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Abstract—The one-class support vector machine “support vector
data description” (SVDD) is an ideal approach for anomaly or outlier
detection. However, for the applicability of SVDD in real-world
applications, the ease of use is crucial. The results of SVDD are
massively determined by the choice of the regularisation parameter C
and the kernel parameter σ of the widely used RBF kernel. While for
two-class SVMs the parameters can be tuned using cross-validation
based on the confusion matrix, for a one-class SVM this is not
possible, because only true positives and false negatives can occur
during training. This paper proposes an approach to find the optimal
set of parameters for SVDD solely based on a training set from
one class and without any user parameterisation. Results on artificial
and real data sets are presented, underpinning the usefulness of the
approach.

I. INTRODUCTION

A
NOMALY DETECTION [1] has gained importance over

the last years. Recording data from technical systems

is typically no challenge nowadays, data acquisition systems

have become compact and cheap. Among the applications

are system health monitoring, the analysis of log files from

computer systems, intrusion detection, performance monitor-

ing, or the identification of potential errors in data measured

from electronic or mechanical systems. The authors of this

paper conduct research on the detection of potential errors in

recordings from test drives [2], [3].

An anomaly is a deviation from expected behaviour [4],

other terms are novelty and outlier [5]. The detection of

anomalies can be automated by training an anomaly detection

system on a labelled training set with normal and abnormal

data and have the system classify unseen data. This corre-

sponds to a two-class classification problem. The task is to

assign an unclassified instance to either the normal class ωn

or the abnormal class ωa based on a set of features f .

By using normal and abnormal training data sets, the

decision boundary is heavily influenced by the choice of the

abnormal data. Using a non-representative training data set

of anomalies, an incorrect decision function is learned. For

example using anomaly detection to detect faults, it is very

unlikely to have a representative data set. In some cases

there are no abnormal data sets available. On the other hand

the amount of training data containing normal instances is
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not constrained, since the training data can be obtained by

recording data from a system in normal operation mode.

To overcome the mentioned limitations of two class-

classification approaches, an alternative for anomaly detection

systems is to only learn the normal behaviour and classify

deviations as abnormal. In other words, the training period is

exclusively conducted on a training set of normal instances.

Support vector machines (SVM) have shown to yield good

results on classification tasks and have widely been used.

While two-class support vector machines separate the classes

by a hyperplane [6], [7], in [8] the one-class SVM “support

vector data description” (SVDD) was introduced to cope with

the problem of one-class classification. SVDD finds a closed

decision boundary, a hypersphere, around the normal instances

in the training data set using a so-called kernel function. It is

therefore ideal for anomaly detection.

A. Motivation

For the applicability of a detection algorithm in real-world

applications, the ease of use is crucial. Users are domain-

experts like physicists, system administrators, or test engi-

neers. They should not have to be concerned with the complex-

ity of machine learning algorithms and their parameterisation.

Unfortunately, the results of SVDD are massively deter-

mined by the choice of the regularisation parameter C and

the kernel parameter used during training. A bad choice of

those parameters makes the results useless.

In two-class SVMs, the parameters are tuned using cross-

validation or leave-one-out validation based on a labelled

training data set containing both classes. For a given set of

parameters, true positives, false positives, true negatives, and

false negatives are measured. Based on these values the pa-

rameters are optimised w.r.t. for example the overall-accuracy,

the true positive rate, or further metrics [9] depending on the

application.

Since in one-class classification problems only instances

from the normal class are contained in the training data set,

only true positives and false negatives can be measured, where

positive refers to the normal class ωn in this paper. As a

consequence, parameter tuning cannot be done as for two-

class SVMs.

This paper addresses the question, if it is possible to find a

set of parameters for SVDD, that yields good results

1) solely on the training set of normal instances

2) without user parameterisation
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II. RELATED WORK

Few publications have addressed the problem of finding the

parameters for SVDD. If there is certainty, that no anomalies

exist in the training data set, C can be set to 1 [10], so that

the hypersphere will include all instances. If the fraction of

outliers ν in the training data set is known, the parameter

should be set to C ≤ 1

νN
[10].

In [11], the authors discuss optimising parameters for SVDD

in the context of text classification. SVDD is used to learn

from the normal class and then optimised using instances from

the outlier class, i.e. the problem is transformed to two-class

classification.

In the absence of outlier data, [12] proposes to generate arti-

ficial instances that are uniformly distributed in a hypersphere

around the normal class including the region of the normal

class. Based on the fraction of instances classified as normal

an optimisation criterion is defined.

In [13] an error function for SVDD with the RBF kernel is

defined utilising the number of support vectors, that is used

to optimise the two parameters without the need to select or

generate outliers. However, a trade-off parameter is introduced

and the results are reported to be rather weak.

In [10] an estimation of the error on the normal class

is given, based on the number of essential support vectors.

Identifying the essential support vectors is done using leave-

one-out. By leaving out an instance within the boundary

or a non-essential support vector from the training set, the

decision boundary is unchanged. On the other hand, leaving

out an essential support vector, the decision boundary covers

a smaller region. However, leave-one-out is not practical for

large training sets due to its high execution time, e.g. for 10000

instances, 10000 training runs are required.

III. SUPPORT VECTOR DATA DESCRIPTION

Support vector data description (SVDD) was introduced in

[8] as a one-class SVM. SVDD finds a hypersphere around the

normal instances in the training data set. The hypersphere is

fully determined by its radius R and its center ~a, as illustrated

in Fig. 1, and is found by solving the optimisation problem of

minimising:

1) the error on the normal class, i.e. false negatives

2) the chance of misclassifying data from the abnormal

class, i.e. false positives

Minimising the error on the normal class is achieved by

adjusting R and ~a in a way that all instances of the training

data set are contained in the hypersphere. On the other

hand, minimising the chance of misclassifying data from the

abnormal class cannot be achieved straightforward, since in

the absence of abnormal training data, false positives cannot

be measured during the optimisation step.

A. Finding the optimal hypersphere

A hypersphere with an infinite volume would obviously

enclose all instances but misclassify all abnormal instances.

So the hypersphere’s volume is used as a second optimisation

criterion. The trade-off between the number of misclassified

Fig. 1. A hypersphere in a 2-dimensional feature space with radius R and
center a is described by the three support vectors SV1 · · ·SV3.

normal instances and the volume of the normal region is

optimised. On one hand the decision boundary is desired to

capture the normal instances, while on the other hand keeping

the hypersphere’s volume at a minimum. Hence, the following

optimisation problem is to be solved [14]:

minimise

F (R,~a) = R2 (1)

subject to

‖~xi − ~a‖2 ≤ R2 ∀i i = 1, ..,M (2)

where ~xi denotes the instances and M the number of

instances in the training data set, ~a is the hypersphere’s center,

and ‖~xi − ~a‖ is the distance between ~xi and ~a.

The distance ‖~xi−~a‖ is calculated by
√

(~xi − ~a) · (~xi − ~a).
Since calculating the square root is computationally expensive,

the squared distance ‖~xi − ~a‖2 is used and compared to the

squared radius R2. The squared distance can be reformulated

using the binomial theorem which is beneficial, as will become

clear in Section III-D.

The center ~a is implicitly described by a linear combination

of selected instances from the training data set, the so-called

support vectors. The remaining instances are discarded.

Having solved the optimisation problem eq. (1) and eq. (2)

and hence having found the hypersphere, for each ~xi one of

two terms is satisfied. This is used to select those ~xi that

become support vectors:

‖~xi − ~a‖2 < R2 → ~xi is within the hypersphere (3)

‖~xi − ~a‖2 = R2 → ~xi is used as a support vector (4)

As an illustrative example one could think of a 2-

dimensional training data set with 50 instances. In this case the

decision boundary would be a circle, which is fully described

by three distinct points on its circumference. Hence, ideally

three support vectors would be selected and 47 instances be

discarded as illustrated in Fig. 1.

Classifying a test instance ~xt is a matter of determining

whether it is inside or outside the hypersphere, which is done

by solving ‖~xt − ~a‖2 < R2.
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Fig. 2. The introduction of the slack variables ξi allows for some instances
of the training data set to be outside the decision boundary.

B. Reducing the sensitivity to outliers

Demanding that all instances are contained in the hyper-

sphere means that outliers contained in the training data set

will massively influence the decision boundary. So SVDD in

this form is very sensitive to outliers, which is not desired.

Analogous to hard-margin SVMs, that can be transformed

to soft-margin SVMs by allowing some instances to be on the

wrong side of the separating hyperplane [7], in SVDD slack

variables are introduced. These slack variables ξi allow for

some instances ~xi in the training data set to be outside the

hypersphere as shown in Fig. 2.

The parameter C is introduced controlling the influence of

the slack variables and thereby the error on the normal class

and the hypersphere’s volume. So the optimisation problem of

eq. (1) and eq. (2) changes to minimising [14]:

F (R,~a, ξi) = R2 + C
M
∑

i=1

ξi (5)

subject to

‖~xi − ~a‖2 ≤ R2 + ξi ∀i (6)

and

ξi ≥ 0 ∀i (7)

C. Solving the optimisation problem

As described in [10], the optimisation problem is solved

by incorporating the constraints eq. (6) and eq. (7) into

eq. (5) using the method of Lagrange for positive inequality

constraints [15]. This allows to transform a constrained opti-

misation problem into an unconstrained one by integrating the

constraints into the equation to be optimised. First eq. (6) is

rewritten to become a positive inequality constraint:

R2 + ξi − ‖~xi − ~a‖2 ≥ 0 (8)

For a function f and two constraints g1 ≥ b1 and g2 ≥ b2,

the Lagrangian is formulated as L = f −α(g1− b1)−β(g2−
b2), introducing the so-called Lagrange multipliers αi and βi.

Incorporating constraints eq. (7) and eq. (8) into eq. (5), the

optimisation problem changes into maximising

L(R,~a, αi, βi, ξi) = R2 + C

M
∑

i=1

ξi (9)

−
M
∑

i=1

αi(R
2 + ξi − x2

i + 2~a · ~xi − ~a2)−
M
∑

i=1

βiξi

The partial derivatives are set to 0, which for R is

∂L

∂R
= 2R− 2R

M
∑

i=1

αi
!
= 0 (10)

and yields the condition

M
∑

i=1

αi = 1 (11)

The partial derivative with respect to ~a

∂L

∂~a
= −2

M
∑

i=1

(αi ~xi − αi~a)
!
= 0 (12)

can be reformulated, the −2 be dropped, and then equals 0,

if

~a =

∑M

i=1
αi ~xi

∑M

i=1
αi

=
M
∑

i=1

αi ~xi with

M
∑

i=1

αi = 1 from eq. (11)

which shows that the center ~a is expressed as a linear

combination of the support vectors. Finally, deriving with

respect to ξi leads to

∂L

∂ξi
= C − αi − βi

!
= 0 (13)

Since αi ≥ 0 and βi ≥ 0, and βi = C − αi this allows to

drop βi by instead adding the following constraint

0 ≤ αi ≤ C (14)

Resubstituting the found constraints yields a less complex

equation. First eq. (9) is reformulated as

L =R2 + C

M
∑

i=1

ξi −
M
∑

i=1

αiR
2 −

M
∑

i=1

αiξi +

M
∑

i=1

αi ~xi
2

− 2
M
∑

i=1

αi~a · ~xi +
M
∑

i=1

αi~a
2 −

M
∑

i=1

βiξi

(15)

Substituting (
∑M

i=1
αi) = 1 from eq. (11), βi = C−αi from

eq. (14), and ~a = (
∑M

i=1
αi ~xi) from eq. (12), the optimisation

problem changes into maximising

L(α) =
M
∑

i=1

αi(~xi · ~xi)−
M
∑

i,j=1

αiαj(~xi · ~xj) (16)

subject to

0 ≤ αi ≤ C ∀i (17)
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Fig. 3. Instances from the normal class distributed in two clusters. Enclosing
all instances with a sphere would massively overestimate the normal class.
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Fig. 4. The instances of the contrived data set can be enclosed by a sphere
in the three-dimensional feature space created by the mapping function.

Having determined all αi, the parameters ~a and ξi can be

deduced. The radius R is determined by picking an arbitrary

support vector ~xi on the boundary, i.e. with 0 < αi < C, and

solving R = ‖~xi − ~a‖.

D. Introducing non-spherical decision boundaries

At this point, SVDD is capable of surrounding the normal

data by a hypersphere. It is rare that in classification problems

the distribution of the data is spherical. Hence, SVDD in this

form would yield poor classification results for most data sets.

SVDD maps the data to higher-dimensional space, where it

can be surrounded by a hypersphere.

An example of such a mapping is given for the contrived

two-dimensional data set in Fig. 3. The data has instances from

the normal class distributed in two clusters. Enclosing all in-

stances with a circle would massively overestimate the normal

class. Using an example mapping Z := (f2
1 ,

√
2f1f2, f

2
2 ) [6],

the data set can be mapped to a three dimensional space, as

shown in Fig. 4, where the instances can be surrounded by a

sphere. This mapping is ideal for the contrived data set, but

it is not practical for arbitrary data sets, if the ideal mapping

has to be known.

As can be seen from eq. (16) ~xi and ~xj are solely incor-

porated as the inner products (scalar products) (~xi · ~xi) and

(~xi· ~xj) respectively. Instead of actually mapping each instance

to a higher-dimensional space using a mapping function φ(),
the so-called kernel trick is used to replace the inner products

(φ(~xi) · φ( ~xj)) by a kernel function K(~xi, ~xj). The mapping

is implicitly done by solving K(~xi, ~xj).

K(~xi, ~xj) = φ(~xi) · φ( ~xj) (18)

So eq. (16) becomes:

L =
M
∑

i=1

αiK(~xi, ~xi)−
M
∑

i,j=1

αiαjK(~xi, ~xj) (19)

A variety of kernel functions have been proposed. Two

widely used kernels are the polynomial kernel and the radial

basis function (RBF) kernel, also referred to as the Gaussian

kernel.

E. Classifying a test instance

A test instance ~xt is classified by solving ‖~xt −~a‖2 ?

> R2.

The squared distance ‖~xt −~a‖2 can be rewritten as (~xt · ~xt −
2~xt ·~a+~a·~a). Replacing ~a by its linear combination of support

vectors from eq. (13) yields

~xt · ~xt − 2
M
∑

i=1

αi(~xt · ~xi) +
M
∑

i,j=1

αiαj(~xi · ~xj) (20)

Again, the inner products are replaced by the kernel function

used during training. A test instance is classified as abnormal,

if the following inequality holds.

R2 <K(~xt, ~xt)− 2

M
∑

i=1

αiK(~xt, ~xi)

+
M
∑

i,j=1

αiαjK(~xi, ~xj)

(21)

F. The RBF kernel

The RBF kernel is reported to be most suitable to be used

with SVDD in [10]. As opposed to the polynomial kernel, the

RBF kernel does not depend on the position of instances with

respect to the origin [10]. This kernel adds only one parameter

to the classification problem, the kernel width σ. The RBF

kernel is given by

K(~xi, ~xj) = e−
‖ ~xi− ~xj‖

2

σ2 (22)

The kernel function can take on values from the interval

(0, 1] and converges to 0 for high distances ‖~xi − ~xj‖. Since

K(~xi, ~xi) = e−
‖ ~xi− ~xi‖

2

σ2 = 1 and
∑M

i=1
αi = 1, eq. (16) can

be simplified for the RBF kernel:

L(α) = 1−
M
∑

i,j=1

αiαjK(~xi · ~xj) (23)
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subject to

0 ≤ αi ≤ C ∀i (24)

The equation to classify an instance eq. (21) boils down to:

1− 2

M
∑

i=1

αie
−

‖ ~xt− ~xi‖
2

σ2 +

M
∑

i,j=1

αiαje
−

‖ ~xi− ~xj‖
2

σ2

?

> R2 (25)

IV. AUTONOMOUSLY TUNING THE SVDD PARAMETERS

Like most classifiers, SVDD has parameters that massively

influence the classification accuracy. While SVDD yields

good classification results for the one-class problem, manually

adjusting the parameters C and σ makes it non-applicable for

real-world applications.

As surveyed in Section II, current approaches either work

with available or generated outlier data sets or by heuristically

or experimentally setting the parameters. The autonomous

approach proposed in [13] is reported to yield poor decision

boundaries. This section presents an approach to autonomously

tune the parameters by solely working on the training set.

Using grid search, parameter candidates are selected and

based on an optimisation criterion the best pair {Ci, σi} is

determined. The task is to tune the parameters so that the

accuracy on the test set and on unseen data is optimal. The

proposed approach is based on the findings in a bachelor thesis

supervised by this paper’s main author [16], that a radius close

to 1 appears to yield good solutions for the RBF kernel.

It is proposed to scale all input features independently to a

value range of [−1, 1] by min/max normalisation.

The optimisation problem eq. (5) is solved for a given set

of parameters C and σ. Determining those parameters is not

straightforward. The regularisation parameter C, introduced

in eq. (5), is lower-bound by 1

N
, where N is the number of

instances in the training data set. C = 1 corresponds to the

hard-margin solution, where all instances are enclosed in the

decision boundary [8]. So the value range of C is

1

N
≤ C ≤ 1 (26)

The second parameter to be optimised is the kernel width

σ. For high values of σ the boundary will become spherical

with the risk of underfitting, while for small values of σ a high

fraction of instances are selected to be support vectors, hence

the boundary is very flexible and is prone to overfitting.

A. Selecting parameter candidates using grid search

The SVDD parameters C and σ are optimised using grid

search. Grid search can be considered a brute-force way to op-

timise parameters, in contrast to e.g. gradient descent. Within a

given value range, the grid search algorithm selects candidate

values and tests all candidates. The selection of candidate

values is done iteratively. While this becomes computationally

expensive for many parameters, it is feasible for the two

parameters in the problem presented.

The input parameters for the grid search are Cmin, Cmax,

σmin, σmax, the number of candidates in the current range

Fig. 5. Functioning of grid search to optimise the SVDD parameter C and σ
with τ = 5 and linear partitioning of the ranges. (a) first iteration (b) second
iteration

Fig. 6. Results of parameter tuning by minimising the error rate visualised
in input feature space. The selected support vectors do not tightly enclose the
training set (black squares: support vectors).

denoted by τ and some abortion criterion like the number of

iterations i.
For the parameter C, τ values selected within the range

of [Cmin;Cmax], and for σ respectively. This sums up to τ2

pairs {Ci, σi} as shown in Fig. 5a. For all {Ci, σi}, SVDD is

trained and one optimal parameter set {Copt1, σopt1} is found.

This is refined in a second iteration by again selecting

τ2 pairs {Ci, σi} in the range of [Copt1−1;Copt1+1] and

[σopt1−1;σopt1+1] as shown in Fig. 5b.

This process is repeated until some abortion criterion is met,

e.g. until the optimisation criterion does not improve in an

iteration or the desired number of iterations is reached.

B. Proposed optimisation criterion

It is crucial to identify a good optimisation criterion. Obvi-

ously a low error rate is desired, so selecting {Ci, σi} where

the error is minimal seems to be a good approach. However,

as can be seen from experimental results, this approach

overestimates the region of the normal class by selecting too

few support vectors (see Fig. 6). As a consequence the learnt

decision boundary does not generalise well.

A solution could be to minimise the error on the normal

class, while at the same time maximising the number of

support vectors. But, as reported in [14] and confirmed by

experiments, the error rate and the number of support vectors

are approximately linearly correlated. Hence, optimising the

trade-off between the error and the number of support vectors

is not possible.

The parameters C and σ are optimal if in the transformed

feature space, the instances are arranged in a spherical way.
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Fig. 7. The values of the second and third term are approximately equal for
various data sets over the entire range of the parameters.

Only then will a hypersphere be the ideal decision boundary.

So the idea is, to find an optimisation criterion which selects

that pair of parameters that best map the data set to one

spherical cluster in the transformed feature space.

The hypersphere’s radius can be determined by selecting

an arbitrary support vector on the boundary ~xb, where ~xb can

be any ~xi for which 0 < αi < C holds. The radius is then

the distance between ~xb and the center ~a, which for the RBF

kernel is given by

R2 = 1− 2
M
∑

i=1

αiK( ~xb, ~xi) +
M
∑

i,j=1

αiαjK(~xi, ~xj) (27)

The third term in eq. (27) is exactly the term that is min-

imised in in the optimisation problem eq. (23). The geometric

interpretation in the original space is that ~a · ~a is minimised

when ‖~a‖ is minimised, which is the case when the center ~a
is located at the origin.

The second term
∑M

i=1
αiK( ~xb, ~xi) in eq. (27) incorporates

one selected support vector ~xb on the left side of the kernel

function and all support vectors ~xi on the right side, which

is a subset of the third term
∑M

i,j=1
αiαjK(~xi, ~xj), where all

support vectors are incorporated on both sides of the kernel

function.

The second and the third term are proportional. Neglecting

the constant 2, they are in fact approximately equal:

M
∑

i=1

αiK( ~xb, ~xi) ≈
M
∑

i,j=1

αiαjK(~xi, ~xj) (28)

Experiments have confirmed, that eq. (28) holds for all

tested data sets over the entire range of the parameters, as

depicted in Fig. 7.

Substituting the terms in eq. (28) by b simplifies eq. (25)

into following approximation

R2 ≈ 1− 2b+ b (29)

which can be rewritten as

Fig. 8. Optimal mapping in a constructed transformed feature space. The
instances are arranged in a spherical way.

R ≈
√
1− b (30)

From eq. (30) it can be seen that the smaller b is, the closer

the radius is to 1. Hence, a radius of 1 can be considered

optimal. Fig. 8 shows the optimal solution for the radius in

the imaginary mapped feature space: the center is at the origin

and the radius is 1.

From the kernel function eq. (22) it can be seen, that the

smaller σ is, the closer R will be to 1. So small values of σ
are favoured when optimising for R = 1. However, for small

values of σ, very flexible decision boundaries are obtained, i.e.

very many support vectors are selected. This tends to overfit

the training set, which in turn yields a high error rate. So only

optimising for the radius is insufficient.

In order to find {Copt, σopt}, the following optimisation

criterion is formulated. Informally spoken, the error on the

normal class is to be minimised, while at the same time R is

desired to be close to 1. Finding R close to 1 is equivalent to

minimising |1 − R|. Equally weighting error rate and radius

this boils down to finding the pair {ei, Ri} closest to the origin

by minimising:

λi =
√

e2ωni
+ |1−Ri|2 ∀i (31)

This way, non-optimal mappings are assigned larger dis-

tances by eq. (31), because non-spherical shapes in the trans-

formed feature space result in a surrounding sphere with

R 6= 1.

For each tuning step, the error rate and the radius R are

determined using k-fold. The training set is randomly split

into k folds: k − 1 training sets and 1 validation set. The

instances in the validation set are classified, the error eωn
and

R are averaged over the k runs.

Fig. 9 shows results based on the proposed optimisation

criterion. For two artificial two-dimensional data sets, the

support vectors that are autonomously selected enclose the

training set in the input feature space. In the case of more than

one cluster in input space, with an ideal mapping, SVDD maps

all instances to one spherical-shaped cluster in the transformed

feature space, as shown for the two clusters in Fig. 9b.
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Fig. 9. Parameter tuning of SVDD on artificial two-dimensional data sets
visualised in input feature space. (a) banana-shaped cluster and (b) two
circular clusters following a Gaussian distribution with different densities
(black squares: support vectors).

V. EXPERIMENTAL RESULTS

Using grid search, the parameter range was linearly split

into 10 candidates, i.e. for the two parameters a grid of 100

(10× 10) candidate pairs {Ci, σi} was selected per iteration.

The parameter ranges were refined by 10 iterations, summing

up to 1000 steps. Within each step k-fold is conducted with

k = 10. The development of the ranges w.r.t. the optimisation

steps are shown in Fig. 10.

The used “banana” data set was created with PRTools [17],

the “2 clusters” data set is an artificial data set, where the

normal class comprises of two clusters with different densities

following a Gaussian distribution and the abnormal class is

a ring around the clusters. Since widely used, Fisher’s four-

dimensional “Iris” data set was utilised. The class “versi-

colour” was taken as the normal class, where the training was

conducted on the first 50% of instances. The “thyroid” data

set was taken from [18] and contains 21 features, that are used

to determine whether a patient is normal or suffers from either

hyperthyroidism or hypothyroidism.

As depicted in Fig. 11, the error rate converges to its mini-

mum, while the radius takes on values close to 1. Consequently

the optimisation parameter λ from eq. (31) rapidly converges

to its minimum as shown in Fig. 11(c).

The influence of the SVDD parameters C and σ on the

solution is summarised as follows:

C ↑ ⇒
{

R ↑
eωn

, SV s, λ ↓
(32)

σ ↑ ⇒
{

λ ↑
eωn

, SV s,R ↓
(33)

The proposed parameter tuning approach was experimen-

tally evaluated using selected public domain and own data

sets. In addition to the above-mentioned data sets the following

data sets were used. The “wine” data set [18] has 13 features

determined by chemical analysis of Italian wines from three

different cultivars. The first cultivar was used as the normal

class. For the “vehicle” data set [18], the task is to classify

four types of vehicles based on 18 features extracted from their

silhouettes viewed from different angles. The class “van” was

used as the normal class. The “DC motor” data set consists
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(a) Tuning of SVDD parameter C.

(b) Tuning of SVDD parameter σ.

Fig. 10. Tuning of SVDD parameters using grid search on the “banana”, “2
cluster”, “Iris”, and “thyroid” data set.

data set ‖F‖ ‖A‖ ‖B‖: ωn/ωa

banana 2 490 489/510

2 clusters 2 1000 1000/2000

Iris 4 25 25/100

wine 13 40 19/119

vehicle 18 122 77/269

thyroid 21 100 66/7034

DC motor 5 4651 18936/482

TABLE I
PROPERTIES OF THE USED DATA SETS.

of own recordings from a DC motor test rig was used, where

anomalies were injected by altering the motor’s load.

The properties of all used data sets are summarised in Table

I, where ‖F‖ is the number of features, ‖A‖ refers to the

number of instances in the training set, and ‖B‖ to the number

of instances in the test set respectively.

For all data sets, the features were individually normalised

to +/−1 prior to classification. The normalisation factors were

determined solely from the training set and used to normalise

the training and the test set. This way the test set remains a

real blind test set.

Since the proposed parameter tuning approach was to be

validated, no further steps to improve the classification results

were taken. In applications, feature selection and feature

reduction like PCA should be conducted.

The results are shown in Table II, where SV is the number

of determined support vectors, eωn
the error on the normal

class, and R the hypersphere’s radius. The last columns hold

the true positive rate, the true negative rate and the precision

on the abnormal class TN
TN+FN

.
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(a) Error rate eωn w.r.t. the optimisation step.

(b) Radius w.r.t. the optimisation step.

(c) Optimisation parameter λ w.r.t. the optimisation step.

Fig. 11. Error rate eωn , radius R, and optimisation parameter λ for four
data sets evolving over the 1000 tuning steps.

data set SVs eωn R TPR TNR precωa

banana 23 0.037 0.939 95.1% 96.3% 95.3%

2 clusters 36 0.033 0.939 92.7% 99.2% 96.5%

Iris 7 0.150 0.777 92.0% 96.0% 98.0%

wine 11 0.250 0.837 73.7% 100.0% 96.0%

vehicle 20 0.150 0.884 87.0% 82.9% 95.7%

thyroid 17 0.160 0.857 71.2% 96.6% 99.7%

DC motor 20 0.005 0.925 99.5% 76.1% 80.5%

TABLE II
RESULTS ON SELECTED DATA SETS WITH SVDD AND THE PROPOSED

AUTONOMOUS PARAMETER TUNING APPROACH.

As indicated by the high percentage rates for TNR, the

vast majority of anomalies were detected. In addition the

precision on the abnormal class is high, i.e. a high fraction of

the reported anomalies were indeed abnormal. In addition, as

indicated by the low number of support vectors, the knowledge

base is stored in a very compact way. This makes the approach

applicable for anomaly detection systems.

VI. CONCLUSION

For anomaly detection problems, where either no abnormal

data sets or only a non-representative training data set of

anomalies is available, SVDD is an ideal approach. However,

for its applicability in real-world applications, the ease of

use is crucial. SVDD has the drawback of not being able to

automatically tune parameters using cross-validation.

In this paper, a parameter tuning approach for SVDD with

the RBF kernel based on an approximation was introduced. It

finds the optimal parameter set based on the error rate and the

radius, according to the motivation solely on the training set

and without the need for the user to adjust parameters. The

approach was successfully validated by results on artificial and

real data sets.

The proposed approach could make SVDD applicable for

a wide range of applications. It is successfully used in the

authors’ research project on detecting anomalies in recordings

from test drives, where users should not be burdened with

manual parameter adjustment.
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