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 Abstract—This paper considers the effect of heat generation 
proportional to p(T T )∞− , where T is the local temperature and T∞  
is the ambient temperature, in unsteady free convection flow near the 
stagnation point region of a three-dimensional body. The fluid is 
considered in an ambient fluid under the assumption of a step change 
in the surface temperature of the body. The non-linear coupled partial 
differential equations governing the free convection flow are solved 
numerically using an implicit finite-difference method for different 
values of the governing parameters entering these equations. The 
results for the flow and heat characteristics when 2≤p  show that 
the transition from the initial unsteady-state flow to the final steady-
state flow takes place smoothly. The behavior of the flow is seen 
strongly depend on the exponent p. 

     Keywords—Free convection, Boundary layer flow, Stagnation 
point, Heat generation 

I. INTRODUCTION 
large number of physical phenomena involve natural 
convection driven by heat generation. The study of heat 
generation in moving fluids is important in several 

physical problems dealing with chemical reactions and those 
concerned with dissociating fluids. Possible heat generation 
effects may alter the temperature distribution and therefore, 
the particle deposition rate. In addition, understanding of the 
effects of internal heat generation also significant in numerous 
applications that include reactor safety analysis, metal waste, 
spent nuclear fuel, fire and combustion studies and strength of 
radioactive materials (Postelnicu, [1]). Foraboschi and 
Federico [2] investigated steady state temperature profiles for 
linear parabolic and piston flow in circular tubes. They 
determined that the volumetric rate of heat generation, 
q�[W/m3] varies linearly with Q0(T - T∞), where Q0 is the 
heat generation constant. The relation explained above is valid 
as an approximation of the rate of some exothermic process, 
having T∞ as the free stream temperature.  
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Vajravelu and Hadjinicolaou [3] studied the heat transfer 
characteristics in the laminar boundary layer of a viscous fluid 
over a linearly stretching continuous surface with viscous 
dissipation or frictional heating and internal heat generation. 
Chamkha and Camille [4] solved hydromagnetic flow with 
heat and mass transfer over a flat plate in the presence of heat 
generation or absorption and thermophoresis. Mendez and 
Trevino [5] analyzed the effects of the conjugate conduction-
natural convection heat transfer along a thin vertical plate with 
non-uniform heat generation. Continuing the work of 
Vajravelu and Hadjinicolaou [3], natural convection with heat 
generation along a uniformly heat vertical wavy surface have 
demonstrated by Molla et al. [6]. Besides that, Mohammadein 
and Gorla [7], Rahman et al. [8] and Magyari and Chamkha 
[9] take into account the effect of heat generation to 
investigate the characteristics of heat and mass transfer in a 
micropolar fluid flow. Natural convection flows in a porous 
medium also have received much attention in recent time due 
to its wide application in such fields as geothermal energy 
utilization and oil reservoir modeling. Many researchers 
interested with the problem of plate that is embedded in a 
uniform porous medium with internal heat generation such as 
Mohamed [10], Jawdat and Hashim [11], and Ferdousi and 
Alim [12]. Mohamed [10] studied the effects of first-order 
homogeneous chemical reaction on the unsteady 
magnetohydrodynamic (MHD) double-diffusive free 
convection fluid flow past a vertical porous plate in the 
presence of heat generation and soret effects. The effects of 
uniform internal heat generation on chaotic behavior in 
thermal convection in a fluid-saturated porous layer subject to 
gravity and heated from below for low Prandtl number was 
investigated by Jawdat and Hashim [11]. Then, Ferdousi and 
Alim [12] considered the effect of heat generation on natural 
convection flow from a porous vertical plate.In 2006, Veena et 
al. [13] have worked on heat transfer characteristics in the 
laminar boundary layer flow of a viscoelastic fluid over a 
linearly stretching continuous surface with variable wall 
temperature subjected to suction or blowing. Molla et al. [14] 
examined the natural convection flow of a viscous 
incompressible fluid past an isothermal horizontal circular 
cylinder considering the temperature dependent internal heat 
generation. Mahdy [15] considered the effects of chemical 
reaction and heat generation on double-diffusive natural 
convection heat and mass transfer near a vertical truncated 
cone in porous media. Afterward, Siddiqa et al. [16] studied 
natural convection flow of a viscous incompressible fluid over 
a semi-infinite flat plate with the effects of exponentially 
varying temperature dependent viscosity and the internal heat 
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generation.The flow in the neighborhood two-dimensional 
flow and axisymmetric stagnation point is a classical problem 
in fluid dynamics and has been investigated by many 
researchers. It was first examined by Hiemenz [17] who 
displayed a technique to reduced Navier-Stokes equations 
governing the flow to an ordinary differential equation of third 
order using similarity transformation (Schlichting, [18]). 
However, these two cases of two-dimensional and 
axisymmetric flows can be regarded as special cases of a 
general three-dimensional stagnation point flow. Several 
authors, such as Poots [20], Banks [21] and Sharidan et al. 
[22] have studied the steady free convection boundary layer 
flow in the region of the stagnation point of a three-
dimensional body. The work of Poots [20] is particularly 
interesting because he was the first to derive the boundary 
layer equations governing the free convection flow at the 
lower stagnation point of a general three-dimensional body 
and has shown that the two-dimensional and axisymmetric 
flows are just two special cases from a more general point of 
view. Then, Banks [21] showed that other solutions exist over 
the whole range of stagnation points and Prandtl numbers. To 
our best knowledge, however, the unsteady free convection 
near the stagnation point on a heated regular three-
dimensional body has been studied only by Ingham et al. [23] 
and Slaouti et al. [24]. Ingham et al. [23] considered an 
isothermal body surface, while Slaouti et al. [24] considered 
the case when there is an initial steady state that is perturbed 
by a step-change in the wall temperature. Besides that, Kumari 
and Nath [25] presented the results of electrically conducting 
fluid on unsteady three-dimensional laminar incompressible 
free convection boundary layer flow with the effect of 
magnetic field near the stagnation point. Following Kumari 
and Nath [25], Sharidan et al. [22] showed other results for the 
effect of a small fluctuating gravitational field characteristic of 
g-jitter on three-dimensional flow. Recently, by applying 
homotopy analytical solution (HAM), Hayat et al. [26] studied 
MHD flow in porous space induced by a stretching surface. 
Most recently, Ariff et al.[27] has present their results for 
unsteady free convection flow over a three-dimensional 
stagnation point. They show that the transition from  the initial 
unsteady-state flow to the final steady-state flow takes place 
smoothly 

Motivated by the works above, objective of the present 
work is to study the behavior of unsteady free convection of a 
viscous and incompressible fluid in the stagnation point region 
of a heated three-dimensional body considering the 
temperature dependent internal heat generation of the general 
form recently proposed by Mealey and Merkin [28] and 
Merkin [29,30] 

                                                       
p

0Q (T T ) , T Tq '''
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∞ ∞⎧ − ≥⎪= ⎨

<⎪⎩
 

where, p is a constant. The transformed non-linear coupled 
partial differential equations governing the flow are solved 
numerically using a very efficient finite difference scheme 
together with Keller-box method. Attention is given to the 
influence of the heat generation parameter, Q Prandtl number, 

Pr and the orientation on the heat transfer and flow 
characteristics near the stagnation point. The results for the 
steady-state flow are compared with those of Banks [21] and 
Sharidan et al. [22], and found to agree very favorably. 

II. GOVERNING EQUATIONS 
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Fig. 1 Physical model and coordinate system. 

 
Consider the unsteady free convection flow near the 

stagnation point of a heated three-dimensional body placed in 
a viscous and incompressible fluid of uniform temperature T∞. 
It is assumed that the uniform temperature of the body is 
suddenly changed from Tw to T∞, where Tw > T∞. A locally 
Cartesian orthogonal system (x, y, z)  is chosen with the origin 
N at the nodal stagnation point as shown in Figure 1, where 
the x- and y-coordinates are measured along the body surface, 
while the z-coordinate is measured normal to the body surface. 
Under these assumptions, the boundary layer equations 
governing unsteady free convection flow are, 
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subject to the initial and boundary conditions 
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Here u, v, w are the velocity components along x, y, z axes, t is 
the time, T is the fluid temperature, g is the magnitude of the 
gravity acceleration, α is the coefficient of thermal diffusivity, 
ν is the kinematic viscosity, β is the volumetric coefficient of 
thermal expansion, ρ if the fluid density, cp is the specific heat 
at constant pressure and  a and b are the parameters of the 
principal curvatures at N, of the body measured in the planes y 
and x, respectively.  

The term Q0(T - T∞)p is assumed to be amount of heat 
generated or absorbed per unit volume, which Q0 may take on 
either positive or negatives values. Further, if Q0 > 0 then it 
represents heat generation and on the other hand when Q0 < 0 
it represents heat absorption. 

There is no loss of generality in requiring that |a| ≥ |b| with 
a > 0. Clearly b = 0 corresponds to the plane stagnation flow 
case, while b = a is the axisymmetric case. We assume here 
that a and b are positive so that solutions of the resulting 
equations lead to stagnation points which are nodal points of 
attachment, i.e. 0 ≤ c ≤ 1, where c = b/ a. However, a or b 
could also be negative which leads to saddle points of 
attachment, i.e. -1 ≤ c ≤ 0. Since most shapes of practical 
interest lie between cylinder (c = 0) and sphere (c = 1) we 
shall confine our analysis to nodal points of attachment only 
(0 ≤ c ≤ 1). 
 A little inspection shows that equations (1) to (4) along with 
the boundary conditions (5) admit a semi-similar solution of 
the form, see Shesadri et al. [31], 
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where Gr = g0β(Tw - T∞)/ (a3ν2) is the Grashof number and 
primes denote partial differentiation with respect to η. 
Substitution of (6) in (2) to (4) gives 
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while the boundary conditions (5) become 
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for 0 ≤ ξ ≤ 1 where Q = (Tw - T∞)p-1 Q0/ (cpa2μGr1/2) is the 
dimensionless heat generation or absorption coefficient. Here 
Pr is the Prandtl number and primes denote partial 
differentiation with respect to η. 

The physical quantities of practical interest in this 
problem are the skin friction coefficients in the x and y 
directions, Cfx and Cfy and the Nusselt number, Nu, that are 
defined as 
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where ρ and μ is the density and dynamic viscosity, 
respectively. In terms of the non-dimensional variables (6), we 
have 
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For the unsteady-initial flow case, where ξ = 0, 

equations (7) to (9) reduce to the following form 
 

0
2
η′′′ ′′+ =f f ,    0

2
η′′′ ′′+ =h h ,   0

2
ηθ θ′′ ′+ =Pr    (13)

  
 
subject to the boundary conditions 
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The solution of Eqs. (14) subject to (15) is given by 
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where erfc(η√Pr/ 2) is the complimentary error function. For 
the final steady-state flow case, where ξ = 1, equations (7) to 
(9) reduce to the following similar form 
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subject to the boundary conditions  
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These equations are identical with those first found by Poots 
[20], Banks [21] and Sharidan et al. [22]. 

III. RESULT AND DISCUSSION  
Equations (8) to (10) subject to boundary conditions (11) 

has been solved numerically using an implicit finite difference 
scheme, known as the Keller-box method developed by Keller 
[32]. This method has been found to be very suitable in 
dealing with nonlinear parabolic problems. Details of the 
method may be found in many recent publications, examples 
Hussain and Hossain [33], Sharidan et al. [34] and Cebeci and 

Bradshaw [35]. Results are obtained for 2and1=p , Pr = 
0.015 (mercury), 0.7 and 0.72 (air), 4 (R-12 refrigerant), 7 
(water at 20ºC) and 100 (engine oil) and c = 0 (plane 
stagnation point), 0.25, 0.5, 0.75 and 1.0 (axi-symmetric 
stagnation point).To access the accuracy of the solutions, the 
present results for the reduced skin friction coefficients f�(0) 
and h�(0), and heat transfer from the surface of the body, –
θ�(0) are compared with those calculated by Banks [21] and 
Sharidan et al. [22] for natural convection heat transfer from a 
three-dimensional body with constant wall temperature in 
Newtonian fluids with ξ = 1, Pr = 0.72, Q = 0 and values of c 
between 0 and 1, as shown in Table 1. The present results 
agree well with the solutions presented by Banks [21] and 
Sharidan et al. [22] 
 

TABLE I 
COMPARISON OF REDUCED SKIN FRICTIONS F�(0), H�(0) AND HEAT FLUX RATE –Θ�(0) FOR Ξ = 1 (FINAL STEADY-STATE), 

PR = 0.72, Q = 0 AND DIFFERENT VALUES OF C 
 Banks [21] Sharidan et al. [22] Present 
c 0 1 0 1 0 1 

f�(0) 0.856372 0.761132 0.855909 0.764685 0.856544 0.765796 
h�(0) 0 0.760640 0 0.764685 0 0.760209 
–θ�(0) 0.372749 0.461187 0.374102 0.462223 0.373535 0.461082 

 
A comparison of the present results for these quantities with 

those obtained by Sharidan et al. [22] is shown also in Figure 
2. It is seen that all these results are in excellent agreement. 
Therefore, this favorable comparison lends confidence in the 
numerical results obtained in this paper 
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Fig. 2 Comparison of the skin friction coefficients f�(0) and h�(0), 

and heat flux from the surface of the body θ�(0) for steady flow case 
(ξ = 1) when Pr = 0.72 and Q = 0. 

 
The variation of the velocity f�(ξ, η), h�(ξ, η) and 

temperature θ(ξ, η) profiles with η for some values of ξ are 
shown in Figures 4 and 5 for Pr = 0.72, c = 0, 1, and  p = 1 
and 2.  It has been seen from Figures 3 and 4 that as ξ 
increases, the velocity f�(ξ, η), h�(ξ, η) and temperature θ(ξ, 
η) profiles increase. The changes of velocity profiles, f�(ξ, η) 
and h�(ξ, η) in the η direction reveals the typical velocity 
profiles for natural convection boundary layer flow , i.e, the 
velocity is zero at the boundary wall then the velocity 
increases to the peak values as η increases and finally the 

velocity approaches to zero (the asymptotic value). The 
changes of temperature profiles, θ(ξ, η) in the η direction also 
shows the typical temperature profile for natural convection 
boundary layer flow that is the value of temperature profile is 
one at the boundary wall then the temperature profile 
decreases gradually along η direction for the values of ξ from 
0 to 1 to the asymptotic value. Regarding to the changes in 
values of p, the heat generation term θp can be dominant, 
leading to a breakdown in the solution with a thermal 
runaway. This happens for moderate values of p. For even 
larger values of p, the temperature profiles remain bounded 
throughout, θp remains small for p large and eventually the 
initial heat input decays away. 
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Fig. 3 Velocity profiles f�(ξ, η), h�(ξ, η) and θ(ξ, η) for various ξ 
with c = 0, Q = 1, Pr = 0.72 and (a) p = 1, and (b) p = 2. 
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Fig. 4 Velocity profiles f�(ξ, η), h�(ξ, η) and θ(ξ, η) for various ξ 

with c = 1, Q = 1, Pr = 0.72 and (a) p = 1, and (b) p = 2. 
 

IV. CONCLUSION 
Unsteady natural convection flow on a three-dimensional 

body in the presence of heat generation near the stagnation 
point has been investigated in this paper for different values of 
relevant physical parameters including Prandtl number, Pr and 
heat generation parameter, Q. From the present investigation, 
the following conclusions may be drawn: 
• The steady-state flow for the reduced skin friction and heat 

transfer coefficients has a similar structure to what was 
studied by Banks [21] and Sharidan et al. [22]. 

• There is a smooth transition from unsteady-state flow (ξ = 
0) to the steady-state flow (ξ = 1) for all velocity and 
temperature profiles. 
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