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Abstract—An end-member selection method for spectral 

unmixing that is based on Particle Swarm Optimization (PSO) is 
developed in this paper. The algorithm uses the K-means clustering 
algorithm and a method of dynamic selection of end-members 
subsets to find the appropriate set of end-members for a given set of 
multispectral images. The proposed algorithm has been successfully 
applied to test image sets from various platforms such as LANDSAT 
5 MSS and NOAA's AVHRR. The experimental results of the 
proposed algorithm are encouraging. The influence of different 
values of the algorithm control parameters on performance is studied. 
Furthermore, the performance of different versions of PSO is also 
investigated. 
 

Keywords—End-members Selection, Multispectral Satellite 
Imagery, Particle Swarm Optimization, Spectral unmixing.  

I. INTRODUCTION 
N remote sensing, classification is the main tool for 
extracting information about the surface cover type. 

Conventional classification methods assign each pixel to one 
class (or species). This class can represent water, vegetation, 
soil, etc. The classification methods generate a map showing 
the species with highest concentration. This map is known as 
the thematic map. A thematic map is useful when the pixels in 
the image represent pure species (i.e. each pixel represents the 
spectral signature of one species). Hence, thematic maps are 
suitable for imagery data with a small ground sampling 
distance (GSD) such as LANDSAT Thematic Mapper (GSD = 
30 m). However, thematic maps are not as useful for large 
GSD imagery such as NOAA'a AVHRR (GSD = 1.1 km) 
because in this type of imagery pixels are usually not pure. 
Therefore, pixels need to be assigned to several classes along 
with their respective concentrations in that pixel's footprint. 
Spectral unmixing (or mixture modeling) is used to assign 
these classes and concentrations. Spectral unmixing generates 
a set of maps showing the proportions of all species present in 
each pixel footprint. These maps are called the abundance 
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images. Hence, each abundance image shows the 
concentration of one species in a scene. Therefore, spectral 
unmixing provides a more complete and accurate 
classification than a thematic map generated by conventional 
classification methods.  

Spectral unmixing can be used for the compression of 
multispectral imagery. Using spectral unmixing, the user can 
prioritize the species of interest in the compression process. 
This is done by first applying the spectral unmixing on the 
original images to generate the abundance images. The 
abundance images representing the species of interest are then 
prioritized by coding them with a relatively high bit rate. 
Other abundance images are coded using a relatively low bit 
rate. At the decoder, the species-prioritized reconstructed 
multispectral imagery is generated via a re-mixing process on 
the decoded abundance images [1]. This approach is feasible 
if the spectral unmixing algorithm results in a small 
(negligible) residual error.  

In this paper, an end-member selection method for spectral 
unmixing that is based on Particle Swarm Optimization is 
proposed. PSO has successfully been applied to many 
optimization problems [2]. Hence, PSO is used in this paper to 
tackle the spectral unmixing problem. The algorithm uses the 
K-means clustering algorithm and a method of dynamic 
selection of end-members subsets to find the appropriate set of 
end-members for a given set of multispectral images.  

The remainder of the paper is organized as follows: Section 
II introduces linear pixel unmixing. End-members selection 
methods are presented in Section III. Section IV discusses 
particle swarm optimization. The proposed algorithm is 
presented in Section V, while an experimental evaluation of 
the algorithm is provided in Section VI. Finally, Section VII 
concludes the paper.  

II. LINEAR PIXEL UNMIXING (OR LINEAR MIXTURE 
MODELING) 

Spectral unmixing is generally performed using a linear 
mixture modeling approach. In linear mixture modeling the 
spectral signature of each pixel vector is assumed to be a 
linear combination of a limited set of fundamental spectral 
components known as end-members. Hence, spectral 
unmixing can be formally defined as follows: 
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where pz  is a pixel signature of Nb components, Χ is an Nb × 

Ne matrix of end-members
eN,,Λ1χ , if  is the fractional 

component of end-member i (i.e. proportion of footprint 
covered by species i),  f is the vector of fractional components 

T
21 )(

eNi f,,f,,f,f ΛΛ , χi is the end-member i of Nb 

components, e is the residual error vector of Nb components, 
Nb is the number of spectral bands and eN  is the number of 

components, be NN ≤ . 
Provided that the number of end-members is less than or 

equal to the true spectral dimensionality of the scene, the 
solution via classical least-squares estimation is, 
 

pzΧΧΧf T1T )( −=  (2) 

 
Therefore, there are two requirements for linear spectral 

unmixing: 
• The spectral signature of the end-members needs to 

be known. 
• The number of end-members is less than or equal to 

the true spectral dimensionality of the scene (i.e. 
dimension of the feature space). This is known as the 
condition of identifiability. 

 
The condition of identifiability restricts the application of 

the linear spectral unmixing when applied to multispectral 
imagery because the end-members may not correspond to 
physically identifiable species on the ground. Moreover, the 
number of distinct species in the scene may be more than the 
true spectral dimensionality of the scene. For example: for 
Landsat TM with seven spectral bands (Nb =7), the true 
spectral dimension is at most five ( eN =5) based on principal 
component analysis. 

III. SELECTION OF THE END-MEMBERS 
There are many methods for spectral unmixing and end-

member selection proposed in the literature [3]-[18]. In the 
following, several representative techniques are presented.  

Mathematical techniques such as Gram-Schmidt 
orthogonalization and principal component analysis can be 
used to obtain orthogonal end-members which can be used to 
linearly unmix each pixel vector of the scene. There are 
several advantages for the mathematical techniques, namely: 

• They result in minimum residual error. 
• There is no human interaction time. 

 
However, mathematical techniques suffer from the 

following drawbacks: 
• They may generate end-members with negative 

components. 

• They may not correspond to physical species in the 
scene. 

 
Manual techniques can also be used to obtain end-members 

which can be used to linearly unmix each pixel vector of the 
scene. In manual techniques, the user will select the end-
members directly from the scene or from a library of end-
members. The advantages of manual techniques are the 
disadvantages of mathematical techniques and vice versa. 

Spectral screening is another way to obtain end-members. 
In this approach, a set of unique pixels are selected from 
scene, as described next. The selection is based on a user-
specified spectral angle threshold. The approach works as 
follows: The first pixel in the image is assumed to be unique 
and is added to the set of unique pixels. The pixels in the 
image are then sequentially scanned and each pixel whose 
spectral angle with respect to all the unique pixels in the set 
exceeds the user-specified spectral angle threshold, is added to 
the set of unique pixels. 

Clearly, this technique suffers from two major drawbacks: 
• The generated set of unique pixels depends on the 

order in which the pixels are scanned. 
• The generated set depends also on the spectral angle 

threshold. 
To overcome the condition of identifiability, Maselli [7] 

proposed a method of dynamic selection of an optimum end-
member subset. In this technique, an optimum subset of all 
available end-members is selected for spectral unmixing of 
each pixel vector in the scene. Thus, although not every pixel 
vector will have a fractional component for each end-member, 
the ensemble of all pixel vectors in the scene will collectively 
have fractional contributions for each end-member. 

For each pixel vector, a unique subset of the available end-
members is selected which minimizes the residual error after 

decomposition of that pixel vector. To determine the eN  

optimum end-members for pixel vector pz
, the pixel vector is 

projected onto all available normalized end-members. The 
most efficient projection, which corresponds to the highest dot 
product value cmax, indicates the first selected end-member 
χmax. It can be shown that this procedure is equivalent to 
finding the end-member with the smallest spectral angle with 

respect to pz
. The residual pixel signature, pzr

 = pz
 - cmax. 

χmax is then used to identify the second end-member by 
repeating the projection onto all remaining end-members. The 
process continues up to the identification of a prefixed 

maximum eN  number of end-members from the total of mN  
available end-members. 

More recently, Saghri et al. [9] proposed a method to obtain 
end-members from the scene with relatively small residual 
errors. In this paper, the proposed method is referred to as 
ISO-UNMIX. In ISO-UNMIX, the set of end-members are 
chosen from a thematic map resulting from a modified 
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ISODATA [19]. The modified ISODATA uses the spectral 
angle measure instead of the Euclidean distance measure to 
reduce the effect of shadows and sun angle effects. The end-
members are then set as the centroids of the compact and well-
populated clusters. Maselli's approach discussed above is then 
used to find the optimum end-member subset from the set of 
available end-members for each pixel in the scene. Linear 
spectral unmixing is then applied to generate the abundance 
images. 

According to Saghri et al. [9], the proposed approach has 
several advantages: the resulting end-members correspond to 
physically identifiable (and likely pure) species on the ground, 
the residual error is relatively small and minimal human 
interaction time is required. However, this approach has a 
drawback in that it uses ISODATA which depends on the 
initial conditions. 

IV. PARTICLE SWARM OPTIMIZATION 
Particle swarm optimizers are population-based 

optimization algorithms modeled after the simulation of social 
behavior of bird flocks [2], [20]. PSO is generally considered 
to be an evolutionary computation (EC) paradigm. Other EC 
paradigms include genetic algorithms (GA), genetic 
programming (GP), evolutionary strategies (ES), and 
evolutionary programming (EP) [21]. These approaches 
simulate biological evolution and are population-based. In a 
PSO system, a swarm of individuals (called particles) fly 
through the search space. Each particle represents a candidate 
solution to the optimization problem. The position of a 
particle is influenced by the best position visited by itself (i.e. 
its own experience) and the position of the best particle in its 
neighborhood (i.e. the experience of neighboring particles). 
When the neighborhood of a particle is the entire swarm, the 
best position in the neighborhood is referred to as the global 
best particle, and the resulting algorithm is referred to as the 
gbest PSO. When smaller neighborhoods are used, the 
algorithm is generally referred to as the lbest PSO [22]. The 
performance of each particle (i.e. how close the particle is to 
the global optimum) is measured using a fitness function that 
varies depending on the optimization problem. 

Each particle in the swarm is represented by the following 
characteristics: 

• xi: The current position of the particle; 
• vi: The current velocity of the particle; 
• yi: The personal best position of the particle. 

 
The personal best position of particle i is the best position 

(i.e. one resulting in the best fitness value) visited by particle i 
so far. Let f denote the objective function. Then the personal 
best of a particle at time step t is updated as 
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If the position of the global best particle is denoted by the 
vector ŷ , then 
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where s denotes the size of the swarm. For the lbest model, a 
swarm is divided into overlapping neighborhoods of particles. 
For each neighborhood Nj, a best particle is determined with 
position jŷ . This particle is referred to as the neighborhood 

best particle, defined as 
 

{ } },))((min))1(ˆ(|{)1(ˆ jiijjj NtftfNt ∈∀=+∈+ yyyy  (5) 

 
where 
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Neighborhoods are usually determined using particle 

indices [23], however, topological neighborhoods can also be 
used [24]. It is clear that gbest is a special case of lbest with l 
= s; that is, the neighborhood is the entire swarm. While the 
lbest approach results in a larger diversity, it is still slower 
than the gbest approach. 

For each iteration of a PSO algorithm, the velocity vi update 
step is specified for each dimension j ∈ 1,…, Nd, where Nd is 
the dimension of the problem. Hence, vi,j represents the jth 
element of the velocity vector of the ith particle. Thus the 
velocity of particle i is updated using the following equation: 
 

))()()(())()()(()(1)( 2,21,1 txtŷtrctxtytrctwvtv ji,jjji,ji,jji,ji, −+−+=+  (7) 

 
where w is the inertia weight [24], 1c  and 2c  are the 

acceleration constants and jr1, , (0,1)~2, Ur j . Equation (7) 

consists of three components, namely 
• The inertia weight term, w, which serves as a 

memory of previous velocities. The inertia weight 
controls the impact of the previous velocity: a large 
inertia weight favors exploration, while a small 
inertia weight favors exploitation [22]. 

• The cognitive component, )()( tt ii xy − , which 
represents the particle's own experience as to where 
the best solution is. 

• The social component, )()(ˆ tt ixy − , which 
represents the belief of the entire swarm as to where 
the best solution is. Different social structures have 
been investigated [25], [26], with the star topology 
being used most. 

 
The position of particle i, xi, is then updated using the 

following equation: 
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The reader is referred to Van den Bergh [27] and Van den 
Bergh et al. [28] for a study of the relationship between the 
inertia weight and acceleration constants, in order to select 
values which will ensure convergent behavior. Velocity 
updates can also be clamped through a user defined maximum 
velocity, Vmax, which would prevent them from exploding, 
thereby causing premature convergence [27]. 

The PSO algorithm performs the update equations above, 
repeatedly, until a specified number of iterations have been 
exceeded, or velocity updates are close to zero. The quality of 
particles is measured using a fitness function which reflects 
the optimality of a particular solution. 

V. THE PSO-BASED END-MEMBER SELECTION (PSO-EMS) 
ALGORITHM 

This section introduces the PSO-EMS algorithm by first 
presenting a measure to quantify the quality of a spectral 
unmixing algorithm, after which the PSO-EMS algorithm is 
shown.  

A. Measure of Quality 
To measure the quality of a spectral unmixing algorithm, 

the root mean square (RMS) residual error can be used, which 
is defined as follows:  
 

∑
=
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where Np is the number of pixels in the image. 

B. The PSO-EMS Algorithm 
In the context of spectral unmixing, a single particle 

represents mN  end-members. That is, each particle xi is 

constructed as xi = (χi,1,…, χi,k,…, mNi,χ ) where χi,k refers to 
the kth end-member vector of the ith particle. Therefore, a 
swarm represents a number of candidate end-members. The 
quality of each particle is measured using the RMS residual 
error (defined in (9)) as follows: 
 

Ef i =)(x  (10) 
The algorithm works as follows: each particle is randomly 

initialized from the multispectral image set to contain mN  
end-members. The K-means clustering algorithm (using a few 

iterations) is then applied to a random set of particles with a 
user-specified probability, pkmeans. The K-means algorithm is 
used in order to refine the chosen end-members, reduce the 

search space. Then for each particle i, the mN  end-members 
of the particle form the pool of available candidate end-
members for the subsequent spectral unmixing procedure. 

Maselli's approach [7] is used to dynamically select the eN  

optimum end-member subsets from the pool of mN  end-
members. Each pixel vector is then spectrally decomposed as 
a linear combination of its optimum subset of end-members. 
The RMS residual error for particle i is then calculated. The 
PSO velocity and update equations (7) and (8) are then 
applied. The procedure is repeated until a stopping criterion is 

satisfied. The mN  end-members of the best particle are used 
to generate the abundance images. 

C. The Generation of Abundance Images 
For each species represented by an end-member, the 

ensemble of all fractional components forms a concentration 
map (i.e. abundance map). The fractional concentration maps 
are then optimally mapped to an eight-bit integer format for 
display and storage purposes. This is done using the following 
non-linear mapping function [9]: 
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where Ω is the mapped integer fractional component in the 
range of  0 ≤ Ω ≤ 255, f is the fractional component, fmin

 is the 
minimum fractional component, fmax is the maximum 
fractional component and exp is the floating-point exponent 
parameter in the range of   0 ≤  exp ≤  1.0. In this paper, exp is 
set to 0.6 for the abundance images as suggested by Saghri et 
al. [9]. 

The PSO-EMS algorithm is summarized below: 
 

1. Initialize each particle to contain mN  randomly selected 
end-members. 

2. For t = 1 to tmax 
(a) For each particle i 

i. Apply K-means for a few iterations with a probability    
   pkmeans.   

ii. For each pixel zp 
o Find the eN  optimum end-member subset. 
o Apply linear spectral unmixing using (1). 

     iii. Calculate the fitness, )( if x  

(b) Find the global best solution )(ˆ ty  
(c) Update the end-members using (7) and (8) 
3. Generate the abundance images using the mN  end-

members of particle.
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In general, the complexity of the PSO-EMS algorithm is 
O(stmaxNp). The parameters s and tmax can be fixed in advance. 
Typically s and tmax << Np. Therefore, the time complexity of 
PSO-EMS is O(Np). Hence, in general the algorithm has linear 
time complexity in the size of a data set. 

VI. EXPERIMENTAL RESULTS 
The PSO-EMS algorithm has been applied to two types of 

imagery data, namely LANDSAT 5 MSS (79 m GSD) and 
NOAA's AVHRR (1.1 km GSD) images. These image sets 
have been selected to test the algorithms on a variety of 
platforms with a relatively large GSD which represent good 
candidates for spectral unmixing in order to get sub-pixel 
resolution. The two image sets are described below: 

LANDSAT 5 MSS: Fig. 1 shows band 4 of the four-
channel multispectral test image set of the Lake Tahoe region 
in the US. Each channel is comprised of a 300 × 300, 8-bit per 
pixel (remapped from the original 6 bit) image and 
corresponds to a GSD of 79 m. The test image set is one of the 
North American Landscape Characterization (NALC) Landsat 
multispectral scanner data sets obtained from the U.S. 
Geological Survey (USGS). The result of a preliminary 
principal component study of this data set indicates that its 

intrinsic true spectral dimension eN  is 3. As in [9], a total of 
six end-members were obtained from the data set (i.e. 

6=mN ). 
 

 

Fig. 1 Band 4 of the Landsat MSS test image of Lake Tahoe 
 
NOAA's AVHRR: Fig. 2 shows the five-channel 

multispectral test image set of an almost cloud-free territory of 
the entire United Kingdom (UK). This image set was obtained 
from the University of Dundee Satellite Receiving Station. 
Each channel (one visible, one near-infra red and three in the 
thermal range) is comprised of a 847 × 1009, 10-bit per pixel 
(1024 gray levels) image and corresponds to a GSD of 1.1 km. 
The result of a preliminary principal component study of this 

data set indicates that its intrinsic true spectral dimension eN  
is 3. As in [9], a total of eight end-members were obtained 

from the data set (i.e. 8=mN ). 
The rest of this section is organized as follows: Section 

VI.A illustrates that the PSO-EMS can be used successfully as 

an end-member selection method by comparing it to the end-
member selection method proposed by Saghri et al. [9] (i.e. 
ISO-UNMIX). Saghri et al. [9] showed that ISO-UNMIX 
performed very well compared to other popular spectral 
unmixing methods. Section VI.B investigates the influence of 
the different PSO-EMS control parameters. Finally, the uses 
of different PSO models (namely, gbest, lbest and lbest-to-
gbest) are investigated in Section VI.C.  

The results reported in this section are averages and 
standard deviations over 10 simulations. In addition, we start 
with an lbest implementation of the PSO (with zero-radius 
neighborhood) and linearly increase the neighborhood radius 
until a gbest implementation of the PSO is reached. In this 
paper, this approach is referred to as lbest-to-gbest-PSO. This 
hybrid approach is used in order to initially avoid being 
trapped in local optima, by initially using an lbest approach 
[23]. The algorithm then attempts to converge to the best 
solution found by the initial phase by using a gbest approach. 
The PSO-EMS parameters were initially set as follows: pkmeans 
= 0.1, s = 20, tmax = 100, number of K-means iterations is 10 
(the effect of these values are then investigated), w =0.72, 

1c = 2c = 1.49 and Vmax= 255 for the Lake Tahoe image set 
and Vmax = 1023 for the UK image set. No attempt was made 

to tune the PSO parameters (i.e. w, 1c  and 2c ) to each data 
set. The rationale behind this decision is the fact that in real-
world applications the evaluation time is significant and as 
such parameter tuning is usually a time consuming process. 
These parameters are used in this section unless otherwise 
specified. 

A. PSO-EMS vs. ISO_UNMIX 
This section presents results to compare the performance of 

the PSO-EMS algorithm with that of the ISO-UNMIX 
algorithm for each of the test image sets. 

Table I summarizes the results for the two image sets. The 
results are compared based on the RMS residual error (defined 
in (9)). The results showed that, for both image sets, PSO-
EMS performed better than the ISO-UNMIX in terms of the 
RMS residual error. Figs. 3 and 4 show the abundance images 
generated from ISO-UNMIX and PSO-EMS, respectively, 
when applied to the Lake Tahoe image set. In addition, Figs. 5 
and 6 show the abundance images generated from ISO-
UNMIX and PSO-EMS, respectively, when applied to the UK 
image set. For display purposes the fractional species 
concentrations were mapped to 8 bits per pixels abundance 
images. 
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(a) Band 1 (b) Band 2 

  

(c) Band 3 (d) Band 4 

 

(e) Band 5 
Fig. 2  AVHRR Image of UK, Size: 847x1009 , 5 bands, 10 

bpp 
 
 

TABLE  I 
 COMPARISON BETWEEN ISO-UNMIX AND PSO-EMS 

Image RMS 

LANDSAT 5 MSS ISO_UNMIX 0.491837 

 PSO-EMS 0.462197 ± 0.012074 

NOAA's AVHRR ISO_UNMIX 3.725979 

 PSO-EMS 3.510287 ± 0.045442 

 

B. Influence of PSO-EMS Parameters 
The PSO-EMS algorithm has a number of parameters that 

have an influence on the performance of the algorithm. These 
parameters include Vmax, the swarm size, the number of PSO 
iterations, pkmeans and the number of K-means iterations. This 
section investigates the influence of different values of these 
parameters using the Lake Tahoe image set. 

 
1) Velocity Clamping 
Table II shows that using Vmax = 5 or Vmax = 255 generally 

produces comparable results. However, the standard deviation 
in the case of Vmax = 5 is smaller than the standard deviation in 
the case of Vmax = 255. Hence, using Vmax = 5 generates more 
stable results than using Vmax = 255. 

TABLE  II 
EFFECT OF VMAX ON THE PERFORMANCE OF PSO-EMS USING LAKE TAHOE 

IMAGE SET 
Vma RMS 

5 0.469706 ± 0.000456 

255 0.462197 ± 0.012074 

 

  

  

  

Fig. 3 Species concentration maps resulting from the application of 
ISO-UNMIX to unmix the Lake Tahoe test image set 

 
2) Swarm Size 
Increasing the swarm size from 20 to 50 particles improves 

the performance of the PSO-EMS algorithm as shown in 
Table III. On the other hand, reducing the swarm size from 20 
to 10 particles significantly reduces the efficiency of the PSO-
EMS algorithm. The rationale behind these results is that 
increasing the number of particles increases diversity, thereby 
limiting the effects of initial conditions and reducing the 
possibility of being trapped in local minima. 
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Fig. 4  Species concentration maps resulting from the application 
of PSO-EMS to unmix the Lake Tahoe test image set 

 
TABLE  III 

EFFECT OF THE SWARM SIZE ON THE PERFORMANCE OF PSO-EMS USING 
LAKE TAHOE IMAGE SET 

s RMS 

10 0.468706 ± 0.004753 

20 0.462197 ± 0.012074 

50 0.459195 ± 0.009389 

 
3) Number of PSO Iterations 
Reducing the number of PSO iterations, tmax, from 100 to 50 

did not reduce the performance of the PSO-EMS algorithm as 
shown in Table IV. Similarly, increasing tmax from 100 to 150, 
did not significantly improve the performance of the PSO-
EMS. 

 
TABLE IV 

EFFECT OF THE NUMBER OF PSO ITERATIONS ON THE PERFORMANCE OF 
PSO-EMS USING LAKE TAHOE IMAGE SET 

tmax RMS 

50 0.468041 ± 0.004735 

100 0.462197 ± 0.012074 

150 0.465614 ± 0.00739 

  

  

  

 

Fig. 5 Species concentration maps resulting from the application of 
ISO-UNMIX to unmix the UK test image set 

 
 
 

4) pkmeans 
Applying the K-means clustering algorithm to a larger set 

of particles is expected to improve the performance of the 
PSO-EMS algorithm. The rationale behind this expectation is 
the fact that the K-means algorithm generally reduces the 
search space and refines the end-members. This expectation is 
verified by the results shown in Table V which shows that 
increasing the value of pkmeans significantly improves the 
performance of the PSO-EMS algorithm. However, as a trade-
off, increasing the value of pkmeans will increase the 
computational requirements of the PSO-EMS algorithm. 
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Fig. 6 Species concentration maps resulting from the application of 
PSO-EMS to unmix the UK test image set 

 
TABLE  V 

EFFECT OF PKMEANS ON THE PERFORMANCE OF PSO-EMS USING LAKE 
TAHOE IMAGE SET 

pkmeans RMS 

0.1 0.462197 ± 0.012074 

0.25 0.460776 ± 0.009120 

0.5 0.454029 ± 0.007051 

0.9 0.445367 ± 0.012339 

 
5) Number of K-means Iterations 
Reducing number of K-means iterations from 10 to 5 

degrades the performance of the PSO-EMS as shown in Table 
VI. On the other hand, increasing the number of K-means 
iterations from 10 to 50 did not improve the performance of 

the PSO-EMS as shown in Table VI. These results suggest 
that using 10 iterations of K-means is a good choice for the 
Lake Tahoe image set. However, when the number of K-
means iterations was reduced to 5 iterations but at the same 
time pkmeans was increased from 0.1 to 0.5 the generated RMS 
was equal to 0.458149 ± 0.004554 which is significantly 
better than the results in Table VI. This result suggests that the 
number of K-means iterations can be reduced without 
affecting the performance of PSO-EMS given that the pkmeans 
is increased. 
 

TABLE  VI 
EFFECT OF THE NUMBER OF K-MEANS ITERATIONS ON THE PERFORMANCE 

OF PSO-EMS USING LAKE TAHOE IMAGE SET (PKMEANS = 0.1) 
No. of K-means iterations RMS 

5 0.468407 ± 0.004212 

10 0.462197 ± 0.012074 

50 0.466708 ± 0.004524 

 

C. Comparison of gbest-, lbest- and lbest-to-gbest-PSO 
In this section, the effect of different models of PSO is 

investigated using the Lake Tahoe image set. A comparison is 
made between gbest-, lbest- and lbest-to-gbest-PSO (which 
has been used in the above experiments) using a swarm size of 
20 particles. For lbest PSO, a neighborhood size of l = 2 was 
used. Table VII summarizes the result of the comparison. The 
results show no significant difference in performance. 
However, the standard deviation in the case of lbest-to-gbest 
PSO is the largest. Hence, using lbest-to-gbest PSO generates 
the least stable result. 
 

TABLE VII 
COMPARISON OF GBEST-, LBEST- AND LBEST-TO-GBEST- PSO VERSIONS OF 

PSO-EMS USING LAKE TAHOE IMAGE SET 
Algorithm RMS 

gbest PSO 0.465809 ± 0.006562 

lbest PSO 0.465020 ± 0.004942 

lbest-to-gbest PSO 0.462197 ± 0.012074 

VII. CONCLUSION 
This paper presented a new spectral unmixing approach 

using PSO. The PSO-EMS algorithm has as objective to 
determine the appropriate set of end-members for a given 
multispectral image set. The PSO-EMS algorithm was 
compared against a relatively recent end-member selection 
method which was proposed by Saghri et al. [9]. The PSO-
EMS algorithm produced better results when applied to test 
image sets from various platforms such as LANDSAT 5 MSS 
and NOAA's AVHRR. The effects of different PSO-EMS 
control parameters were then studied. Finally, the performance 
of different versions of PSO was investigated. 

Experiments need to be conducted to compare the PSO-
EMS with the multi-start K-means (with the best result 
generated from applying K-means stmaxpkmeans times, where 
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each K-means starts from random cluster centroids) and other 
spectral unmixing techniques on various AVHRR images. The 
performance of the PSO-EMS when applied to hyperspectral 
Satellite imagery is a potential topic for future research.  
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