratio can be calculated as: 
 

1 2
1 2

1 2

( , ,..., | )( , ,..., )
( , ,..., | )

n
n

n

P f f f posL f f f
P f f f neg

=  (2) 

 
In cases whereby dependencies between features exist (for 
instance statistical or biological relationships), a fully 
connected network is employed. The likelihood-ratio is 
calculated by the determination of all possible state 
combinations of these features. Although this process can be 
computationally intensive; the over-estimation of likelihood 
ratios is prevented. Furthermore, it has been observed that the 
performance of a Bayesian classifier that assumes 
independence between features may degenerate when non-
independent features are included [23]. Features which are 
conditionally independent are integrated using a NB approach. 
The likelihood-ratio can be expressed as:  
  

( , , , )1 2
( , , , | ) ( | )1 2

1( , , , | ) ( | )1 2

( , , , ) ( )1 2 1

L f f fn

P f f f pos n P f posM i
i MP f f f neg P f negiM

n
L f f f L fiM i M

= × ∏
= +

= × ∏
= +

…

…

…

…

 (3) 

 
The , ...,1f fM represents values obtained from features that 

are not conditionally independent and , ...,1f fnM +  

represents values obtained from features that are independent. 
The likelihood-ratio can be calculated as the simple product of 
likelihood-ratios obtained from FCB and NB approaches. The 

( | )P f posi  and ( | )P f negi  values are obtained from the 

feature values fi that overlap with the positive and negative 

cases in the GS respectively. 
 

B. Inferring Protein-Protein Interactions 
 As illustrated in Equation 2, there is a link between the 
posterior probability of an interaction and the likelihood ratio. 
For instance, the posterior probability increases monotonically 
with the calculated likelihood ratio. Thus, Bayesian 
classification can be employed by using the combined 
likelihood-ratio scores. If the posterior probability is greater 
than 0.5 then the protein pair is predicted as interacting. The 

study in [13] suggests in order to obtain a posterior probability 
of an interacting protein greater than 0.5, the likelihood-ratio 
should be larger than 400.  
 To evaluate the predictive performance of the FCB 
approach 10-fold cross validation (CV) has been applied to 
train and test the classifier. In 10-fold CV, the dataset is firstly 
divided into 10 equal partitions. At each stage of the CV, nine 
partitions are used train the classifier and one partition is 
applied for testing the classification performance. At each run 
of the CV, likelihood-ratios are estimated from the data in the 
training partitions. Associated likelihood-ratios for each 
protein pair are obtained for cases in the test partition. At the 
end of the CV process, inferred protein predictions are 
validated against protein pairs in the GS. From this, the 
number of true positives (TP), false positives (FP), true 
negatives (TN) and false negatives (FN) are calculated. 
 

C. Evaluating Predictive Performance 
Three evaluation methods have been applied to assess the 

predictive quality of the FCB, MLP and NB approaches. 
These three measures are described below.  

ROC Analysis: A ROC curve is used to capture in a single 
graph the trade-off between sensitivity and specificity over the 
entire range of a dataset. In this study, a ROC curve is 
employed to graphically illustrate the performance of the BN 
plotted for different likelihood-ratio thresholds (TH). The TP, 
TN, FP, and FN are calculated using the 10-fold CV analysis. 
The sensitivity and specificity are calculated as follows: 

 

Sensitivity =
TP

TP FN+
 (4) 

Specificity =
TN

TN FP+
 (5) 

 
A predictive dataset will obtain a ROC curve that rises 

steeply to the left hand side of the graph and has a large area 
under the curve (AUC). AUC values are estimated from the 
10-fold CV procedure. 

Partial ROC Curve: Due to the imbalance of the dataset 
applied to infer PPI in human, the ROC measurement may 
produce an overly optimistic view of the classification 
performance. Therefore, it may be informative to report AUC 
values obtained from a partial ROC to assess the predictive 
performance. The partial ROC AUC measures predictions 
made which exceed a minimum TH of 400. The AUC values 
for the partial ROC method are referred to as AUC400 
throughout this paper. 

True to False Positive (TP/FP) ratio: The true to false 
positive (TP/FP) ratio is plotted against the TH of likelihood 
ratio as a measure of the probability of a positive interaction. 
This measure has been previously employed in [9] and 
described below: 
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( )
( )

| pos

L TH neg

N LTP
L THFP N L=

== ∑                   (6) 

 
The ( )posN L  and ( )negN L are the number of interacting 

and non-interacting protein pairs in the GS with a given 
likelihood ratio of L.  

IV. RESULTS 

A. Estimation of Likelihood Ratios 
Likelihood ratios for each individual dataset was estimated 

based on the overlap of protein pairs between the dataset and 
the GS as shown in columns TP and TN in tables II to VII. 
The number of categories each dataset was discretized into is 
shown in the first column in these tables. The conditional 
probabilities of the given values and the corresponding 
likelihood ratio are provided in the last three columns. As 
shown in these tables, when using a single dataset, most 
protein pairs have a very low likelihood ratio, well below the 
minimum TH cut-off (400) which is required for the posterior 
probability of an interaction to be greater than 0.5. Hence, 
based on the information from one single dataset, none of the 
protein pairs can be predicted as a true positive with 
probability greater than 0.5. This highlights the importance of 
dataset integration for the prediction of PPI relevant to the 
development of DCM. 

 
 

TABLE II  
THE ESTIMATE OF LIKELIHOOD RATIOS FOR COE1 DATASET. THE DATASET 

WAS DISCRETIZED INTO 4 CATEGORIES AS SHOWN IN THE FIRST COLUMN 
Gold-standard 

Overlap Range 
TP TN 

p(value/pos) p(value/neg) LR 

[-1.0, -0.7] 388 3,499 0.03 0.03 0.92

[-0.7, 0.2] 7,305 67,878 0.5 0.62 0.89

[0.2, 0.9] 5,453 37,963 0.41 0.35 1.19

[0.9, 1.0] 23 66 1.75E-03 6.03E-04 2.90

 
 

TABLE III 
 THE ESTIMATE OF LIKELIHOOD RATIOS FOR COE2 DATASET. THE DATASET 

WAS BINNED INTO 5 CATEGORIES AS SHOWN IN THE FIRST COLUMN 
Gold-standard 

Overlap Range 
TP TN 

p(value/pos) p(value/neg) LR 

[-1.0, 0.2] 3,525 23,953 0.57 0.668 0.89

[0.2, 0.7] 2,341 11,259 0.38 0.314 1.21

[0.7, 0.8] 199 532 0.03 0.0148 2.18

[0.8, 0.9] 69 128 0.01 3.57E-02 3.15

[0.9, 1.0] 14 9 2.28E-03 2.51E-04 9.08

 
 
 

TABLE IV  
THE ESTIMATE OF LIKELIHOOD RATIOS FOR COE3 DATASET. THE DATASET 

WAS  BIINNED  INTO 3 CATEGORIES AS SHOWN IN THE FIRST COLUMN 
Gold-standard 

Overlap Range 
TP TN 

p(value/pos) p(value/neg) LR 

[-1.0, 0.2] 6,340 47,081 0.75 0.77 0.98

[0.2, 0.8] 2,069 14,010 0.25 0.23 1.07

[0.8, 1.0] 15 20 1.78E-03 3.27E-04 5.44

 
TABLE V  

THE ESTIMATE OF LIKELIHOOD RATIOS FOR GOBP DATASET. THE DATASET 
WAS DISCRETIZED INTO 4 CATEGORIES AS SHOWN IN THE FIRST COLUMN 

Gold-standard 
Overlap Range 

TP TN 
p(value/pos) p(value/neg) LR 

[0, 1] 7,990 46,364 0.76 0.96 0.79

[1, 2] 1,768 1,535 0.17 0.03 5.29

[2, 3] 535 162 0.05 3.37E-03 15.17

[3, 4] 169 12 0.02 2.50E-04 64.71

 
TABLE VI  

THE ESTIMATE OF LIKELIHOOD RATIOS FOR DOM DATASET. THE DATASET 
WAS BINNEDZED INTO 4 CATEGORIES AS SHOWN IN THE FIRST COLUMN 

Gold-standard 
Overlap Range 

TP TN 
p(value/pos) p(value/neg) LR 

[0, 6.7] 3,411 35,653 0.33 0.72 0.46

[6.7, 8.6] 498 916 0.05 0.02 2.59

[8.6, 9] 456 3,589 0.04 0.07 0.61

[9, 25] 6,091 9,661 0.58 0.19 3.00

 
TABLE VII  

THE ESTIMATE OF LIKELIHOOD RATIOS FOR HOM DATASET. THE DATASET 
WAS DISCRETIZED INTO 4 CATEGORIES AS SHOWN IN THE FIRST COLUMN 

Gold-standard 
Overlap Range 

TP TN 
p(value/pos) p(value/neg) LR 

[0.0, 0.66] 12,524 109,318 0.950 0.997 0.95

[0.66, 4.13] 429 297 0.0325 0.00271 12.02

[4.13, 11.39] 130 41 0.00986 0.000374 26.37

[11.39, 317] 101 11 0.00766 0.000100 76.38

B. Data Integration based on Likelihood Ratios 
In this section the following three approaches, namely 

MLR, NB and FCB, were used to combine the three gene co-
expression datasets (COE1, COE2, COE3); GOBP dataset; 
HOM dataset and DOM dataset. The results were compared in 
terms of AUC values and the ratio of TP/FP. To evaluate the 
predictive performance, 10-fold cross validation was carried 
out. 
• MLR – similar to the approach applied by Rhodes et al. 

[14] the maximum likelihood ratio obtained per co-
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expression data type per protein pair was integrated with 
the features GOBP; DOM; HOM using NB. For instance 
if COE2 obtains the highest likelihood ratio for a protein 
pair compared to COE1 and COE3, then the COE2 
likelihood is employed only. 

• NB - obtained when the features COE1; COE2; COE3; 
GOBP; DOM; HOM were integrated using NB approach.   

• FCB – repsresent the results obtained when the COE 
datasets COE1; COE2; COE3 are integrated using a fully 
connected Bayesian approach and GOBP; DOM; HOM 
are integrated using the NB approach. 
 

Fig. 1 shows the relationship between the TP/FP ratio and 
likelihood ratio for the three data integration models. By 
integrating three expression dataset (COE1, COE2 and COE3) 
with FCB approach, the TP/FP ratio is improved significantly, 
in particular, when the TH becomes large (greater than 400). 

 

 
Fig. 1 Comparison of three data integration models in terms of the 
ratio of TP/FP. The selected TH of likelihood ratio is plotted on the 
x-axis, and the corresponding TP/FP ratio is shown on the y-axis. A 
protein pair is predicted as positive if its combined likelihood ratio is 
greater than a given TH. The TP/FP ratio was computed as the ratio 

of the number of positives and negatives in the gold-standard given a 
particular likelihood ratio 

 
 

The ROC curves of the predictions are presented in Fig. 2, 
in which the y-axis represents sensitivity (TP/TP+FN), and x-
axis shows the value of 1-specificity (FP/TN+FP). 
Surprisingly, in Fig. 2(B) all three integration schemes 
achieve similar prediction performances. The advantage of 
FCB approach is not evident. However, a close examination 
reveals that, due to the high imbalance of the dataset 
employed (for instance for every “interacting” protein pair 
there are 29 “non-interacting” protein pairs in the GS), the 
ROC measurement may produce an overly optimistic view of 
the classification performance. In order to obtain a more 
realistic picture of the performance obtained from three data 
integration approaches, we also calculated the partial ROC. 
This measurement may be more informative to assess the 
predictive performance obtained from a highly skewed 
dataset, as shown in table VIII. Clearly, the FCB approach 
achieves better results based on the calculation of AUC400. 
Furthermore, the partial ROC curves plotted in Fig. 2(A) 

illustrate a steeper curve obtained for the FCB integration 
scheme in comparison to the curves from the NB and MLR 
integration schemes.   

TABLE VIII  
AUC AND AUC400 VALUES OBTAINED WHEN THE FEATURES COE1, COE2, 
COE3, DOM, HOM AND GOBP WHERE INTEGRATED USING NB, MLR AND 

FCB TECHNIQUES 
Measures NB MLR FCB 

AUC 0.705 0.703 0.699 
AUC400 1.54E-07 1.38E-07 2.08E-07 

 

 
Fig. 2 (A) Illustrates the partial ROC curves generated with the three 
data integration schemes. (B) Illustrates the ROC curves generated 

with three data integration schemes 

V. DISCUSSION AND CONCLUSION 
Limited research has been performed in applying a FCB 

approach to integrate diverse “omic” features for the 
prediction of PPI in human. Furthermore, the integration of 
multiple “omic” data has yet to be thoroughly addressed. This 
paper presented a FCB approach for the integration of 
multiple datasets, (with some datasets containing the same 
type of “omic” data) for the inference of disease-specific PPI 
networks. We demonstrated the application of the FCB 
approach in the prediction of PPI networks relevant to 
development of DCM. A previous study by Rhodes et al. [14] 
utilized four types of “omic” data for the prediction of PPI. 
Therefore, the same “omic” data types were employed in this 
paper for comparative purposes. Furthermore, Rhodes et al. 
[14] proposed a MLR approach when dealing with multiple 
datasets of the same “omic” type (for instance, multiple gene 
co-expression datasets). The case study presented in this paper 
employed three gene co-expression datasets (COE1, COE2, 
COE3) relevant to human HF along with three other datasets: 
DOM; HOM; GOBP to reconstruct a PPI network relevant to 
the development of DCM. By modeling relationships between 
multiple datasets of the same “omic” type, an improvement in 
prediction performance was achieved in terms of AUC400 and 
the ratio of TP/FP by the FCB approach in comparison to the 
MLR and NB approaches.  

Currently the proposed FCB technique was tested on a 
relatively small number of datasets with the same type of 
“omic” data. The behavior of FCB when dealing with large 
number of datasets deserves further investigation. In addition, 
the GS for true positives used in this study was generated 
from HPRD [16]. The study of the impact of using other 
sources, such as GRID [24] as a GS provides one direction for 
future research. Furthermore, the task of constructing a 
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negative GS presents a significant challenge. It is difficult to 
experimentally validate that two proteins are not interacting. 
In this study, we randomly selected protein pairs to generate 
the negative GS. However, in future work other negative GS 
construction methods could be applied. For instance, the study 
in [12] uses sub-cellular membership information to construct 
the negative GS. 

This study contributes to the development of computational 
approaches to supporting the integration of diverse sources of 
genomic and proteomics information for comprehensive large-
scale prediction of PPI networks.  
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