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Abstract—A novel PDE solver using the multidimensional wave 

digital filtering (MDWDF) technique to achieve the solution of a 2D 
seismic wave system is presented. In essence, the continuous physical 
system served by a linear Kirchhoff circuit is transformed to an 
equivalent discrete dynamic system implemented by a MD wave 
digital filtering (MDWDF) circuit. This amounts to numerically 
approximating the differential equations used to describe elements of a 
MD passive electronic circuit by a grid-based difference equations 
implemented by the so-called state quantities within the passive 
MDWDF circuit. So the digital model can track the wave field on a 
dense 3D grid of points. Details about how to transform the continuous 
system into a desired discrete passive system are addressed. In 
addition, initial and boundary conditions are properly embedded into 
the MDWDF circuit in terms of state quantities. Graphic results have 
clearly demonstrated some physical effects of seismic wave (P-wave 
and S–wave) propagation including radiation, reflection, and 
refraction from and across the hard boundaries. Comparison between 
the MDWDF technique and the finite difference time domain (FDTD) 
approach is also made in terms of the computational efficiency. 
 

Keywords—Seismic Wave Propagation, Multi-dimension Wave 
Digital Filters, Partial Differential Equations.  

I. INTRODUCTION 
HE modeling of multi-dimension (MD) physical system is 
of great importance to engineering and science for 

describing many phenomena that occur in nature including 
acoustic seismic exploration, acoustic electromagnetic, fluid 
flow, etc. The most popular kind of model for MD physical 
systems are partial differential equations (PDEs) with properly 
imposed initial and boundary conditions. In most cases of 
practical interest, the differential equations cannot be solved 
analytically and so numerical approaches are sought. 
Techniques such as finite differences, finite elements and 
waveguides [1] have been used in some success and various 
algorithms have been developed to implement these 
techniques. 
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Fig. 1 A general schematic diagram of the MDWDF circuit 
modeling procedure 

While there are always debates regarding performance, each 
method offers its own advantages and drawbacks. In this 
contribution, we make use of the MDWDF technique [2], an 
alternative approach to the PDE system integration, for 
modeling the behavior of physical wave propagation in 2D 
elastic media, particularly in the field of seismic wave 
propagation in rock seam. The attraction of the MDWDF 
approach is that it possesses a variety of outstanding features 
that make this concept better off than those conventional 
numerical approaches mentioned above. The main distinct of a 
MDWDF model includes: 

• High accuracy due to the use of the WDF structure as is 
known to have low round off noise characteristics [3]. 

• MD passivity, which guarantees the robustness and 
basically all numerical stability properties [4]. 

• Full local interconnectivity due to the generation of a 
2nd order difference equation relating the value of a 
point on the grid to its previous values of 
nearest-neighborhood grid points [2]. Other 2nd order 
methods do not offer this property. 

In the context of seismology application, numerical 
modeling of seismic wave propagation in the elastic media has 
become of increasingly economic importance in recent year 
due to geological complexity of regions and difficulties in 
conducting the seismic surveys in the area. An important 

Jason Chien-Hsun Tseng, Nguyen Dong-Thai Dao, and Chong-Ching Chang  

Modeling and Visualizing Seismic Wave 
Propagation in Elastic Medium Using 

Multi-Dimension Wave Digital Filtering 
Approach 

T



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:9, 2010

1383

 

 

application is the seismic reflection survey, which is the most 
widely used geophysical exploration approach in the petroleum 
industry. Two different body waves propagation are concerned 
for in-seam seismic study: P-wave (primary wave or 
compressional wave), and S-wave (secondary wave or shear 
wave) [5-6]. The aim of our study is to present a full derivation 
of a suitable MDWDF algorithm for numerical modeling and 
visualization of these body waves propagation within an elastic 
medium (e.g. the medium of rock).  

The technique starts with details of a 2D acoustic seismic 
system modeling. It then follows by a network description of 
the system for which inductors are introduced to validate 
passivity of the electronic circuit followed by the Kirchhoff 
rules. From this mechanism, a lumped multidimensional 
Kirchhoff circuit (MDKC) is developed whose behaviors are 
entirely equivalent to the system of PDEs itself. Applying the 
bilinear transformation or a generalized trapezoidal rule [2] to 
all reactive elements of the MDKC together with the standard 
wave digital principles, a discrete-time equivalence called 
MDWDF circuit is obtained to numerically implement the 
continuous physical system. This way the differential equations 
used to describe elements of a MD passive electronic circuit is 
approximated by a grid-based difference equations 
implemented by the so-called state quantities within the passive 
MDWDF circuit. So the model can track the wave field on a 
dense 3D grid of points. A general schematic diagram showing 
the MDWDF circuit modeling procedure is illustrated in Fig. 1. 
As the MDWDF circuit contains no information on the initial 
and boundary conditions, accommodation of initial and 
boundary conditions to the MDWDF circuit body in terms of 
state quantities are also discussed. Numerical simulation to 
visualize some physical behaviors of these seismic waves 
propagation within a specified geometry field is studied. 

II. PROBLEM DEFINITION 
Let us consider the propagation of a 2D scalar acoustic 

seismic wave in rock seam where the system can be 
mathematically described as the following channel wave [5, 6]: 

f
t
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2
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Here p=p(x,z,t) denotes the pressure of seismic wave 
propagating in the underground concrete rock seam, c is the 
speed of sound in the medium and f=f(x,z,t) is an external body 
force per unit volume. Although spanned in the pair of 2D 
rectangular coordinates (x, z) in Eq. (1), the 2nd order 
hyperbolic PDE system contains representatives’ seismic fluid 
speeds in every direction of axes. Assume the density of the 
medium 0ρ is homogeneous throughout the medium and define 
the vector form of the acoustic velocity v(x,t)=[vx(x,t),vz(x,t)]T  
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Fig. 2 MD Kirchhoff circuit representation of the 2D seismic 
system. 

where x is a vector of space coordinates x, z and t denotes time. 
The wave field in the2nd order system (1) can then be recast into 
a coupled 1st order systems of PDEs governing the equations of 
motion and continuity [5-7]:  
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We note that by neglecting the effects of gravity, which is used 
to form the external body force in Eq. (1), the homogenous 
system in Eqs. (2) is taken place for finding a suitable MDWDF 
model in a simplified environment. 

III. MD KIRCHHOFF NETWORK AND MDWDF MODEL 

A. MD Kirchhoff Network Realization 
Let the operators )(⋅tD , )(⋅xD , )(⋅zD  be denoted by the 

partial derivatives with respect to the temporal t and spatial 
coordinates x, z. In order to apply the circuit theory for 
representing the behavior of the system, the same physical 
dimension must be kept for all field variables. As a result, the 
velocity amplitude pv  is introduced in terms of the complex 
pressure amplitude p with an arbitrary real impedance r0, i.e. 

0/ rpv p = . Note that r0 plays an important role in the 

development of MDWDF model to determine properties of the 
resulting algorithm and is limited only by the stability 
considerations. Based on the definition of pv , the PDE system 
(2) can be written as a set of symmetric hyperbolic PDEs: 
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Using principles of the circuit theory, the system (3) can be 
immediately realized as mesh equation of a 3D Kirchhoff 
circuit depicted in Fig. 2 with mesh currents xv , zv , pv . We 

note that techniques of the circuit theory applied to represent 
the pressure-velocity PDEs of Eq. (3) in terms of network 
inductors cannot be realized by real world components. 
Instead, the network is a graphical representation of time and 
space differentiation operation. Consequently, a flux notation 
in Fig. 2, such as )()( 0 xtx vDδρ − , may be interpreted as a mesh 
voltage across an inductor with inductance 

0)( 0 ≥−= xL δρ pushing the time-varying mesh current xv  to 
flow through the inductor. In addition, passivity of the 
inductances involving the derivative operator Dt is realized 
with carefully selected auxiliary constants, i.e. 

0,0 ρδδ ≤< zx and 2
0

2
0 crzx ρδδ ≤+ . The symmetric 2-port 

T-circuit in the MDKC representation of Fig. 1 can be replaced 
by its corresponding Jaumann structure [3], a well-known 
grounded lossless two-port equivalent of the symmetric lattice, 
which is comprised of two inductors and an ideal transformer 
with transformation ratio -1/1. This important property 
guarantees an explicit algorithm after some forms of discrete 
realization using the WDF-based properties [3].  

B. MDWDF Circuit Arrangement 
To arrive at an approximation of each mesh voltage across 

the corresponding inductance in the MDKC of Fig. 2, a 
generalized trapezoidal rule [2] is applied to the integration of 
each mesh voltage. The resultant coordinates  
[x,t]T=[mTx,nTz,kTt]T, ),,( Nknm ∈ takes only discrete values 
with the temporal step size Tt , and the spatial step sizes Tx and 
Tz in x and z coordinates, respectively. Furthermore, port 
resistances r1, r2 for the two-port Jaumann filters and 
resistances rj’, j=1, 2, 3 for the self-inductors are obtained, 
respectively, given by 
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When the passivity is held for mesh inductance in the MDKC, a 
lower bound of a ratio between the density of sampling in time 
and that of sampling in space is obtained, i.e. 

00 2vTT t ≥                                    (5) 

Here 222
0 yx TTT +≡ is defined as the smallest spatial step 

against the largest temporal step Tt. In addition, 
cv 00 ρ= represents the irrotational phase velocity of a 

seismic wave traveling freely across the whole area according 
to the 2nd order system in system (1). This result is the well 
known Courant-Friedrichs-Levy (CFL) bound [7], which 
guarantee numerical stability of the wave equations adopted by 
many numerical approaches. For a simplified MDWDF circuit, 

the least restriction on the ratio for given densities of the 
sampling in space has yielded hTT zx ≡=  that implies  
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Fig. 3 MDWDF circuit for the discrete modeling of the seismic 
system. 

cryx 000 2, ρρδδ ===                     (6) 

Let us adopt the voltage wave principle, which defines the 
forward wave and backward wave quantities av and bv , 
respectively, as the pressure wave quantities according to [2]: 

 
vvvvvvvv vRpbvRpa −=+=  ,                    (7) 

 
 Here Rv is the port resistance, a positive constant. 

Combining with the generalized trapezoidal rule, which 
processes the continuous system of a Jaumann two-port branch 
to its equivalent WDF structure [2], we may transform the 
reference MDKC to its corresponding WDF structure. This 
yields the MDWDF circuit illustrated in Fig. 3 for numerically 
modeling behaviors of the pressure-velocity PDE system (1). In 
view of the MDWDF circuit, its structure contains two 2-port 
series adaptors on the right hand side and one 3-port series 
adaptor on the left hand side. These port adaptors are then 
coupled by two Jaumann wave digital filters with shift 
operations in space and time. Define the mesh current for 
various series ports according to the WDF principles: 
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The signal flow for each port adaptor within the MDWDF 
circuit can be described by 
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The port resistances Ri, i=1,...,7, due to the generalized 
trapezoidal rule, can also be chosen as follow: 
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Referring back to the MDWDF circuit, the relations of waves 
and states quantities can be realized as 
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Furthermore, the state input-output relations within the lattice 
wave digital filters are described as  
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Following from Eqs. (5)-(16), the desired wave variables can 
now be expressed in the form of state output dj as  
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The model (and thus the system variables stated in Eqs. 
(18)-(20)) can now be simplified by assuming that the lossless 
conditions in Eq. (3.4) hold for the CFL limit. It can be verified 
that the aforementioned assumptions lead to 
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Redefining the time step size Tt=T, we thus simplified the 
MDWDF circuit notations as 
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T
r

h
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Accordingly, the field variables expressed in Eqs. (18)-(20) is 
recast as 
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IV. TREATMENT OF INITIAL AND BOUNDARY CONDITIONS 
Because the system (2) (and hence the resultant MDWDF 

algorithm of Fig. 3) describes only the free-space propagation, 
it has to be accomplished by initial and boundary conditions 
when finite energy and finite enclosures are present. In this 
section, imposed conditions described by state equations will 
be properly embedded into the MDWDF circuit. 

A. Initial Conditions 
Let the general initial conditions (ICs) of the system (2) be 

imposed as follows: 
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where T
zx ],[v ααα ≡  and T

zx ],[v βββ ≡ are defined as a vector 
form. We first consider the first set of ICs in Eq. (26) with zero 
order derivative by focusing on the pressure amplitude p(x,t)= 
r0vp(x,t)at t=0. Substituting the initial value in Eq. (26) into Eq. 
(20) simply yields (indices (x,0)  and (x) are omitted) 
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In view of Eq. (28), the wave quantity a7 remains unknown as 
involving only in the time shift of the MDWDF circuit. Thus, 
one needs to concern with the 1st order derivative of Eqs. (26). 
By considering the mesh voltage p7 across the time-dependent 
self-inductor with the inductance L = r2

0/ρ0c2-δx-δz in the 
MDKC, i.e. p7(x,t)=L7∂v7(x,t)/∂t, we obtain  
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as a result of taking time derivative of the pressure amplitude, 
and substituting v7 and initial value into Eqs. (11) and (26). 
Making use of Eqs. (9)-(14), the 2nd set of ICs can also be stated 
in terms of the state equations (indices (x,0) and (x) are 
omitted): 
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Now we substitute the forward wave quantities in Eqs. 
(28)-(31) into Eqs. (15), and define d1=f(x) to yield their 
corresponding state output representation as follows:  
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B. Boundary Conditions  
Let us consider a closed finite enclosure of the system (1) 

whose piecewise smooth boundary surface can be simply stated 
by the reflection property.  Accordingly, the system variable 
such as the pressure p on the boundary can be read 
by Zvp = with the boundary surface impedance Z 
perpendicular to its corresponding velocity v with the 
implementation of perfectly match layers (PMLs). Originally 
developed by Berenger [8], the technique specifies a new 
region that surrounds the MDWDF domain where a set of non 
physical equations are applied giving a high attenuation. To 
shorter our discussion, we consider the simplified MDWDF 
circuit with a rectangular system of dimension zx ll × as 

depicted in Fig. 4. The wave source is marked with S and 
travelling inside the  

 

Fig. 4  Part of grid points within the medium M for the rectangular 
seismic system. 

medium M with surface impedance Zx and Zz set along with the 
x- and z-direction, respectively. For any inner point P on the 
spatial sampling grid and at a certain sampling time t=kT , its 
grid value according to Eq. (17) is determined by four state 
output points: 
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While still true for these four outputs to influence any P on the 
straight line edges and the rectangular vertices, there is one (or 
two) of the neighborhood point(s) may be outside the 
boundary. For the vertices, two adjacent points are outside the 
boundary by a spatial step size h, i.e. (d1,d4), (d4,d2) and (d2,d3) 
or (d3,d1). Our aim is to find the expression of these 
undetermined state outputs that accommodate the boundary 
condition Zvp =  without involving the state inputs, which are 
generally not computable. Since the reflection property can 
provide only one solution, one shall need an additional 
condition, which is imposed by either Eq. (23) or (24) with zero 
velocity. For instance, when the unknown vertices are (d1,d4), 
the state output d1 can be obtained by substituting xzvZp = into 
Eqs. (23) and  (25) to yield  
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Referring back to Eq. (24) with vz=0 assumed at the vertex, it 
simply yields d4=-d3. The set of vertices (d1,d4), thus, are 
determined. We note that the surface impedance Zz is related to 
the reflection coefficient rf , which is defined by  
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Similarly, one can also obtain the sampling grid value for the 
pressure variable p at other vertices, boundaries and inner 
points at the time point t=kT. 
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V.  NUMERICAL RESULTS 
In this section, the MDWDF circuit developed previously is 

present for numerical simulation of the acoustic seismic system 
inside the elastic medium of rock seam. More specifically, we 
demonstrate the physical behaviors of the P-wave (longitudinal 
wave) and S-wave (transverse wave) propagation including 
radiation, reflection, and refraction from and across the hard 
boundary. Application of a seismic reflection is also carried out 
to investigate the locus of all possible underground scatter 
points. In addition, comparison between the MDWDF 
technique and the finite difference time domain (FDTD) 
approach is made in terms of the computational efficiency. 
Initial value of the static density of rock is set at ρ0=2200 kg/m³, 
as well as cp=2000m/s and cs=1400m/s denoting as the speed of 
P–wave and S-wave [6], respectively. The rectangular 
simulation plane as depicted in Fig. 5(a) is limited by the size of 
lx×lz =1500×2000 m with the acoustic source located at 
(-1000,-750). The reflection coefficients for boundaries are set 
at rf=0.999 (highly reflective) and rf =0.001 (highly absorptive) 
for the sideline surface along the z- and x-direction, 
respectively. Figs. 5(a)-(d) shows four subsequent snapshots of 
synthetic seismic body waves with dominant P-wave 
propagation from and across the boundaries with various 
physical effects commonly known in seismology. Fig. 6 
explores the difference between the P-wave and S-wave within 
a synthetic body wave at a specific time slot. Due to its physical 
behaviors, the longitudinal (P) wave depicted in Fig. 6(a) 
shows faster propagation as compared with the transverse (S) 
wave depicted in Fig. 6(b). This is because the S-wave does not 
change the volume of the material through, which it propagates. 
Furthermore, as indicated inside the red frame, Fig. 6(a) shows 
P waves that has particle motion in the direction of travel 
towards the east boundary. In contrast, Fig. 6(b) shows S waves 
propagation that has particle motion perpendicular to the 
direction of travel. To fully explore the behaviors of seismic 
wave, a seismic reflection survey is also carried out to 
investigate the locus of all possible underground scatter points, 
which are assumed to be centered at (500,-750) with the radius 
of 100m and rf=0.999 as illustrated in Fig. 7(a).  With two 
intense acoustic sources planted at the locations of (0,0) and 
(1000,0), and propagated downward of the medium, four 
subsequent snapshots of Figs. 7(a)-(d) are  present to 
demonstrate acoustic waves reflected back to the surface when 
these waves reach an interface between rock layers where the 
density changes in terms of reflection coefficient. Based on the 
MDWDF domain with the fixed spatial step, the computational 
efficiency between the FDTD and MDWDF is made, which can 
be viewed in Fig. 8 and listed in Table 1 for detail. Clearly, the 
MDWDF is more computationally efficient than the FDTD as 
the seismic wave simulated by the MDWDF takes less time to 
travel between boundaries.  

VI. CONCLUSION 
In this contribution, the MD wave digital filter structure 

(MDWDF circuit), an alternative approach to the PDE system 

integration, was derived from first principles to perform the 
physical system modeling for the seismic wave propagation in 
2D elastic media. In particular, initial and boundary conditions 
were properly embedded into such a model in a very simple and 
efficient manner without the modification of the whole circuit 
body. Simulation results obtained for physical behaviors of the 
body wave propagation including P-wave and S-wave 
propagation, and seismic reflection survey have demonstrated 
the capacities of the MDWDF approach in correctly and 
effectively modeling the 2D seismic system. Computational 
efficiency of the MDWDF technique was also confirmed as 
compared to the FDTD method. The 2D system, we have 
investigated, provided sufficient and fundamental structure, 
which enables us to further explore the seismic wave 
propagation in 3D elastic media. This is the subject of ongoing 
research 
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TABLE 1 COMPUTATIONAL EFFICIENCY BETWEEN THE FDTD AND 

MDWDF 
Range (m) FDTD (ms) MDWDF (ms)

166 4.084 4.521 
500 15.578 15.776 
707 38.644 32.682 

1666 60 58.8 
1760 94 82.9 
3330 114.04 101.143 
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Fig. 5 Propagation of synthetic seismic body wave with dominant 
P-wave at four time slots:  (a) t =0. (b) t = 1025 ms. (c) t = 1237 ms . (d) 
t = 1590 ms. 

 
Fig. 6 The difference between P- and S-waves propagation at t=813 ms 
within a synthetic body wave:  (a) P-wave propagation indicated 
within the red frame has particle motion in the direction of travel 
towards the east boundary. (b) S-wave propagation within the red 
frame has particle motion perpendicular to the direction of travel. 

 
 

 

 

 

 

 
Fig. 7 Four subsequent snapshots of reflection seismic waves to 
investigate the locus of all possible underground scatter points 
centered at (500,-750) with the radius of 100m and rf=0.999. 
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Fig. 8 The computational efficiency between the FDTD marked by 
red-square and MDWDF marked by blue-circle. 

 

 

 

 


