International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:6, No:4, 2012

Region Segmentation based on Gaussian
Dirichlet Process Mixture Model and its
Application to 3D Geometric Stricture Detection
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Abstract—In general, image-based 3D scenes can now be foundri@mote sensing to medical diagnosis, and retrieval in large
many popular vision systems, computer games and virtual realimage database. In general, various segmentation approaches
tours. So, Itis important to segment ROI (region of interest) from inpKve been proposed. These can be largely categorized into four
scenes as a preprocessing step for geometric stricture detection in& ses: threshold-based edge or boundary-based
scene. In this paper, we propose a method for segmenting ROl base ’ . ’
on tensor voting and Dirichlet process mixture model. In particular, {gglon-based, and mod.el-based. technlque_s [5-6]. .
estimate geometric structure information for 3D scene from a singleHere, we have mainly an interest with a segmentation
outdoor image, we apply the tensor voting and Dirichlet proce$8€thod using model-based techniques. One of these methods
mixture model to a image segmentation. The tensor voting is usedpresses the probability density for the whole data set as a
based on the fact that homogeneous region in an image are usuiijte mixture model, in case that the mixtures can be
close together on a smooth region and therefore the toke@snstructed with any types of components, but more commonly
corresponding to centers of these regions have high saliency valygstivariate Gaussian densities are used. However, most of
The proposed approach is a novel nonparametric Bayes%se algorithms require the analyst to specify the number of

segmentation method using Gaussian Dirichlet process mixture mo . -
to automatically segment various natural scenes. Finally, our meth fjisses based either on a priori knowledge or on an educated

can label regions of the input image into coarse categories: “groun§€SS- It is obvious that the quality of resulting segmentation is
“sky”, and “vertical” for 3D application. The experimental resultda’gely dependent on the exact estimation of mixture
show that our method successfully segments coarse regions in m@@nponents. Hence, we have to determine the optimal number
complex natural scene images for 3D. of clusters before analyzing a given data. To solve this problem,
various criteria have been proposed in the literature. These
Keywords—Region segmentation, tensor voting, image-based 3Driteria are Akaike’s information criterion (AIC), Bayesian

geometric structure, Gaussian Dirichlet process mixture model information criterion (BIC), minimum description length
(MDL), cross validation information criterion (CVIC), and
|. INTRODUCTION covariance inflation criterion (CIC). Nevertheless, these

I N general, image-based rendering during the past decade W&$hods are not able to determine automatically the number of
advanced the commercial production of virtual models froffPMPonents when we segment a given image into several
photographs a reality. Image based 3D modeling can be fodff

: : . 0 resolve these optional issues, a relatively new tool

in many popular computer games and virtual reality tours,. . - ' '

However, the generation of 3D scene from 2D natural scef‘w)émhlet. process m|>§ture (DPM) models have been proposed
In machine learning literature. DPM models have emerged as a

remains a comlpllcat_ed antd tlrlne-consurrlllng ?ror(]:etss, Oftﬁgnparametric alternative to finite mixture models with
requmr;g_ specia equmﬁn ’f aharge num Tqr orp OOgraptmle-oretically a countable infinite number of mixture
manual interaction, or all of them. So, it has given to thg,mnonents. Eventually, as part of the model-fitting procedure,
professionals and ignored by the general public. In order Q. nonparametric Bayesian inference scheme induced by the
solve problems of 3D modeling, various researches have bggpn model yields a posterior distribution on the proper
performed Image-based 3D modeling methods by [1,2,3,4]. humber of model component densities, rather than selecting a
To this work, we consider to dealing with outdoor scenes afifed number of mixture components. Hence, the obtained
assume that a scene is consisted in a single ground plamsnparametric Bayesian formulation eliminates the need for
piece-wise planar objects sticking out of the ground at righibing inferences about the number of mixture components
angles, and the sky. First of all, we perform simple feature suquired for representing the modeled data.
as pixel colors and filter responses. So, we find uniform regiodnder this motivation, we propose a novel nonparametric
called ‘superpixels” in the input scene [13]. To fine superpixeBayesian segmentation method using Gaussian Dirichlet
in this work, we segment uniform region based on Gaussipnocess mixture model, to automatically segment various color
Dirichlet process mixture model. The goal of scenénages. This method incorporates both Dirichlet process
segmentation is to classification a given input image intmixture model as the prior distribution for mixture components
homogeneous regions, or pattern classes. The work canapel the multivariate Gaussian distribution as the likelihood
applied to a multitude of important computer visiorfunction of observed data. We have also described an efficient
applications, ranging from vision guided autonomous roboticgariational Bayesian inference algorithm newly proposed
recently to learning the proposed model. And we apply it to a
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Il. DIRICHLET PROCESSMIXTURE BASED ONGAUSSIAN

A.Dirichlet Process

The Dirichlet process, denoted BB(o, Gy), is a random
measure on measures and is parameterized by theaition
parameten. and a base distributidiy, [7,8]. That is, for any
finite measurable partitiofA,, A,,---,A;) of a measurable
space®, the random vecto(G(A,),G(Ay), ,G(A))) is
distributed as a finite-dimensional Dirichlet distrtion with
parameterg(aGg (A1), aGo(Ay), -+, aGy(Ap)) :

(G(A1), G(A2), "+, G(Ar)~(aGo (A1), aGo (Az), -+, aGo(Ar))-
A first interpretation on the Dirichlet procesgi®vided by the
Polya urn scheme due to Blackwell and MacQueen3)lIhe
Polya urn scheme shows that not only are draws filoen
Dirichlet process discrete, but also that they leiklai clustering
property. Assume we randomly draw a sample digiobG
from aDP(a, Gy), and subsequently, we independently daw
random variables, , ¢, -+, ¢ fromG
G | (00 GO) ~ DP((X, GO)

¢,/G~G, n=1,-,N.

Integrating outG, the joint distribution of the variables

)1

9,,0,,,9y Can be shown to exhibit a cluster effectgiven o .

Specifically, given the firstN—-1 samples of G ,
9., 9, ", @y_,, it can be shown that a new samgpjgis either
drawn from the base distributidh with probabilityM;_l or
selected from the existing draws, according to dtinamial
allocation, with probabilities proportional to thember of the
previous draws with same allocation. L&f,¢5, -, oy}
denote the distinct values af,,¢,,-,¢0y_, , and let
{ny,ny, -+, ng} be the number of values @, ¢,, -, ¢\ _,that
equal top], ¢, -+, g Then, the conditional distribution of,

random probability measure on the positive inteddrsler the
stick-breaking representation of the Dirichlet msg, the
atomsdy, drawn independently from the base distributign
can be seen as the parameters of the componaettidtisin of a
mixture model comprising an unbounded number
component densities, with mixing proportions,(v) .
Sethuraman(1994) showed tiGaas defined in this way is a
random  probability measure distributed according
to DP(a, Go)[8]. This stick breaking representation®@fmakes
clear that the random measwerawn from DP(a, G,) is
discrete. It shows explicitly that the supportGofonsists of a
countably infinite sum of atoms located @t, drawn
independently fronG,.

of

B. Gaussian Dirichlet Process Mixture Model

One of the most important applications of the Dilét
processes is as a nonparametric prior distribudfom mixture
model. In particular, suppose that observatjgnarise as
follows:

¢, | G~G yn | 9, ~F(o,)

whereF (¢, ) denotes the distribution of the observatigp
The factors ¢, are conditionally independent
givenG, and the observatign,is conditionally independent of
the other observations given the factgr. WhenG is
distributed according to a Dirichlet process, thiwdel is
referred to as a Dirichlet process mixture (DPM)delo Since
G can be represented using a stick-breaking corigiru¢3),
the factorsp take on value$, with probabilitym,(v). We
may denote this using an indicator variablg which takes on
positive integral valuegklk =1,---,00} and is distributed
according tat = (M) =4 -

Next, suppose that we have a set dofdimensional

giveno,,0,,-+,9,_, follows a Polya urn scheme and has thendependent multivariate observatiovns= {y;,y,,--,yn}. We

following form:

p(oy | {ppn =1, N=1},0,Go) = —— G + T,
Wheresq,;(
pointe;. These results illustrate two key properties @& DP
scheme. First, the innovation parametg@lays a key role in
determining the number of distinct parameter valAdargera
induces a higher tendency of drawing new paramétens the
base distributiolti,; indeed, as. — «, we getG - G,. On the
contrary, as. — 0, allg,, ¢,,*, ¢, tend to cluster to a single
random variable. Second, the more often a pararisesbared,
the more likely it will be shared in the future.

Another characterization of the unconditional dsition of
the random variabl& drawn fromDP(a, Gy) is provided by
the stick-breaking construction due to Sethurami®94) [8].
The stick-breaking construction is based on twoinite
collections of independent random variablésy)i_,
and ()i

vk | @Gy ~ Beta(l,a), 0 | a,Gy ~ Go,
whereBeta(a, b) is the Beta distribution with parametarand
b. The stick-breaking construction 6fis then given by
G = Xi=1 (V) g,

LS
o+N-1

)

0k

®)

where

T[k(V) = Vg H}(z_ll(l - V]) (S [01], Z(lle TEk(V) =1. (4)
In this case, we may interpret the sequemee (T, -, as a

denotes the distribution concentrated at a sing8°del-

want to model this data by mans of nonparametrigeB&n
formulation of Gaussian Dirichlet process mixtu@DPM)
For this purpose, since the number of meéxtur
componeni is unknown, we have to consider the mixture
model with countably infinite components. Therefose will
use the Diriclet process mixture model as the mtistribution
over the number of components generating the daid,we
also assume the probability distribution of obstores as the
multivariate Gaussian distribution. Moreover, inluging a set
of latent variables Z = {z,,z,,--,zy} indicating the
component labels associated with the observaticla @a
defined on above. Then, the GDPM model for the nlesk
data set can be described as follows. First, we heved the
multi-dimensional Gaussian distribution with paraene
0, = (1, Ay )for the likelihoods of the observations;

Vo | zn =k; O ~ N(uk-Aﬂl) . (5)
Second for the prior distribution of total clustaemberships,
we assume that

p(zy, -+ 2n) | ®(W)) = [TH=1 p(zal T(V))
where p(z, = k| mt(v) ) is the prior probabilities of the cluster
membership stemming from the imposed Drichlet pgecthat
is,
p(z, = k| m(v)) ~ Multi(r(v)),
Multi(mt(v)) denotes the multinomial distribution ove¢v).
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Third, the probabilities of countable infinite nuerb of the variational free energy, forms a strict loweuid of the log
components in the mixture model is given by thevidence. Hence, maximizing the variational freeergg

stick-breaking representation of the DP, that is, £L(q(®)) is equivalent to minimizing the KL divergence. By
Yk | @Gy ~ Beta(1,a),k = 1,-, 00 appropriate choice ofj(®), £(q(®)) becomes tractable to
m (V) = vi IS (1 —vp) € [0.1], Xl me(v) = 1. (6) compute and to maximize.

Forth, Bayesian inference for the assumed GDPM imode For computational convenience, the variational st
involves the assumption of a set of appropriaterprover the (&) is expressed in a factorized form, with the saotenfas
model parameters, and derivation of the correspendithe priorsp(@|z), and each parameter represented by its own
posterior densities. We choose the conjugate-exp@i@rior  conjugate exponential prior. Furthermore, variaiddayesian
distributions over the model parameters. Henceimise a inference assumes to formulate under infinite disimmal
joint normal-Wishart distribution over the mean t@cand setting. But, it is actually not tractable. Forsthieason, we
precision matrix for a multivariate Gaussian disition of the employ a common strategy in DPM literature, fornedaon
model component_fls follows: . the basis of a truncated stick-breaking represientaf the DP.
M | A ~ V(e |y, g A7) (") That is, we fix a valu& and we let the variational posterior
. , A ~ W(A] wi, Pie). , over the stick-breaking random variableg have the
Finally, taking under consideration the effect dfeetive property q(vg =1) =1 . This implies that the mixture
mixture components of the GDPM model, we choosal$o  .qn6rtionsm, (v) are equal to zero fok > K. Therefore, for
impose a hyper-prior over the innovation hyper-p&ra of  5ppM model proposed in this paper, the variatiGefesian
the GDPM model. We use a Gamma prior with parametﬁbsterior is given as the following form:
Ny andn; : q(@) = [TN-; a(za)a() TTEZT a(vio) T ; a(e Aw). (14)
a|nynz ~ Ialng,mz). _ (8) Then, substituting (10) and (14) into (12), we habhe
Hence, the JQ:jnt r:jrobablllty of Iatke)znt variabl@nd all  fo|lowing variational free energy for our model:
parameters considered up to now can be rewritten as o)) = 5K A 1 PR o) 4
p(Y,Z,m(v), o, b, A) (a(®)) Zk:lp{ “fmq:u)k. Wi q(uk,Ak)(v " HieChe
=p(Y|ZwA) p(Z | 7())p(v | a)p(u| A) p(A) ) [ a(@{In = + TS [ a(vio In 2 S dvidda 15)
where the individual factors are K ©N _ p(za=k|n(v))
p(Y | Z, qu) - H§=1H1?=1N(YH | W, A;l)znk +Zk=1 Zn:l q(Zn = k) {f q(V) ln—q(ank) dv

p(Z | () =TI\, p(zal (W), +J [ (i AN p(ynl e Ar) diydAy}
zn | (V) = [Tz, T (V) %k, zpy € {0,1 10 L . . . .
ggv'] la) 212[1?_ ak(ll _k‘(,k))oc—l ’:,]; E{ [0} 1] (10) Derivation of the optimal variational posterior tdisution
p( | A =J_\f1(uk I my, A’k)_l ), p(As) = W( Ayl wx, ®i). q(®) involves the maximization of the variational freergy
(10) over each one of the factaré®;) of q(®) in turn, holding the
and others fixed. Using the calculus of variations;an be shown
Ny lp, 2) :(znﬁm;l/z X exp (_% (v -z (y — ) ;t:(e:)tr;r;(;ebdeztsfj|str|but|oq1(q>,-)* for each of the factors can be
W(A| ®, %) =B(w,¥) |A|@-4-D/2 —2Tr(¥-1A ' -
(o, %) =80, ®) |A] xexp oI a(®;) = exp(Eillogp(Y, @ [)])/2;,
B(w, W) =|¥|*/220V2nd @D/ X [IL, T() ™ where Z; denotes the normalized constant of variational
distribution q(®;) . Hence, the update equations for the
[l VARIATIONAL BAYESIAN INFERENCE variational posteriors of each factors are givefoisws.

Inference for the GDPM model can be conducted baseal
Bayesian setting, typically by means of variatioBalyesian (1) The variational posterior of mixture componentidadior
methods. Variational Bayesian inference implie$ the actual variable
posterior distributionp(® |2,Y) over a set of all hidden q(z, =k) =
variables and unknown parameters of GDPM mo®ek  exp{ E[nqy[Inp(z, = kIn(¥)] + E{a[Inp(yn |20 = k, w A]}
{Z,v, a, n, A} given an observed date sgétand the set of the - () X Py, | Mo A (16)
hyper-parameters of the assumed pri@rs; {A, m, o, ¥,  Where
M., N2} is approximated by a variational Bayesian posteriof(v) = exp{ E[ 4 [In p(zq = klT(¥))]}
distr?but?on, q(®) . To d_erive the variational _Bayesian = exp{E[qw[Invi] + T} Egqey[In (1 — vi) }
distribution q(®), we consider a well-known equation for the

_ : Dn | o Ax) = exp {=3In 21 + S Efqqa,)[In |Ak]
log evidencelogp(Y | E). This can be expressed as oK 2 27 latol «

1

logp(¥ | 2) = £(a(@) + D @@)llp(@1 V) (1)~ zFatman[On = mTAGn = wl)
where o] = (Bes) — ¥ + B

£(a(®)) = @)1 p(YI<l>)p(<l>I3)d¢[> 12 [qLIN VK] = k1)~ k1T Pr2)

| (a(®)) = Ja(®)1og=; Braeonln( —vidl = $(Biez) — W(Brs + B

an (@) E[q(uk,Ak)][(Yn - uk)T Ay (Yn — )]

Di1.(q(P@)|Ip(P®| Y, E) = [q(P)log - d®. (13) d Tay—1

P(PIV.E) . =—+ wx(Yn —my) P (yp —my)

Here, Dk (q(®)]||p(®| Y, E) stands for the Kullback-Leibler Ak
(KL) divergence between the approximate variatiqouesterior Ejqao[In|Ax]] = —In| % | + Zf(‘:lq;(%l_k) ,

q(®) and the actual posterip(®| Y, E) andL(q(®)) called  wherey(-) is the Digamma function.
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(2) The variational posterior of the DP parameters
q(e) = exp {Inp(a) + Efqy[Inp(v [)]}

where
Efqw)] [Inp(v|w)] = Zﬁ;ll Efqm)] [Inp(vy [0)] .
Hence,
q(a) = F(ﬁl' ﬁZ)i
where

fir = m+K=1,1 = 12 — TR W(Brz) — (B + Brz) ]

(3) The variational posterior of stick-breakingiedtes
q(vi) = exp {E[qz1[Inp(z Im(v))] + E[qa[In p(vi [0)]}

where

Efq[Inp(z [m(v)] = ZN_1 q(za = K)

Efq(w [ p(vk |0)] = Efqeay[o] + Zfiisr Zho1a(zn = 1) .

Hence,

q(vi) = Beta(By1,Bz) k=1,,K—-1 (18)
where
Gk,1 =1+3N.1q(zy = K), Gk,z = 2—: + 2K N1z = 1)

(4) The variational posterior of the likelihood fition
parameters

qie, Ay) = exp{ln p(uy, A+ XN
Hence,

q(e, A = N (e mye, Qyed )" DWW (A [Py, 0k
where
N =3N210(Zn =K) , A =29 + Ni, Wy = wp + N
Fi= - SN=10z =0 Yo
Sk = Zir\i:l q(zq = k) (Yo — ) n
my = - (Aom, + Ni¥i),

— AgNk
W, =W, + S+ ot Ny

14y = (Inp(yy e A} -

(19)

-yT

Fe — M) F — my)”

As a last step, after updating the posterior digtions
(16)-(19) using the variational Bayesian inferealgorithm for
the GDPM model at each iteration, we use a Bayesitn
which allocates each pixel to one of regions iroadance with
their posterior probabilities to segment a givetocamage.
That is, every pixel is assigned to the class hatfie highest
posterior probability that the observation origethfrom this
class.

IV. 3D GEOMETRY ESTIMATION

In this section, we present an automatic approarctréating
a 3D model based on region segmentation by statistidel

V.EXPERIMENTAL RESULTS

First, to verify the application of GDPM model tmage
segmentation, we have used various color images Bajure
1(a) shows the color images used at our experiarghfigure
1(b) also shows the results of segmentation foorcwhages

7 using proposed model. From the experimental resuksnote

that our algorithm manage to discriminate exactlgheobjects
in color image.

(a) Color images (b) Segmentation results
Fig. 1 Results of segmentation for color imageagitihe proposed
approach

We can observe that the GDPM model is able to ageve
with the optimal likelihood function without depestd on
assumed initial values for model parameters. Thoeeefthis
model can classify or partition exactly each pixate proper
regions, and we can obtain the excellent segmesatgdns.

In order to test the performance of the proposethots we
use Hoiem’s publicly available code to generatehemodel
from an image based MATLABE [13]. Fig. 2 shows the
qualitative results of the proposed method on sdvarages.
Therefore, we can set out with the goal of autocadlii
creating visually pleasing 3D models for a 2D scefen
outdoor image. We can create beautiful 3D scenegdidous

from a single scene. The model is made up of skve glages

texture-mapped plannar billboards and has the cexitplof a

typical children’s pop-up book illustration. Theoposed core
technology is that we are based on statistical-igelemetric
features defined by their orientation componentth@aimage
instead of attempting to recover precise geométingt of all,

regions are created by labeling of the segmentpdtiimage
into coarse categories: “ground”, “sky”, and “vedi’. In the

second step, each label is used to “cut and folelirhage into a
pop-up model using a set of simple assumptiongetreral, we
can show the results for creating virtual walktigiosi that is
completely automatic and requires only a singletpin@ph as
input scene [13].
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[11] Blei, D. M., Jordan, M. I.: Variational InferencerfDirichlet Process
Mixtures. Bayesian Analysis, 1(1), 121-144( 2006)

[12] Chatzis, S. P., Tsechpenakis, G.: The infinite ididdarkov random
Field Model. IEEE Trans. on Neural Networks, 21(8)04-1014(2010).

[13] Hoiem, D., Alexei, A. E., and Martial H., Automatitioto pop-up, ACM
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Fig. 2 Input scenes and novel views taken fromraataally
generated 3D models

VI. CONCLUSIONS

In this paper, we present automatically creatinguaily
pleasing 3D models from a single 2D image of adooit scene.
The proposed approach can observe single-view rimgdel
paves the way for a new class of applicationstRimnorder to
segment of ROI from natural scene, we apply new
segmentation method based GDPM model, which can
automatically determinate the number of mixture ponents
at a unsupervised segmentation. The method uses the
variational Bayesian inference method recently wéten used,
and we have conducted to segment various color énéy
using the trained GDPM model. Therefore, the expenital
results indicate that the proposed method canfbetife in 3D
modeling with natural single scene.
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