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Dynamic Slope Scaling Procedure for Stochastic
Integer Programming Problem

Takayuki Shiina

Abstract—Mathematical programming has been applied to various
problems. For many actual problems, the assumption that the param-
eters involved are deterministic known data is often unjustified. In
such cases, these data contain uncertainty and are thus represented
as random variables, since they represent information about the
future. Decision-making under uncertainty involves potential risk.
Stochastic programming is a commonly used method for optimization
under uncertainty. A stochastic programming problem with recourse
is referred to as a two-stage stochastic problem. In this study, we
consider a stochastic programming problem with simple integer
recourse in which the value of the recourse variable is restricted to a
multiple of a nonnegative integer. The algorithm of a dynamic slope
scaling procedure for solving this problem is developed by using a
property of the expected recourse function. Numerical experiments
demonstrate that the proposed algorithm is quite efficient. The
stochastic programming model defined in this paper is quite useful
for a variety of design and operational problems.

Keywords—stochastic programming problem with recourse, simple
integer recourse, dynamic slope scaling procedure

I. INTRODUCTION

MATHEMATICAL programming has been applied to
many problems in various fields. However, for many

actual problems, the assumption that the parameters involved
in the problem are deterministic known data is often unjusti-
fied. In such cases, these data contain uncertainty and are thus
represented as random variables, since they represent infor-
mation about the future. Decision-making under uncertainty
involves potential risk. Stochastic programming (Birge [3],
Birge and Louveaux [4], Kall and Wallace [5]) deals with
optimization under uncertainty. A stochastic programming
problem with recourse is referred to as a two-stage stochastic
problem. In the first stage, a decision has to be made without
complete information on random factors. After the values of
random variables are known, a recourse action can be taken
in the second stage. For a continuous stochastic programming
problem with recourse, the L-shaped method (Van Slyke and
Wets [13]) is well known.

The L-shaped method has been used to solve stochastic
programs having discrete decisions in the first stage (Laporte
and Louveaux [8]) and has been applied to solve a stochastic
concentrator location problem (Shiina [11], [12]).

In the present paper, we consider a stochastic programming
problem in which the recourse variables are restricted to
integers. If integer variables are involved in the second stage
problem, optimality cuts based on the Benders [2] decom-
position do not provide the facets of the epigraph of the
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recourse function. In such a case, it is difficult to approximate
the recourse function, which in general is nonconvex and
discontinuous, since the function is defined as the value
function of the second stage integer programming problem.

For stochastic programs with simple integer recourse,
Ahmed, Tawarmalani, and Sahinidis [1] developed a finite
algorithm based on the branching of the first stage integer
variables. However, variables involved in the stochastic pro-
gram with simple integer recourse are restricted to having a
nonnegative integer value. Such restriction of variables to pure
integers makes application of the problem difficult. Therefore,
we consider a practical stochastic programming model which
is applicable to various real problems, and deal with the
problem in which the recourse variables are restricted to
multiples of some nonnegative integer. These restrictions on
the recourse variables represent that the additional actions
are taken in units of a certain amount. This mathematical
programming model is quite useful for a variety of design and
operational problems which arise in diverse contexts, such as
investment planning, capacity expansion, network design, and
facility location.

In Section 2, the basic model of the stochastic programming
problem with recourse and the L-shaped method are shown.
Then, we consider the variant of the stochastic program
with simple integer recourse, which is a natural extension of
continuous simple recourse. In Section 3, we investigate the
property of the recourse function. The algorithm of a dynamic
slope scaling procedure to solve the problem is developed
by using the property. In Section 4, numerical experiments
demonstrate that the proposed algorithm is quite efficient. The
stochastic programming model defined in this paper is quite
useful for a variety of design and operational problems.

II. FORMULATION

A. Stochastic programming problem with recourse

We first form the basic two-stage stochastic linear program-
ming problem with recourse as (SPR).

(SPR): min c�x + Q(x)
subject to Ax = b

x ≥ 0
Q(x) = Eξ̃[Q(x, ξ̃)]
Q(x, ξ) = min{q(ξ)�y(ξ) |

Wy(ξ) = h(ξ) − T (ξ)x, y(ξ) ≥ 0},
ξ ∈ Ξ

In the formulation of (SPR), c is a known n1-vector, b is a
known m1-vector, and A and W are known matrices of size
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m1 × n1 and m2 × n2, respectively. The first stage decisions
are represented by the n1-vector x. We assume the random l-
vector ξ̃ is defined on a known probability space. Let Ξ be the
support of ξ̃, i.e., the smallest closed set such that P (Ξ) = 1.

Given a first stage decision x, the realization of random
vector ξ of ξ̃ is observed. The second stage data m2-vector
h(ξ), n2-vector q(ξ), and m2×n1 matrix T (ξ) become known.
Then, the second stage decision y(ξ) must be taken so as to
satisfy the constraints Wy(ξ) = ξ − Tx and y(ξ) ≥ 0. The
second stage decision y(ξ) is assumed to cause a penalty of
q(ξ). The objective function contains a deterministic term c�x
and the expectation of the second stage objective. The symbol
Eξ̃ represents the mathematical expectation with respect to ξ̃,
and the function Q(x, ξ) is called the recourse function in state
ξ. The value of the recourse function is obtained by solving a
second stage linear programming problem.

It is assumed that the random vector ξ̃ has a discrete distri-
bution with finite support Ξ = {ξ1, . . . , ξS} with Prob(ξ̃ =
ξs) = ps, s = 1, . . . , S. A particular realization ξ of the
random vector ξ̃ is called a scenario. Given the finite discrete
distribution, the problem (SPR) is restated as (SPR’), the
deterministic equivalent problem for (SPR).

(SPR’): min c�x +
S∑

s=1

psQ(x, ξs)

subject to Ax = b
x ≥ 0
Q(x, ξs) = min{q(ξs)�y(ξs) |

Wy(ξs) = h(ξs) − T (ξs)x,
y(ξs) ≥ 0}, s = 1, . . . , S

The problem (SPR’) is reformulated as (DEP-SPR) by
setting y(ξs), q(ξs), T (ξs), h(ξs), and Q(x, ξs) as ys, qs, T s,
hs, and qs�ys, respectively.

(DEP-SPR) :

minx,y1,···,ys cx +
S∑

s=1

psqs�ys

subject to Ax = b
Wys = hs − T sx, s = 1, . . . , S
x ≥ 0, ys ≥ 0, s = 1, . . . , S

To solve (DEP-SPR), an L-shaped method (Van Slyke
and Wets [13]) has been used. This approach is based on
Benders [2] decomposition. The expected recourse function
is piecewise linear and convex, but it is not given explicitly
in advance. In the algorithm of the L-shaped method, we
solve the following problem, (MASTER). The new variable
θ denotes the upper bound for the expected recourse function
such that θ ≥ ∑S

s=1 psQ(x, ξs).

(MASTER): min c�x + θ
subject to Ax = b

x ≥ 0
θ ≥ 0

The recourse function is given by an outer linearization using
a set of feasibility and optimality cuts as shown in Fig. 1. In
the case of n2 = 2×m2 and W = (I,−I), the problem (SPR)
is said to have a simple recourse.

x

θ

Q(x)
optimality cut
feasibility cut

Fig. 1. L-shaped method

B. Simple integer recourse

In this section, we consider the special case of the (SPR)
setting q(ξ) = q(> 0), T (ξ) = T , h(ξ) = ξ, and W = rI ,
where r is a positive integer. Furthermore, we define the
constraints of the recourse problem as y(ξ) ≥ ξ − Tx and
y(ξ) ≥ 0 to take account of the relationship between the value
of the random variable ξ and the first stage decision variable
Tx. The size of the random vector ξ̃ is defined as l = m2, and
the size of the recourse variable y(ξ) is n2 = m2. Then, we
define the new variables χ = Tx, where χ is called a tender
to be bid against random outcomes.

In the case that the recourse variables are defined as
nonnegative integer variables, the problem is said to have a
simple integer recourse. For this problem, the constraints of
the recourse problem are y(ξ) ≥ ξ − χ, and y(ξ) ∈ Zn2

+ .
The optimal solution of the recourse problem is a minimal
nonnegative integer variable satisfying y(ξ) ≥ ξ − χ.

As the recourse decisions are represented as urgent and
additional production, orders, or investment, the recourse
decisions are in terms of units of a certain amount. Louveaux-
van der Vlerk [9] presented the lower and upper bounds for this
problem. But for application of the mathematical programming
model to real problems, the recourse decisions should be
modified to consider a fixed batch size.

In this paper, we formulate the stochastic programming
problem (SPSIR) in which the recourse variable y(ξ) is defined
as a nonnegative integer variable and the recourse action ry(ξ)
is restricted to nonnegative multiples of some integer r.

(SPSIR):
min c�x + Ψ(χ)

subject to Ax = b, x ≥ 0
Tx = χ

Ψ(χ) =
∑S

s=1 psψ(χ, ξs)
ψ(χ, ξs) = min{q�y(ξs)|ry(ξs) ≥ ξs − χ,

y(ξs) ∈ Zn2
+ }, s = 1, . . . , S
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III. SOLUTION ALGORITHM

A. Property of the recourse function

In this section, we investigate the property of the recourse
function. The optimal solution of the recourse problem is
obtained as follows.

y(ξs)i =
{

� ξs
i −χi

r �, if χi < ξs
i

0 if ξs
i ≤ χi

, i = 1, . . . ,m2

It is shown that the recourse function ψ(χ, ξ) is separable in
the elements of χ� = (χ1, . . . , χm2)

�. We define ψi(χi, ξi) =
min{qiy(ξ)i | ry(ξ)i ≥ ξi −χi, y(ξ)i ∈ Z+} in the following
equation.

ψ(χ, ξ)
= min{q�y(ξ) | ry(ξ) ≥ ξ − χ, y(ξ) ∈ Z+}

=
m2∑
i=1

min{qiy(ξ)i | ry(ξ)i ≥ ξi − χi, y(ξ)i ∈ Z+}

=
m2∑
i=1

ψi(χi, ξi) (1)

Let ξ̃i and Ξi be the i-th component of the random vector
ξ̃ and the support of ξ̃i, respectively. We make the following
assumptions.

Assumption 3.1: The random variables ξ̃i, i = 1, . . . , n2 are
independent and follow a discrete distribution.

Assumption 3.2: A probability ps
i is associated with each

outcome ξs
i , s = 1, . . . , |Ξi| of ξ̃i. The random variable ξ̃i

takes only positive values and is bounded as 0 < ξs
i < ∞, s =

1, . . . , |Ξi|, i = 1, . . . , n2.

Then, the support of ξ̃ is described as Ξ = Ξ1 × · · · ×Ξn2 .
And the positive constant M can be taken so as to satisfy
M ≥ max{ξs

i , s = 1, . . . , |Ξi|, i = 1, . . . , n2}. From assump-
tions 3.1 and 3.2, the joint probability P (ξ̃ = ξs) is calculated
as follows.

Prob(ξ̃ = ξs) = Prob(ξ̃1 = ξs1)
× · · · × Prob(ξ̃m2 = ξsm2 )

=
m2∏
i=1

Prob(ξ̃i = ξsi)

=
m2∏
i=1

psi
i (2)

It is shown that the expected recourse function Ψ(χ) is
also separable in χi, i = 1, . . . ,m2 as (3), where Ψi(χi) =∑|Ξi|

s=1 ps
i ψi(χi, ξ

s
i ) denotes the expectation of the i-th recourse

function (3).

Ψ(χ) =
S∑

s=1

psψ(χ, ξs)

=
|Ξ1|∑
s1=1

· · ·
|Ξn2 |∑
sn2=1

ps1
1 · · · psn2

n2

m2∑
i=1

ψi(χi, ξ
si
i )

=
m2∑
i=1

(
|Ξ1|∑
s1=1

· · ·
|Ξn2 |∑
sn2=1

psi
i

m2∏
j=1
j �=i

p
sj

j )ψi(χi, ξ
si
i )

=
m2∑
i=1

|Ξi|∑
si=1

psi
i ψi(χi, ξ

si
i )

=
m2∑
i=1

Ψi(χi) (3)

For the list of the realization of the random variable
{ξ1

i , . . . , ξ
|Ξi|
i }, we sort ξs

i , s = 1, . . . , |Ξi| in non-decreasing
order so as to satisfy ξ1

i ≤ . . . ≤ ξ
|Ξi|
i by substituting indices

if required. The expectation of the recourse function ψi(χi, ξi)
is shown as follows.

Ψi(χi) = Eξ̃i
[ψi(χi, ξ̃i)] =

|Ξi|∑
si=1

psi
i q�ξsi

i − χi

r
�+ (4)

The discontinuous breakpoints of the expected function Ψi(χi)
are shown in (5) in the region 0 ≤ χi ≤ ξ

|Ξi|
i .

χi = ξsi
i − mr (si = 1, . . . , |Ξi|,m = 0, 1, . . . , �ξsi

r
	) (5)

The expected recourse function Ψi(χi) has at most∑|Ξi|
si=1(� ξ

si
i

r 	+ 1) discontinuous points, and the length of the
continuous region depends the value of the constant r.

For example, the expected recourse function Ψi(χi) for the
case Ξ = {11, 22}, p1 = p2 = 1/2, r = 5, q = 1 is shown in
Fig. 2.

0
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5
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Ψ
(χ

)

χ

Expected Recourse Function Ψ(χ)
Lower Bound of Ψ(χ)

Fig. 2. Expected recourse function
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And the expected recourse function Ψi(χi) can be calcu-
lated using the distribution function Fi of ξ̃i.

Ψi(χi) = Eξ̃i

[
qi� ξ̃i − χi

r
�+

]

= qi

∞∑
j=1

jProb(� ξ̃i − χi

r
�+ = j)

= qi

∞∑
j=1

j−1∑
k=0

Prob(� ξ̃i − χi

r
�+ = j)

= qi

∞∑
k=0

∞∑
j=k+1

Prob(� ξ̃i − χi

r
�+ = j)

= qi

∞∑
k=0

Prob(
ξ̃i − χi

r
> k)

= qi

∞∑
k=0

(1 − Fi(χi + rk)) (6)

B. Algorithm of DSSP

Let (SPSIRLP ) be the problem in which the integer con-
straints are relaxed. The recourse function Ψ(χ) of the
problem (SPSIRLP ) corresponds to the lower bound for the
original Ψ(χ) of (SPSIR) as shown in Figure 2.

(SPSIRLP ):
min c�x + Ψ(χ)

subject to Ax = b, x ≥ 0
Tx = χ

Ψ(χ) =
∑S

s=1 psψ(χ, ξs)
ψ(χ, ξs) = min{q�y(ξs)|ry(ξs) ≥ ξs − χ,

y(ξs) ≥ 0}, s = 1, . . . , S

After solving the problem (SPSIRLP ), the optimal solution
(xLP∗, χLP∗, yLP∗(ξ1), . . . , yLP∗(ξS)) is obtained.

Next, we consider a heuristic algorithm to solve (SPFCRT).
For the fixed charge network flow problem, Kim and Pardalos
[6] developed an approach, called the dynamic slope scaling
procedure (DSSP), which solves successive linear program-
ming problems with recursively updated objective functions.
Kim and Pardalos [7] modified DSSP, which repeats the reduc-
tion and refinement of the feasible region, and the algorithm is
effective when the objective function is staircase or sawtooth
type. The algorithm of DSSP is used to obtain a good feasible
solution to the second stage integer programming problem
which defines the recourse function. The algorithm of DSSP
is promising since the recourse function is monotonically
nonincreasing, as shown in Fig. 2.

Let (xLP∗, χLP∗, yLP∗(ξ1), . . . , yLP∗(ξS)) be the optimal
solution of the problem (SPSIRLP ). We compute the approx-
imate value θi of Ψi(χi) using the following inequality (7).

θi ≥ Ψi(χLP∗
i )

χLP∗
i − ξ

|Ξi|
i

(χi − χLP∗
i ) + Ψi(χLP∗

i ) (7)

The constraint (7) provides the upper bounds for the linear
function which connects (ξ|Ξi|

i , 0) and (χLP∗
i ,Ψi(χLP∗

i )). The
value of θi gives the exact value of Ψi(χi) at these two points.

0

1

2

3

4

5

0 5 10 15 20

Ψ
(χ

)

χ

χLP*=10

7≤χ≤11
bounds

Expected Recourse Function Ψ(χ)
Approximation of Ψ(χ)

Fig. 3. Algorithm of DSSP

Taking account of the breakpoints (5) of the recourse
function, we set the lower and upper bounds for the variable
χi. Let the breakpoints of the recourse function Ψi(χi) be
0 < χ̄1

i ≤ χ̄2
i ≤ . . . ≤ χ̄w

i , and define χ̄0
i = 0.

If we have a χLP∗
i satisfying χ̄j

i < χLP∗
i < χ̄j+1

i for some
j (0 ≤ j ≤ w − 1), the constraint χ̄j

i ≤ χ ≤ χ̄j+1
i is added

to the formulation. Otherwise, if we have a χLP∗
i satisfying

χLP∗
i = χ̄j

i for some j (1 ≤ j ≤ w − 1), the constraint
χ̄j−1

i ≤ χ ≤ χ̄j+1
i is added.

Then the following linear programming problem, (MAS-
TER), is solved.

(MASTER):

min c�x +
m2∑
i=1

θi

subject to Ax = b, x ≥ 0
Tx = χ

θi ≥ Ψi(χ
LP∗
i )

χLP∗
i

−ξ
|Ξi|
i

(χi − χLP∗
i )

+Ψi(χLP∗
i ), i = 1, . . . ,m2

bound constraints for θi

Solution algorithm using DSSP

Step1 Given ε > 0 for the convergence check,
solve (SPSIRLP ) to obtain (xLP∗, χLP∗,
yLP∗(ξ1), . . . , yLP∗(ξS)). The constraint (7)
and the lower and upper bounds for θi are added to
(MASTER). Set k = 1.

Step2 Solve (MASTER) to obtain (xk, χk, θk).
Step3 If k > 1 and

∑n1
i=1 |xk

i −xk−1
i |+∑m2

i=1 |χk
i −χk−1

i |+∑m2
i=1 |θk

i −θk−1
i | > ε, modify the constraint (7) and

the lower and upper bounds for θi of (MASTER),
k = k + 1, and go to Step 2.

Step4 From the solution (xk, χk, θk), calculate Ψ(χk),
and set the approximate optimal objective value as
c�xk + Ψ(χk).
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TABLE I
COMPUTATIONAL RESULTS

Number of random variable Number of scenarios Parameter GAP Relative error CPU time (sec)
m2 |Ξi| r (%) (%) DSSP Branch-and-Bound

Experiment 1 10 10 25 3.60 0.59 8.00 18.12
10 20 25 3.74 0.49 10.86 2380.51

Experiment 2 15 10 10 0.76 0.12 8.90 606.82
15 10 20 2.64 0.57 11.48 8894.02
15 10 30 4.41 0.49 7.20 21.99
15 10 40 6.24 0.53 8.11 11.16

IV. NUMERICAL EXPERIMENTS

A. Objective of experiments

In this section, we consider the applications to production
planning. It is assumed that the demand for n2 products are
met by existing n1 production plants.

Suppose the demand of product j is defined as a ran-
dom variable ξ̃j . Let ξ1, . . . , ξn2 be the realizations of ran-
dom variables ξ̃1, . . . , ξ̃n2 , and Ξ1, . . . , Ξn2 be their supports.
These random variables are integrated as a random vector
ξ̃ = (ξ̃1, . . . , ξ̃n2)

�, and the support Ξ of ξ̃ is described as
Ξ = Ξ1 × · · · × Ξn2 .

We consider the application of the problem (SPSIR) to the
production planning problem(SPSIR’). The first stage decision
variable is the amount of products j manufactured by plant i,
denoted by xij , i = 1, . . . , n1, j = 1, . . . , n2. Let aij be the
fuel consumption rate of plant i for the production of product
j. For the first stage constraints, let bi be the upper bound
for the fuel consumption of the production plant i. The tender
variable χj is the total amount of product j manufactured by
all plants.

Given a first stage decision x and χ, the realization of
random demand ξ of ξ̃ becomes known. After observing the
realization ξ, the second stage decisions yj(ξj) are taken to
meet the demand. The amount of unserved demand has to
be supplied by additional production in the second stage.
The multiplication ryj(ξj) of recourse variable yj(ξj) and
positive integer r means that the urgent production must be
made in r units. The recourse costs qj are the additional
production cost. The formulation of the problem is described
as (SPSIR’). The first constraint of the second stage problem
to define ψj(χj , ξj) indicates that the demand must be
satisfied, whereas the second constraint of the recourse
problem expresses that demand ξ is supplied by the first stage
production χ and additional production ry(ξ).

(SPSIR’):

min
n1∑
i=1

n2∑
j=1

cijxij + Ψ(χ)

subject to
n2∑

j=1

aijxij ≤ bi, i = 1, . . . , n1

xij ≥ 0, i = 1, . . . , n1, j = 1, . . . , n2

χj =
n1∑
i=1

xij , j = 1, . . . , n2

Ψ(χ) =
|Ξ1|×···×|Ξn2 |∑

s=1

psψ(χ, ξs)

ψ(χ, ξs) =
n2∑

j=1

ψj(χi, ξ
s
j ),

s = 1, . . . , (|Ξ1| × · · · × |Ξn2 |)
ψj(χj , ξ

s
j ) = min{qjyj(ξs

j )|
ryj(ξs

j ) + χj ≥ ξs
j

yj(ξs
j ) ∈ Z+},

s = 1, . . . , |Ξj |, j = 1, . . . , n2

Two experiments were conducted to show that the algorithm
of DSSP is efficient for solving the stochastic programming
problem (SPSIR). In experiment 1, the number of scenarios
were varied to see the efficiency of the algorithm of DSSP.
We show herein the CPU times of the DSSP and branch-and-
bound algorithms. Furthermore, the relative error of DSSP is
presented to show the DSSP is a precise algorithm.

The results of the numerical experiments appear in Table I.
GAP, listed in Table I, is defined as (z∗−LB)/LB, where z∗

is an optimal objective value of (SPSIR) and LB is an optimal
objective value of the LP relaxation of (SPSIR). The relative
error in Table I is defined as (ẑ − z∗)/z∗, where ẑ is the
objective value obtained using the algorithm of DSSP. CPU
time and relative error using DSSP and branch-and-bound are
compared for different numbers of scenarios.

In experiment 2, the values of the relative error and CPU
time are measured as r is varied. As r increases, the distance
between two adjacent breakpoints increases. In this case, it is
worth noting how the value of parameter r affects the precision
of DSSP.

The algorithm of DSSP for the stochastic production plan-
ning problem was implemented using ILOG OPL Develop-
ment Studio on a Dell Dimension 8300 (CPU: Intel Pen-
tium(R)4, 3.20 GHz). The simplex optimizer of CPLEX 9.0
was used to solve the problem. Table I presents the average
values of five results of our experiments. The values of
the random variables were generated based on the uniform
distribution.
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B. Experiment 1: Varying the number of scenarios

The problems considered in experiment 1 consist of 10
products. The demand for each product has 10 or 20 scenarios.
In order to see the efficiency of the algorithm of DSSP, the
CPU time of DSSP is compared with that of branch-and-
bound. Using the branch-and-bound algorithm, the CPU time
grows rapidly as r is increased because we must solve a
large-scale mixed integer programming problem. However, the
algorithm of DSSP solves the problem quickly because the al-
gorithm instead uses repeated solution of linear programming
problems. It is clear that algorithm of DSSP provides precise
solutions, as the relative errors of DSSP are less than 1%.

C. Experiment 2: Varying the positive integer r

Table I shows that the CPU time of the branch-and-bound
algorithm tends to be large when the value of the parameter r
is small. Because the length of the range in which the recourse
function takes a constant value becomes smaller as r becomes
smaller, the number of such regions increases. Therefore, the
number of times which the lower and upper bounds for θi are
added increases. As a result, the CPU time of the branch-and-
bound algorithm increases. However, the CPU time of DSSP
is shorter than that of the branch-and-bound algorithm.

The GAP value becomes larger as the integer r increases.
For similar reasons to that described previously, the length
of the range in which the recourse function takes a constant
value increases as r increases. Accordingly, the GAP value
increases and the CPU time of branch-and-bound increases.
However, the relative errors remain less than 1%. Therefore,
DSSP provides accurate solutions in short CPU times.

V. CONCLUSION

We have considered the stochastic programming problem
with simple integer recourse in which the value of the recourse
variable is restricted to multiples of a nonnegative integer.
The algorithm of a dynamic slope scaling procedure used to
solve the problem is developed by using the property of the
expected recourse function. Numerical experiments show that
the proposed algorithm is quite efficient.
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