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Abstract—In this paper, we have proposed two novel plasmonic 

demultiplexing structures based on metal-insulator-metal surfaces 
which, beside their compact size, have a very good transmission 
spectrum. The impact of the key internal parameters on the 
transmission spectrum is numerically analyzed by using the two-
dimensional (2D) finite difference time domain (FDTD) method. The 
proposed structures could be used to develop ultra-compact photonic 
wavelength demultiplexing devices for large-scale photonic 
integration. 
 

Keywords—Photonic integrated devices, Plasmonics, Metal-
insulator-metal (MIM) waveguide, Demultiplexers. 

I. INTRODUCTION 
ODERN electronic devices are rapidly approaching 
their fundamental speed and bandwidth limitations, 

which is a serious impediment for new applications and 
requirements. Carrying information by light and replacing 
electronic signals by lightwave is an auspicious solution 
towards higher speeds. The diffraction limit did not allow the 
localization of light in areas smaller than the wavelength; 
therefore, miniaturization and integration of photonic circuits 
were impossible [1]. Excitation of surface plasmons is one of 
the most feasible ways to guide electromagnetic waves beyond 
diffraction limit in order to control light in the nanometer 
scales. Estimations show that data rates of 10Tbit/s are 
achievable by decreasing the photonic devices to 
subwavelength scales [2]. 

Different metallic plasmonic nanoguiding structures have 
been proposed. These include thin metal films, metal 
nanorods, metal wedges, nanogrooves, slot waveguides, etc. 
Different aspects and properties of these devices are studied in 
[1]. Two of the well-known multilayer waveguides are metal-
insulator-metal (MIM) and insulator-metal-insulator (IMI) 
structures. MIM structure gives more light confinement, but 
more propagation loss (less propagation length), whereas IMI 
structure is vice versa. Therefore, there should be a tradeoff 
between propagation length and confinement. It is shown that 
MIM structure is a superior choice [3]. It is experimentally 
verified that silver, due to its lower guiding loss, is the proper 
metal for plasmonic waveguides [4]. 
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To realize photonic circuitry based on plasmonics, a variety 
of components are required: splitters [5]-[7], couplers [8]-[9], 
multiplexers and demultiplexers [10]-[13], switches [14], logic 
gates [15] etc., which have been studied recently. 

Demultiplexers are key components of integrated circuitry. 
There are several plasmonic demultiplexer structures, which 
have been proposed. A plasmonic demultiplexer based on Y 
bent waveguide is presented in which there is a minimum 
space of 2µm between the input and the output waveguides, 
which may not be desirable for compact circuitry [10]. Most 
demultiplexers lack a good transmission through their 
channels, which is mostly due to the weak coupling effect. In 
[12], a nanoplasmonic triple-wavelength demultiplexer is 
presented, but resonance frequencies are not transmitted 
properly and corresponding spectrum peak values are 
undesirably low. Tao, Huang and Zhu proposed a novel 
demultiplexer based on nano-capillary resonators with 
spectrum peak values of as low as -10dB in each channel, 
which is not a desirable transmission spectrum [16]. A novel 
multichannel wavelength demultiplexer based on slot cavities 
has been proposed, which can effectively omit the second 
mode and result in a single-band transmission, but like others, 
the channel transmission is accompanied by a significant loss 
of about -8dB in each channel [17]. 

In this paper, we have presented two novel ultra-compact 
demultiplexing structures which can efficiently demultiplex 
the desired wavelengths. 

The paper is organized as follows; in Section II, some 
introductory concepts of plasmons and the FDTD method are 
discussed, and in Section III, the proposed structures and their 
numerical simulations are presented. 

II. SURFACE PLASMON POLARITONS AND THEIR ANALYSIS 
METHOD 

Surface plasmon is a classic electromagnetic subject known 
since long years ago, but it has now become an intriguing field 
of research for scientists as a result of the recent advances in 
nanotechnology [18]. At optical frequencies, metals can be 
modeled by a gas of free electrons moving against a positive 
background ion cores known as plasma model. When located 
in an electromagnetic field, the electrons oscillate and their 
motion is damped with a characteristic collision frequency, γ . 
It has been assumed that the driving field is 

0E( ) E exp( )t j tω= −  [19]. The permittivity function taken 
from this basic explication with some modification, called 
Drude-Lorentz model, is: 
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where pω  is the plasma angular frequency of the free electron 
gas, ω  is the angular frequency of the lightwave, ( )ε ∞  is the 
high-frequency (electronic transition) contribution to the 
dielectric constant, ω i  denotes the oscillation frequency of 
the ith bound electron under an applied electric potential, and 

is  and γ i  are related to the density and damping of those 
bound electrons, respectively [20]-[21]. 

In this paper, we have used the silver parameters of: 
( ) 3.7ε ∞ = , 161.38 10 /ω = ×p rad s  and 140.27 10 /γ = × rad s [10], 

[12], [22]. Other parameters are given in Table I. 
 

TABLE I  
 PARAMETERS OF THE DRUDE-LORENTZ MODEL FOR SILVER [23]. 

i ( )i eVω  ( )i eVγ  is  
1 0.816 3.886 0.065 
2 4.481 0.452 0.124 
3 8.185 0.065 0.011 
4 9.083 0.916 0.840 
5 20.29 2.419 5.646 

 
A plasmon is a quasiparticle and quantum of plasma 

oscillation of free electrons. Plasmons with collective electron 
oscillations confined to an interface of a metal and a dielectric 
are called surface plasmons (SPs). When a photon (a quantum 
of electromagnetic wave) is coupled to an SP, another 
quasiparticle called surface plasmon polariton (SPP) is 
produced. SPPs are surface electromagnetic waves 
propagating along the interface of a metal-dielectric and 
evanescently confined in the perpendicular direction [2]. This 
coupling helps the lightwave to be transmitted at the interface 
of a metal-dielectric and consequently the diffraction limit 
would not be a problem for subwavelength light guiding 
anymore. 

Solving Helmholtz equation and applying boundary 
conditions show that SPPs exist only for TM modes. This is 
due to the negative real part of the dielectric function of metal 
at optical frequencies [19]. However, lightwave cannot 
directly excite SPPs in normal conditions, because the 
photons' momentum is lower than that of the SPP. Coupling 
techniques are required to compensate the momentum. Prism 
coupling, scattering from a topological defect such as 
subwavelength protrusion or hole, and using periodic 
corrugations in the metal's surface are the main coupling 
techniques. Once light is coupled to SPPs, it will be 
propagated along the interface and will also be attenuated 
accordingly [18]. 

To simulate the plasmonic filters, we have used the FDTD 
method in which Maxwell’s equations are solved by 
discretizing time and space. The spatial grid size is 

4Δ = Δ =z x nm, which was found to be sufficient for 
numerical convergence. Our two-dimensional simulation box 
uses convolutional perfectly matched layer (CPML) in the 
boundaries in order to virtually simulate an infinite space for 

the propagating wave and prevent reflections of outgoing 
waves. Due to the Courant condition, the time integration step 
is ( )0.6 /t x c sΔ = Δ . 

The numerical calculations are convergent for the number 
of time steps of up to 220. Simulation of large number of cells 
and time steps is a lengthy procedure and needs a lot of 
considerations in the process of code writing to conserve time 
as much as possible. For example, if the codes are written in 
MATLAB, "for" loops should be swapped with matrix 
calculations. A very important point to be noticed is the 
distance of the source from CPML layers, which should be far 
enough to converge the numerical simulations. The space of 
1μm was required in order to avoid instability of the numerical 
simulations. 

III. ANALYSIS AND SIMULATIONS 

A. Tapered Demultiplexer  
A novel demultiplexer system is presented in Fig. 1 (a). The 

input waveguide is interlinked to two demultiplexing channels 
through two cavities with lengths of L1 and L2. The incident 
wave is either reflected from or coupled to the cavities. 
Constructive reflections inside the cavities at a specific 
wavelength, form standing waves and the structure operates as 
a resonance device. Therefore, the incident wave is passed or 
blocked and each cavity operates as a narrow band-pass filter. 
Resonance wavelength is linearly related to the length of the 
cavity. So using different lengths for the two cavities can build 
a two-channel demultiplexer. The cavities lengths are adjusted 
so that the resonance wavelengths are 1319nm and 1545nm. 
Design parameters are given in the figure caption. Magnetic 
field distributions for two wavelengths are also demonstrated 
in Figs. 1 (c) and 1 (d) to show the demultiplexing 
performance of the device. The impacts of slope of the input 
taper, Si, on the quality factor and spectrum peak value is 
shown in Fig. 1 (e). Quality factor is one of the most important 
characteristics of filters defined as /rQ λ λ= Δ , where λ r  is 

the resonance wavelength of the cavity and λΔ  is the full 
width at half maximum (FWHM) of transmission spectrum. 
Simulations show that steeper slopes result in better 
transmission with lower loss, but simultaneously decrease the 
quality factor of the transmission spectrum. Also, it would 
make the fabrication more difficult, so there should be a 
tradeoff. Numerical results are given in table II. Without 
considering footprints of the input and output waveguides, the 
demultiplexer length is as small as 900nm, which is a compact 
structure compared to other conventional demultiplexers, 
which is very desirable for integrated photonic circuitry. 

The structure can be designed for triple-wavelength 
demultiplexing. Owing to the flexibility for variation of the 
cavities' lengths, other desired distant enough demultiplexing 
frequencies with more channels are achievable. 
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