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    Abstract—Electrocardiogram (ECG) segmentation is 
necessary to help reduce the time consuming task of manually 
annotating ECG’s. Several algorithms have been developed to 
segment the ECG automatically. We first review several of 
such methods, and then present a new single lead 
segmentation method based on Adaptive piecewise constant 
approximation (APCA) and Piecewise derivative dynamic 
time warping (PDDTW). The results are tested on the QT 
database. We compared our results to Laguna’s two lead 
method. Our proposed approach has a comparable mean error, 
but yields a slightly higher standard deviation than Laguna’s 
method. 
 
    Keywords—Adaptive Piecewise Constant Approximation, 
Dynamic programming, ECG segmentation, Piecewise 
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I. INTRODUCTION 

N electrocardiogram-abbreviated as EKG or ECG- 
measures the the electrical activity of the heart. The 

timing between the onset and offset of particular features of 
the ECG (referred to as an interval) is of great importance 
since it provides a measure of the state of the heart and can 
indicate the presence of certain cardiological conditions. Due 
to the time consuming nature of manually annotating the ECG 
by cardiologists, different automated methods have been 
proposed to overcome this problem. Here, we first give a brief 
review of some of these methods before describing our new 
approach based on Adaptive piecewise constant  approxima- 
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-tion [1] and Piecewise derivative dynamic time warping 
(PDDTW) for ECG segmentation. 
   A very successful approach was first proposed by laguna et 
al. [2] which was based on second order band pass filtering the 
ECG and then differentiating it. In the end different waves 
would be detected based on their zero-crossings, and finding 
the nearest points exceeding empirical thresholds. 
     Segmentation of ECG based on Fourier transforms were 
implemented by Sahamabi [3] using the first four transforms 
.Murthy and Niranjan [4] used the DFT to segment the ECG. 
In [5] Vullings et al. proposed a method of ECG segmentation 
using Dynamic time warping , based on pre-filtering the signal 
and approximating the filtered signal with lines and using 
DTW for the final segmentation of the ECG. Different 
approaches to ECG segmentation have also been implemented 
using Hidden markov models by Clavier and Boucher [6]. In 
[7] Graja and Boucher  use a multisclae hidden markov model 
applied to segment the  ECG. Another method was proposed 
by Crouse et al. [8] using a combination of Wavelet  and  
Hidden markov models. Recently, Hughes et al. [9] have 
proposed a segmentation method using Semi-Supervised 
Learning of Probabilistic Models which is based on the EM 
algorithm for maximum likelihood estimation, which can be 
used to learn probabilistic models from subjectively labeled 
data.  
      A problem with probabilistic models is the difficulty with 
HMMs is to determine suitable values for the different 
parameters: the initial state probabilities, the transition 
probabilities between states, and the output probabilities of the 
slope and the amplitude. Another significant limitation of the 
standard hidden Markov model is the manner in which it 
models state durations. Thus for a given ECG waveform the 
decoded state sequence may contain many more state 
transitions than are actually present in the signal. The resulting 
HMM state segmentation is then likely to be poor and the 
resulting QT and PR interval measurements unreliable. 
Although algorithms exist to overcome these limitations [10] 
but they are still sensitive to initial conditions and choosing 
the right probability density for the duration of each state. 
     This paper which is an extension of [5] will introduce a fast 
method based on Adaptive piecewise constant approximation 
method and Piecewise derivative dynamic time warping for 
automated ECG segmentation. The results will be evaluated 
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on the QT database [11] and compared to Laguna’s approach 
[2].  
    The remainder of the paper is organized as follows. Section 
II gives a brief review of the methods employed for 
segmenting the ECG signals. Section III presents the 
experiment results on performance comparison of our method 
and that of Laguna. Finally, section IV concludes the paper. 
 

II. METHOD  
The method consists of the following steps: first, we 

perform some pre-filtering to remove high frequency noise, 
and next we approximate the filtered signal by the Adaptive 
piecewise constant approximation method. Using a standard 
peak QRS detection algorithm from the literature, we divide 
the ECG signal into separate heartbeats. Finally, every 
heartbeat is compared using PDDTW with a set of P, QRS and 
T wave templates, and the best matches are selected for the 
detection of the fiducial points. 

 
A.   Preprocessing  
We first apply a moving average filter of order 5 to the 

signal. This filter removes high frequency noise like 
interspersions and muscle noise. Then, drift suppression is 
applied to the resulting signal. This is done by a high pass 
filter with a cut off frequency of 1Hz. Finally, a low pass 
Butterworth filter with a limiting frequency of 30 Hz is 
applied to the signal in order to suppress needless high-
frequency information even more. Next, the APCA algorithm 
is used to adaptively represent the ECG signal.  
 

 
Fig. 1 Applying the appropriate preprocessing to a sample signal to 
remove unwanted noise. 
 
The primary segmentation is done with the Pan and 
Thompson’s QRS detector [12], which detects the position of 
the QRS complex in the ECG. Next, we select a region around 
the R-peak, 100 samples before and 200 sample after the R-
peak, this ensures a heart beat to be confined to this region of 
1.2 seconds with a sampling rate of 250Hz. Then this 
heartbeat is decomposed into three overlapping parts: a part 
before the QRS complex (ending one line before the R peak), 
a small region (150 samples wide) around the QRS, and a part 
after the QRS complex (starting one line after the QRS peak). 
 

 
Fig. 2 Segmenting the adaptively   approximated ECG signals. 

 
B.   Adaptive Piecewise Constant Approximation 
Adaptive Piecewise Constant approximation (APCA) 

approximates each time series by a set of constant value 
segments of varying lengths such that their individual 
reconstruction errors are minimal. Given a time 
series { }nccC ,,1 K= , we need to be able to produce an 
APCA representation, which we will represent as: 
 

{ } 0,,,,, 21 == oMM crcrcvcvcvC K                         (1) 
 
Where icv  are the mean value of data points in the thi  

segment and icr  the right endpoint of the thi  segment. The 
APCA approximation allows for segments of different size to 
minimize the approximation error. 
   The algorithm first takes the problem onto a wavelet domain 
compression problem, for which optimal solutions are already 
known, then converts it back to the ACPA representation and 
might even make some minor modifications. It uses the fact 
that the Haar wavelet transformation of a time series signal 
can be calculated in O (n), and that an optimal reconstruction 
of the signal for any level of compression can be obtained by 
sorting the coefficients in order of decreasing normalized 
magnitude, and then truncating the smaller coefficients. If the 
segments in the reconstructed signal have approximate mean 
values, they will be replaced by the exact mean values to get a 
valid APCA representation as described in Equation 1. 

 
Fig. 3 A time series C and its APCA representation C, with M = 4 

[1]. 
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C. The PDDTW Algorithm 
After the preprocessing, we now have a large set of 

adaptive approximations of heartbeats, each of them 
decomposed into three regions. Next, we have to select those 
points among the endpoints of these waveforms which are 
most likely the fiducial points we are looking for. This task is 
solved by the Piecewise derivative dynamic time warping 
(PDDTW) algorithm. 
    Piecewise Derivative Dynamic Time Warping (PDDTW), 
takes advantage of the fact that we can efficiently approximate 
most time series by a piecewise aggregate approximation [13] 
and use a derivative distance measure in order to reduce 
singularities and extracting higher level features [14 ]. In order 
to align two sequences Q and C, we first derive a reduced 
dimension of Q and C which we denote iQ  and iC    
respectively. Then we construct an N-by-M matrix where the 
( thth ji , ) element of the matrix contains the distance ),( ii CQd  

between the two elements iQ and iC  .  
   Next similar to [14] we choose the distance measure 

),( ji CQd   not Euclidean but rather the square of the difference 

of the estimated derivatives of iQ  and iC . We use the 
following estimate for simplicity and generality to computing 
derivatives. 
 

2
)2/)(()(][ 111 −+− −+−

= iiii
x

QQQQQD                                    (2) 

 In order to obtain such a matching, this path can be found 
very efficiently using dynamic programming to evaluate the 
following  recurrence which defines the cumulative distance 
γ (i,j) as the distance d(i,j) found in the current cell and the 
minimum of the cumulative distances of the adjacent 
elements: 
 

{ })1,(),,1(),1,1(min),(),( −−−−+= jijijiCQdji ii γγγγ               (3) 
  
The warping path which minimizes the warping cost becomes 
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Where the compression ratio c is the ratio of the length of the 
original time series to the length of its Piece wise aggregate 
approximation. Because the length of the warping path is 
measured in the same units as DTW we have: 
 

),(),( CQDTWCQPDDTW ≅                                              (5) 
 
The time complexity for a PDDTW is O(NM), where M = m/c 
and N= n/c. The time complexity for the original DTW 
algorithm is O(nm). So the speedup obtained by PDDTW 
should be O(nm)/O(MN) which is O(c2). 

   Once we have found the minimal path connecting the two 
waveforms. Similar to [5] we look for the lines in the 
reference period which are indicators of fiducial points and 
take the corresponding line of the new period. This label along 
with the time stamp is then copied to file. Fig. 4 shows how a 
sample signal is aligned and segmented using the described 
approach. 
 

 
Fig. 4   Segmenting the new incoming beat by the reference beat. The 
two beats are aligned according to the DTW matrix to each other. 
 

D. Choosing the Appropriate Reference Heartbeat  
Before aligning the heartbeats we need a reference heart-

beat. Due to the high variability between different heartbeats, 
it would acquire a very large database in order to capture all 
range of possibilities. Instead, similar to [5] we selected a 
small set of QRS(8), P waves (5), and T waves (10) to reflect 
the variations in the ECG, which combined generate 400 
possible heartbeats.  
    The main difference between this approach and equation (3) 
is the addition of an extra layer: 
 

{ }),1,(),,,1(),,1,1(min),(),( kjikjikjiCQdji ii −−−−+= γγγγ                 (6) 
 
where k represent the layer (from one to the number of waves, 
which is 5, 8, and 10, respectively). In the overlapping we 
select the previous distance over all previous layers. 
   In the case where we don’t have a waveform but instead we 
have noise, sometimes a match is made between a reference 
wave and the noise. To diminish this we set a threshold of 7 
samples as the minimum distance between a P or T top and its 
onset or offset. If this is not the case, annotations of the wave 
will not be considered.  
    Another approach in order to find adequate QRST reference 
heartbeats would be to take some of the ECG signals in the 
QT database, and perform QRST clustering to obtain suitable 
reference beats. This would be done as follows: 
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Suppose N is the number of created clusters and kn  is the 
number of beats assigned to cluster k (i.e. Ck): 
 
1) Assign the centroid of the first cluster to the first QRS 

vector, set N to 1 and 1n  to 1. 
2) Compare the next input signal vector (X) to all created 

clusters and find the nearest cluster Ck according to a  
minimum distance measure 

],1[,),()),(min(min NiXCdXCdd kfif ∈==  
3) Update centroid of cluster k, )1/()( ++= kkkk nXnCC  if 

the distance (dmin) is less than a specified threshold, 
increment kn  and go to the second step. Else, If the 
minimum distance is larger than the threshold, create a 
new cluster and increment the number of created classes 
N and go to the second step. 
 

It should be noted that we do not have any restrictions on 
distance functions, i.e., any distance function is possible. Here 
for demonstration we used the Euclidean distance measure to 
find the suitable templates. 
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where k indicates the shift between two vectors for alignment 
and B and A are the start and endpoints of the QRS complex, 
respectively. 
    So the input vectors 1x and 2x  are first modified by 
removing the dc-component and normalizing their energy. For 
example for 1x : 
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where Lj ,,0 K= . Here L is the length of the QRS feature 
vectors.  
    Next, the distance is measured between different beats in 
order to perform clustering. So at the end of this algorithm we 
will have different clusters (i.e. different reference heartbeats), 
at our disposal. Fig. 5 shows sample QRS templates extracted 
using the above approach. Then is up to the user how many 
reference beat he or she sees appropriate for the task in hand. 
    It also should be stated that one may as well perform QRST 
morphological clustering of the channel by the 1l  norm 
distance or the 1l norm normalized by the 2l norm with 
wiggling and vertical shifting to find the reference heartbeats.     
In order to further improve the quality of the extracted 
reference beats, one would classify beats to normal or 
abnormal. Because although normal beats recorded from a 
patient are usually not exactly the same as the normal beats of 
another patient, but as its almost the case, normal beats remain 
morphologically very similar to one another during the long-
run. Also, the variety of beats in normal classes is significantly 

lower than that of all classes associated with abnormal beats. 
This would indeed increase the size of the reference beat 
database and consequently the search size. So there would be a 
trade-off between accuracy and run-time.  

 
Fig. 5 Extracted QRST reference beats from 10 ECC signals from the 
database. 
 

III. RESULTS  

    The proposed approach for ECG segmentation was tested 
using the second ECG leads from the  QT database. This 
database is a mixed database with a sampling frequency of 
250 Hz, which consists of 105 excerpts (each 15 minutes long) 
taken from other ECG databases, where, 15 from MIT-BIH 
Arrhythmia Database, 6 from the MIT-BIH ST Change 
Database, 13 from the MIT-BIH Supraventricular Arrhythmia 
Database, 10 from the MIT-BIH Normal Sinus Rhythm 
Database, 33 from the European ST-T Database, 24 from 
"sudden death" patients from BIH, and 4 records from the 
MIT-BIH Long-Term ECG Database. The method was 
entirely implemented in MATLAB on a Pentium IV, 2.4 MHz 
processor.  
    One set of annotations were produced for each record.The 
results are shown in Table 1. 
 

TABLE I 
EVALUATION RESULTS 

 
    Our Method Laguna’s Method 
 Beats Me SD Beats Me SD 

onP  1821 7.23 ∗  17.79 2596 10.26 14.08 

P 1834 3.21 13.47 2626 -0.48 10.96 

endP  1834 2.43 15.01 2627 -5.73 13.57 

onQRS  2710 -5.22 3.60 ∗  3130 -9.32 4.41 

R 2710 -9.56 6.34 3130 -9.32 4.41 

endQRS  2710 -2.13 ∗  11.24 3130 -3.64 10.74 

onT  410 -11.62 28.6 ∗  1241 -16 29.82 

T 2246 -4.76 29.86 2932 23.26 28.26 

endT  2246 6.72 33.46 2996 18.68 29.79 
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Comparing the automatic waveform The last three columns are reproduced 
from [2] .Mean and Standard deviation are in milliseconds 
 
The performance of our method was based on calculating  the 
mean error (me) and the standard deviation of this error (SD) 
[15]. The mean error  determines how close is the detector’s 
criterion to the experts’. The standard deviation shows the 
stability with which the detection criterion has been 
implemented.   

IV.  CONCLUSION 
    In this paper, a new algorithm based on Piecewise 
derivative dynamic time warping has been developed for the 
automated segmentation of ECG signals. We have verified and 
validated our method for automatic ECG segmentation using 
beats from 95 different records. By taking advantage of 
dimension reduction techniques such as Piecewise aggregate 
approximation and Adaptive piecewise constant 
approximation we significantly speed up our algorithm  both 
in the preprocesing and segmentation stage . 
     The results show that  the mean error from our method is 
comparable to Laguna’s, sometimes even better, yet  the 
standard  deviation is a little bit higher. As the segmentation 
was solely on the second lead, we cannot measure the positive 
predictivity of the method.   
    We conclude that for single-lead wave boundaries 
detection, our proposed method is robust enough to give 
measures comparable to those given by experts. We could 
further expand this method to two leads, in which for each 
record to sets of annotation file would be created. First, we 
would analyze annotations from one channel, and when 
evaluation results in a record were disappointing with this 
channel’s annotations, results in the other channel  would be 
studied . 
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