
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3875

Abstract—This Classifying Bird Sounds (chip notes) project’s

purpose is to reduce the unwanted noise from recorded bird sound
chip notes, design a scheme to detect differences and similarities
between recorded chip notes, and classify bird sound chip notes. The
technologies of determining the similarities of sound waves have
been used in communication, sound engineering and wireless sound
applications for many years. Our research is focused on the similarity
of chip notes, which are the sounds from different birds. The program
we use is generated by Microsoft C++.

Keywords—Classify Bird Sounds, Noise Filter, High-pass, Low-
pass, Band-pass, Band-stop Filter, FIR.

I. INTRODUCTION
ILLIONS of songbirds migrate through southern Nova
Scotia of Canada each fall. Most fly at night at altitudes

between 200 and 600 m. While flying, they frequently make
short duration sounds (probably for communication with other
birds) that are called chip notes. These chip notes differ
among species. Our research attempts to identify the bird
based on its chip notes. When the researchers record the chip
notes of songbirds flying overhead, it is field work, so there
are often unwanted noises on the recording, such as wind
noise, dog yelp noise, and mechanical noise from the human
environment. In this project, we included a Noise Filter to
reduce the unwanted noises from the recording. Noise
reduction is the first part of the specification for a program to
classify bird sounds (chip notes). The noise filter scheme
usually used to reduce the unwanted noise from a standard
input audio signal recording (WAV file) incorporates High-
pass, Low-pass, Band-pass, Band-stop Filter and FIR (Finite
Impulse Response) technology. This Noise Filter will input a
WAV format bird sound then, according to parameters chosen
by the user, reduce the unwanted noise from the recording of
chip notes and output a new, noise-reduced version WAV
format bird sound.

The program is written in the C++ language, written and
tested on Microsoft Visual C++ 6.0. We constructed a

H. Zhang is with the Jodrey School of Computer Science, Acadia
University, Wolfville, Nova Scotia, B4P 2R6, Canada (e-mail:
Haiyi.Zhang@acadiau.ca).

J. Guo is with the Jodrey School of Computer Science, Acadia University,
Wolfville, Nova Scotia, B4P 2R6, Canada (e-mail: 049945g@acadiau.ca).

D. Yang is with the Jodrey School of Computer Science, Acadia
University, Wolfville, Nova Scotia, B4P 2R6, Canada (e-mail:
052203y@acadiau.ca).

graphical user interface (GUI) window, which is easy for
users to operate. After the programming was done, we used
Microsoft Visual C++ 6.0 to build a Filter Microsoft
Application, Filter.exe file, so we can simply run this noise
filter in the Windows operating system without using
Microsoft Visual C++ 6.0

The second part of this project is to determine the
similarities of the chip notes. Birds make a variety of sounds;
in addition to singing, they utter short, sharp notes or "chips."
When alarmed, they produce a very different call. Songs are
easier to identify than chips or call notes, which can take a
long time for a human to learn how to distinguish one from
another. Familiarizing ourselves with the songs of at least the
common species will make identification that much easier.
Then, if we can distinguish among the chip notes, we will be
able to identify the birds that voiced them. Scientists have
collected thousands of known chip notes, so if we can
compare our recordings of unidentified chip notes with those
known chip notes, we will be able to identify the various types
of birds. [10]

With regard to the signals and systems we employed,
relativity is the most important way to find the similarities. In
the paper, we will use the knowledge of calculus and linear
algebra to compare two waves.

II. THE DESIGN OF THE NOISE FILTER ARCHITECTURE
The Architecture of the Noise Filter (basic flow) is shown

as follows:1.Open WAV sound file; 2.Set parameters for the
Noise Filter; 3.Reduce the unwanted noise; 4. Save the
changes in a new WAV file.

 A. WAV File Format
The WAV file format is a subset of Microsoft's RIFF

specification for the storage of multimedia files. A RIFF file
starts out with a file header followed by a sequence of data
chunks, as shown in Figure 1.

 | RIFF Chunk | FMT Chunk | DATA Chunk |
 Fig 1: WAV File Format

A WAV file is often just a RIFF file with a single "wave"

chunk, which consists of two sub-chunks -- an "fmt" chunk
specifying the data format and a "data" chunk containing the
actual sample data. Call this form the "Canonical form," as
shown in Fig 2 [6]:

 The Design and Implementation of Classifying
Bird Sounds

Haiyi Zhang, Jianli Guo, and Daqian Yang

M

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3876

Fig. 2 Canonical WAV File Format

B. Operate WAV Format Files
First, we need to operate the WAV format files. We open

the WAV file to get the sound data information according to
our purpose, and use related noise reduction algorithms to
modify those sound data so we can then save those modified
sound data to a new WAV file.

For programming, we can use CFILE to open and close the
WAV file, or we can use multimedia process functions which
come from Microsoft Windows. Those functions all begin
with mmio. The basic flow is as follows:

A. Use mmioOpen function to open a WAV file, and get the
mmioHandle function to handle the file;

B. According to the data structure of the WAV file format,
use mmioRead�mmioWrite and mmioSeek functions to
implement read, write and seek operations;

C. Use the mmioClose function to close a WAV file.

 C. FIR Filter
The objective of this filter is to provide digital filtering

functions to the system. FIR (Finite Impulse Response) is one

of the main types of digital filters. Figure 3 is the sample FIR
Filter Window: Dialog.

The upper left panel is called the Log-Magnitude
Spectrum, which can represent the bird sound frequency
curve.

 Below the Log-Magnitude Spectrum, there are two scroll
bars, which respond to the cutoff frequencies. The upper
scroll bar is for setting the lower cutoff frequency, and the
lower scroll bar is for setting the higher cutoff frequency.
The default values of the lower and higher cutoff frequencies
are 400 and 2400 Hz, respectively. The user can specify the
lower and higher cutoff frequencies by pulling the scroll bars
left or right. When the lower and higher cutoff frequency
scroll bars are adjusted to the left or right, the lower and
higher Cutoff Frequency panel will be automatically
changed. [1,3,4]

The Sampling panel represents the sampling rate. A
sampling rate of 22050 samples/s (Hz) is assumed,
corresponding to a maximum signal frequency of 11025 Hz.

The Filter Order panel represents the filter order. A filter
order of 40 is assumed.

 Fig. 3 FIR Filter Window: Dialog

After the lower and higher cutoff frequency, the sampling

rate and the filter order have been set, the filter coefficient
values can be taken with the “Calculate” button. By clicking
the “Calculate” button, the filter coefficient will be displayed
in the Filter Coefficient list box.

After filter coefficients have been calculated, the user can

save the filter coefficients by clicking the “OK” button.

Low-pass and High-pass Filter Configurations

In low-pass and high-pass configurations, the filter order
and cutoff frequency parameters specify the filter design.
Frequencies are normalized to half the sample frequency.
Figure 4 below shows the frequency response of the default
order-22 filter with cutoff at 0.4. [8]

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3877

 Fig 4 Low-pass and High-pass Configurations

Band-pass and Band-stop Filter Configurations

In band-pass and band-stop configurations, the filter order,
lower cutoff frequency and upper cutoff frequency parameters
specify the filter design. Frequencies are normalized to half of
the sample frequency, and the actual filter order is twice the
filter order parameter value. Fig 5 below shows the frequency
response of the default order-22 filter with the lower cutoff
at 0.4, and upper cutoff at 0.6. [8]

Fig. 5 Band-pass and Band-stop Configurations

III. THE PRINCIPLE OF THE NOISE FILTER
Our Noise Filter is built based on Microsoft Foundation

Class Library: Filter. By using High-pass, Low-pass, Band-
pass, Band-stop Filter and FIR (Finite Impulse Response)
technology, our noise reduction feature can reduce
background and general broad band noise with minimal
reduction in signal quality.
 The following documentation comes from Microsoft
Foundation Class Library: Filter and that documentation states
the purpose of each file of Microsoft Foundation Class
Library: Filter.

AppWizard has created this Filter application for you. This
application not only demonstrates the basics of using the
Microsoft Foundation classes but is also a starting point for
writing your application.

This file contains a summary of what you will find in

each of the files that make up your Filter application.

These files are used to build a precompiled header
(PCH) file named Filter.pch and a precompiled type’s file
named StdAfx.obj.

Our Noise Filter is based on the technology of High-
pass, Low-pass, Band-pass, Band-stop Filter and FIR (Finite
Impulse Response). If the noise and signal are separated in the

temporal frequency domain, then band-pass filtering can be
applied to the traces to remove such noise. A band-pass
attenuates very low and very high frequencies, but retains a
middle range band of frequencies.

Strong noise might be low-frequency surface waves, 60 Hz
electrical noise, wind noise, mechanical noise from the human
environment, cows or sharks munching on cables, etc.

Wave filter component values are chosen to efficiently
transmit current from input to output in a desired band of
frequencies while more or less completely suppressing
transmission of current at all other frequencies. Boundary
frequencies between the transmission and suppression
frequency bands are called cutoff frequencies. [7]

A. Some Definitions [8, 9]

Filter type
Filter type means the type of filter used in the design. In

this project, a Low-pass Filter, High-pass Filter, Band-pass
Filter, and a Band-stop Filter was used. [8]

Filter order
Filter order means the order of the Filter, usually between

20 and 60. The filter length is one more than this value. For
the Band-pass and Band-stop configurations, the order of the
final filter is twice this value. The filter order primarily
determines the width of the transition band: the higher the
order, the narrower the transition between the pass-band and
stop-band, giving a sharper cutoff in the frequency response.
Filter order describes the attenuation rate. Each degree in the
order provides a 6 dB/octave (or 20 dB/decade) attenuation
and a 180 degree phase shift. [8]

Cutoff frequency
Cutoff frequency means the normalized cutoff frequency

for the High-pass and Low-pass filter configurations. A value
of 1 specifies half the sample frequency.

Lower cutoff frequency
Lower Cutoff frequency means the lower pass-band or

stop-band frequency for the Band-pass and Band-stop filter
configurations. A value of 1 specifies half the sample
frequency.

Upper cutoff frequency
Upper Cutoff frequency means the upper pass-band or stop-

band frequency for the Band-pass and Band-stop filter
configurations. A value of 1 specifies half the sample
frequency.

Sampling Rate
Sampling (taking the value of a signal at evenly spaced

moments in time) is one of the steps in converting an analog
signal to a digital signal. The sampling rate is the frequency at
which samples are taken. The sampling rate has to be twice or
more the rate of the analog frequency that is captured and, the
higher the sampling rate, the better quality signal.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3878

Filter Coefficient
Filter coefficient is the set of constants, also called tap

weights, used to multiply against delayed signal sample values
within a digital filter structure. Digital filter design is an
exercise in determining the filter coefficients that will yield
the desired filter frequency response. For an FIR filter, the
filter coefficients are, by definition, the impulse response of
the filter.

 B. Low-pass Filter
According to the cutoff frequencies, a low-pass filter

removes unwanted noise in the high frequencies. It attenuates
high frequencies and retains low frequencies unchanged. In
this case, high frequencies mean the bird sound frequency is
higher than the cutoff frequency.

C. High-pass Filter
According to the cutoff frequencies, a high-pass filter

removes unwanted noise in the low frequencies. It attenuates
low frequencies and retains high frequencies unchanged. In
this case, low frequencies mean the bird sound frequency is
lower than the cutoff frequency.

 Fig. 6 High and low frequency wave

D. Band-pass Filter
The Band-pass filter removes unwanted noise in a fixed

frequency area. It attenuates very low and very high
frequencies, but retains a middle-range band of frequencies.

Band-pass filters are a combination of both low-pass and
high-pass filters. They attenuate all frequencies smaller than a
frequency D0 and higher than a frequency D1, while the
frequencies between the two cut-offs remain in the resulting
output sound. We obtain the filter function of a band-pass by
multiplying the filter functions of a low-pass and of a high-
pass in the frequency domain, where the cut-off frequency of
the low-pass is higher than that of the high-pass.

Fig. 7 Bandpass Filter Principle

E. Band-stop Filter
A band-stop filter is the inverse of a band-pass filter. If will

stop all frequencies above the lower cut-off frequency and
below the upper cut-off frequency.

If you are using Word, use either the Microsoft Equation
Editor or the MathType add-on (http://www.mathtype.com)
for equations in your paper (Insert | Object | Create New |
Microsoft Equation or MathType Equation). “Float over text”
should not be selected.

IV. WORKING ON THE SIMILARITIES
First, to determine the similarities between two waves, we

must understand relative concepts. Assuming two waves are
x(t) and y(t), coefficient is a, and a*y(t) is approaching x(t).
We can use the ratio of differences between two waves to tell
the similarity. This is similar to the function of latus rectum in
mathematics.

The differences can be defined as the area of the integral of
x(t) – a*y(t). Coefficient, a, should be chosen to lower the
error. Therefore, if x(t)*y(t)=0, the integral will be 0. In other
words, two waves are not relative. If x(t)*y(t)=1, the integral
will be 1. Two waves are identical.

Algorithms
Before we compare two signals, we have to save them as

“WAV” files. Here we are using source and target

similarity(CString source, CString target) //constructor
 {
 sourcefile = source; //source file
 targetfile = target; //target file
 }

First, we have to load two files into memory. Here we
are using Class of CFile from MFC which is powerful
and convenient to use.

 char *buf1;
 char *buf2;
 int m_nData1Len,m_nData2Len;

 CFile file;
 file.Open(sourcefile,CFile::modeReadWrite); //open the
file
 buf1=new char [file.GetLength()]; //initial a buffer
 file.Read(buf1,file.GetLength()); // read the file
 m_nData1Len=file.GetLength(); //find the file length
 file.Close(); // close the file

 file.Open(targetfile,CFile::modeReadWrite);
 buf2=new char [file.GetLength()];
 file.Read(buf2,file.GetLength());
 m_nData2Len=file.GetLength();

 file.Close();

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3879

The code above is to read two wave files into memory.
Buf1 and buf2 are two pointers to wave files, and the data
type of them is char. And, m_nData1Len and m_nData2Len
are the length of the two files. Once the reading is done, we
should close the files. Now, we are ready to calculate the ratio
of similarity between the two waves.

 int N = m_nData1Len > m_nData2Len ? m_nData2Len :
m_nData1Len;

It is possible that the lengths of the two files are different,
so we choose the longer one as the target. The rest of the file
is filled by 0. x(t) * y(t) = 0, so it does not make any
difference.

 double A,B,C,Pxy;
 A = B = C = Pxy = 0.0f;

 Here we use floating and double to store the numbers.

 for(int i=0; i < N; i++) {
 A+=buf1[i]*buf2[i];
 B+=buf1[i]*buf1[i];
 C+=buf2[i]*buf2[i];
 }
 Pxy=A/(sqrt(B*C));
 delete[] buf1;
 delete[] buf2;

return Pxy;

After the calculation, we delete two buffers to release
memory. The result has been stored in the value of Pxy.

V. EXPERIMENTS AND RESULTS

A. To Reduce the Noise of a Bird Sound
 Now, let’s make an example to show how to use this Noise
Filter to reduce the noise of a bird sound WAV file, step by
step. The objective bird sound file is amre.wav.

1. Double click the Filter.exe file to open the Noise
Filter.

2. After double click, we get the “Noise Filter window”
(see Fig 8).

 Fig. 8 Noise Filter user interface

3. Click the “Get File” button.

4. We get the “Open file window” (see Fig 9).

Fig. 9 Open file window

5. Chose the folder of the bird sound file “amre.wav”
then click the “OK” button.

6. After step 5, we come back to the Noise Filter
window.

7. Click the “Set Para” button, to set the FIR parameters.

8. After step 7, we get the FIR Filter Window: Dialog
(see Fig 10).

Fig. 10 FIR Filter Window: Dialog

9. Using “Cool Edit Pro” software, we see the frequency
of the bird sound in the “amre.wav” file is between 6200
and 7500 Hz (see Figure 11), so we specify the lower
cutoff frequency by pulling the lower cutoff frequency
scroll bars until we reach 6196.1 Hz and specify the higher
cutoff frequency by pulling the higher cutoff frequency
scroll bars until we reach 7497.0 Hz. Now, the lower and
higher cutoff frequency cutoff frequency panel will be
automatically changed to 6196.1 and 7497.0 (see Fig 12).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3880

 Fig. 11 frequency of amre.wav

Fig. 12 FIR Filter Window with cutoff frequencies 6196.1 and

7497.0

10. Specify the sampling rate in the Sampling Panel.
Following the sampling rate definition, the
sampling rate is the frequency at which samples are
taken. The sampling rate has to be twice or more
the rate of the analog frequency that is captured;
the higher the sampling rate, the better quality
signal. So, the default sampling rate 22050 is good,
and we do not have to change.

11. Specify the filter order in the filter order field. We

still use the default filter order 40.

12. Click the “Calculate” button, then the filter
coefficient will be displayed in the filter
coefficient list box (see Fig 13).

Fig 13 Calculate the filter coefficient

13. After filter coefficients have been calculated, the user

can save the filter coefficients by clicking the “OK”
button.

14. After step 13, we come back to the Noise Filter
window.

15. Click the “Filtering” button to begin reducing the
noise of the amre.wav file.

16. Click the “Save” button to save changes in a new,
noise-reduced version WAV file. We get the “Save
file window” (see Fig 14).

Fig 14 Save file window

17. Chose the folder, then save the new, noise-reduced
version WAV bird sound file; give the file name
“denoised amre.wav” from the Save File window,
then click the “OK” button.

18. Done!

Now we have successfully used this Noise Filter to reduce

the noise of a bird sound in the “amre.wav” file, and we have
a new, noise-reduced version bird sound file called “denoised
amre.wav”. At last, let us use “Cool Edit Pro” software to see
the frequency of the new, noise-reduced version bird sound
file --“denoised amre.wav” (see Fig 15).

Fig 15 frequency of the noise-reduced version “denoised amre.wav”.

From Fig 15, we can see that the noise filter successfully
reduced the noise sound which frequency is not in the range of
6196.1 and 7497.0 Hz, and when we listen to the two bird
sound files, we can easily notice that the noise-reduced
version is much clearer than the original bird sound.

B. Testing Similarity
The following are three waves:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3881

Using our program, the ratio of similarity between Data1 and
Data2 is 0.7931, which means they are similar. The ratio of
similarity between Data1 and Data3 is -0.0133 and the ratio of
Data1 and Data2 is -0.001166, so both two of them are
different. And, the results we hear among the three waves are
relative to what we observe in the above visual representation.

V. CONCLUSION
From our experiments, this Noise Filter successfully

reduced the noise of a bird sound “amre.wav” file, and
delivered a new, noise-reduced version bird sound file
“denoised amre.wav”. It proves that this Noise Filter, which is
based on the High-pass, Low-pass, Band-pass, Band-stop
Filter and FIR (Finite Impulse Response) technology, works
well. The algorithm we discussed is widely used in current
communication technology. Of course, it is possible to make
improvements in this algorithm. The program is tested under
Windows XP and Microsoft Visual .NET

ACKNOWLEDGMENT
The authors would like to thank Dr. Phil Taylor and Mr.

Mike Peckford, Department of Biology at Acadia University
for their support work and some useful ideas for this project.

REFERENCES
[1] Antoniou, A. Digital Filters: Analysis, Design, and Applications. 2nd ed.

New York, NY: McGraw-Hill, 1993.
[2] Marler P., Variations in the song of the chaffinch, Fringilla coelebs, Ibis,

458-472, 1952.
[3] S. K. Mitra, J. Kaiser, Handbook for Digital Signal Processing, John

Wiley and Sons, Inc. 1993.
[4] Proakis, J. and D. Manolakis. Digital Signal Processing. 3rd ed.

Englewood Cliffs, NJ: Prentice-Hall, 1996.
[5] Thorpe, W. H., and B. I. Lade. The songs of some families of the

Passeriformes. I. The analysis of bird and their expression in graphic
notation. Ibis, 103a, 231-245, 1961.

[6] “WAVE sound file format”
http://ccrma-www.stanford.edu/courses/422/projects/WaveFormat/

[7] “Wave Filters”
 http://www.smeter.net/filters/wave-filters.php
[8] “Digital FIR Filter Design”

http://www.mathworks.com/access/helpdesk/help/toolbox/dspblks/digita
lfirfilterdesign.html

[9] “Digital Filter Terminology”
 http://www.dspguru.com/info/terms/filtterm/index2.htm
[10] Fletcher Wildlife Garden(2003) : Getting Started in Birding
 http://www.ofnc.ca/fletcher/alphabet/beginbir.php

