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A Descent-projection Method for Solving Monotone

Structured Variational Inequalities
Min Sun, Zhenyu Liu

Abstract—In this paper, a new descent-projection method with a
new search direction for monotone structured variational inequalities
is proposed. The method is simple, which needs only projections
and some function evaluations, so its computational load is very tiny.
Under mild conditions on the problem’s data, the method is proved to
converges globally. Some preliminary computational results are also
reported to illustrate the efficiency of the method.
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I. INTRODUCTION

LET Ω be a nonempty closed convex subset of Rn, and

let F be a mapping from Rn into itself. The variational

inequality problem, denoted by VI, is to find a vector u∗ ∈ Ω,

such that

(u− u∗)⊤F (u∗) ≥ 0, ∀u ∈ Ω. (1)

Problem VI includes nonlinear complementarity problems

(when Ω = Rn
+) and system of nonlinear equations (when Ω =

Rn). VI problems find important applications in many fields,

such as mathematical programming, network economics, traf-

fic assignment, game theoretic problems, etc. In the past

decades, researchers have developed many efficient numer-

ical algorithms for solving VI problems, such as Newton-

type methods, projection-type methods. For theory, numerical

methods and applications, the interested reader is referred to

the excellent monographs of Nagurney [1] Faccinei and Pang

[2], and the references therein.

Let X ⊆ Rn and Y ⊆ Rm be given nonempty closed

convex sets; f : X → Rn and g : Y → Rm be given

continuous monotone operators. In this paper, we focus our

attention on the variational inequality problem (1) that

u =

(

x
y

)

, F (u) =

(

f(x)
g(y)

)

,

Ω = {(x, y)|x ∈ X, y ∈ Y,Ax+By = b},

where A ∈ Rr×n and B ∈ Rr×m are given matrices; b ∈ Rr

is a given vector. The above problem is denoted by VI(F,Ω).

This well-structured model captures many interesting concrete

applications in diversified problems [3].

By attaching a Lagrange multiplier vector λ ∈ Rr to the

linear constraints Ax+By = b, VI(F,Ω) can be equivalently
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transformed into the following compact form, denoted by

VI(Q,W ): Find w∗ ∈W , such that

(w − w∗)⊤Q(w∗) ≥ 0, ∀w ∈W (2)

where

w =





x
y
λ



 , Q(w) =





f(x)−A⊤λ
g(y)−B⊤λ
Ax+By − b



 ,

W = X × Y × Z, and Z = Rr.

For solving (2), the classical alternating direction method

(ADM) proposed in [4,5] plays a fundamental role, and it has

been motivating many efficient numerical algorithms[6-8,12].

As pointed in [9], an iterative method converges slowly

if its generated descent direction d(uk, βk) or the step-size

ρ(uk, βk) tend to zero. Recently, for co-coercive variational

inequalities, Yan, Han and Sun [9] proposed a self-adaptive

projection method which direction d(uk, βk) and step-size

ρ(uk, βk) don’t converge to zero. However, the condition

for the convergence of the method, i.e., the assumption of

co-coercive monotonicity, is stringent, which precludes the

application of the method in reality. To overcome it, for

pseudomonotone monotone variational inequalities, Zhang and

Liu [10], Yu, Shao and Wang [11] proposed some projec-

tion methods which either direction d(uk, βk) or step-size

ρ(uk, βk) does’t converge to zero.

Inspired by these methods [9-11] for VI problems, a

descent-projection method for solving monotone VI(Q,W ) is

proposed in this paper, which can be viewed as an combination

of the two methods proposed by Yu, Shao and Wang [11] and

Sun [12]. More specifically, we have adopted both methods’

technique to design our search direction.

The remainder of the paper is organized as follows. Some

definitions and properties used in this paper are presented

in Section 2. In Section 3, the descent-projection method is

described formally and its global convergence is proved. Some

preliminary computational results are given in Section 4 and

some conclusions are given in Section 5.

II. PRELIMINARIES

In this section, some definitions and results from the liter-

ature are presented which are used throughout the paper.

In the following, we assume that the set Z in VI(Q,W ) is

a general convex set in Rr. Let PW (·) denote the orthogonal

projection mapping from Rn+m+r onto W . It is well known

that VI(Q,W ) is equivalent to the projection equation
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e(w, β) =





e1(w, β)
e2(w, β)
e3(w, β)



 =





x− PX [x− β(f(x)−A⊤λ)]
y − PY [y − β(g(y)−B⊤λ)]
λ− PZ [λ− β(Ax+By − b)]



 .

A basic property of the projection mapping PX(·) is

(x− PX(x))⊤(x′ − PX(x)) ≤ 0, ∀x ∈ X,x′ ∈ Rn. (3)

From (3) and the Cauchy-Schwartz inequality we can see that

the projection operator PX(·) is nonexpansive, namely

||PX(x)− PX(x′)|| ≤ ||x− x′||, ∀x, x′ ∈ Rn.

Lemma 2.1.[11] For all w ∈ Rn+m+r and ρ1 > ρ2 > 0, it

holds that

‖e(w, ρ1)‖ ≥ ‖e(w, ρ2)‖ (4)

and
‖e(w, ρ1)‖

ρ1
≤
‖e(w, ρ2)‖

ρ2
. (5)

Definition 2.1. A mapping f : Rn → Rn is said to be

monotone if

(x− x′)⊤(f(x)− f(x′)) ≥ 0, ∀x, x′ ∈ Rn.

We make the following standard assumptions throughout

this paper:

Assumptions. • f and g are monotone mappings on X and

Y , respectively.

• The solution set of problem VI(G,W ), denoted by W ∗,

is nonempty.

• X and Y are simple closed convex sets. That is, the

projection onto the set is simple to carry out.

III. ALGORITHM AND CONVERGENCE

Firstly, setting ei = ei(w, β), i = 1, 2, 3, F = f(x) −
A⊤λ, G = g(y)−B⊤λ for convenience.

Lemma 3.1 Let w∗ = (x∗, y∗, z∗) ∈ W ∗ be an arbitrary

solution of VI(Q,W ),

g(w, β) :=





e1 + βf(x− e1)− βf(x) + βA⊤e3
e2 + βg(y − e2)− βg(y) + βB⊤e3

e3 − βAe1 − βBe2



 ,

then for any w = (x, y, z) ∈ Rn+m+r, we have

(w − w∗)⊤g(w, β) ≥ φ(w, β),

where φ(w, β) = ‖e(w, β)‖2 − βe⊤1 [f(x − f(x − e1)] −
βe⊤2 [g(y)− g(y − e2)].

Proof. Setting x := x − β(f(x) − A⊤λ) and x′ := x∗ in

(3), we have

{x− β[f(x)−A⊤λ]− PX [x− β(f(x)−A⊤λ)]}⊤

{PX [x− β(f(x)−A⊤λ)]− x∗} ≥ 0,

i.e.,

e⊤1 (x− x∗) ≥ ‖e1‖
2 + β[f(x)−A⊤λ]⊤[x− x∗ − e1]. (6)

From w∗ is a solution of VI(Q,W ), we get

[f(x∗)−A⊤λ∗]⊤{PX [x− β(f(x)−A⊤λ]− x∗} ≥ 0,

that is

β[f(x∗)−A⊤λ∗]⊤(x− x∗ − e1) ≥ 0. (7)

From the monotonicity of f , we obtain

β[f(x− e1)− f(x∗)]⊤(x− e1 − x∗) ≥ 0,

i.e.,

βf(x−e1)
⊤(x−x∗) ≥ βe⊤1 [f(x−e1)−f(x

∗)]+β(x−x∗)⊤f(x∗).
(8)

Adding(6)-(8), we get

(x− x∗)⊤[e1 + βf(x− e1)]
≥ ‖e1‖

2 + β(x− x∗)⊤f(x)− βe⊤1 [f(x)− f(x− e1)]
−β(x− x∗ − e1)

⊤A⊤(λ− λ∗).
(9)

In a similar way, we have

(y − y∗)⊤[e2 + βg(y − e2)]
≥ ‖e2‖

2 + β(y − y∗)⊤g(y)− βe⊤2 [g(y)− g(y − e2)]
−β(y − y∗ − e2)

⊤B⊤(λ− λ∗).
(10)

Setting x := λ − β(Ax + By − b) and x′ := λ∗ in (3), we

have

{e3 − β(Ax+By − b)}⊤[λ− λ∗ − e3] ≥ 0. (11)

From w∗ is a solution of VI(Q,W ) again, we get

β(λ− λ∗ − e3)
⊤(Ax∗ +By∗ − b) ≥ 0. (12)

Adding (11) and (12), we have

(λ−λ∗)⊤e3 ≥ ‖e3‖
2+β(λ−λ∗−e3)

⊤(Ax−Ax∗+By−By∗).
(13)

Adding (9)-(10) and (13), it follows that

(x− x∗)⊤[e1 + βf(x− e1)− βf(x)] + (y − y∗)⊤

[e2 + βg(y − e2)− βg(y)] + (λ− λ∗)⊤e3

≥ ‖e1‖
2 + ‖e2‖

2 + ‖e3‖
2 − βe⊤1 [f(x− f(x− e1)]

−βe⊤2 [g(y)− g(y − e2)]

−β(λ− λ∗)⊤(Ax+By −Ax∗ −By∗ −Ae1 −Be2)

+β(λ− λ∗ − e3)
⊤(Ax−Ax∗ +By −By∗)

= ‖e1‖
2 + ‖e2‖

2 + ‖e3‖
2

−βe⊤1 [f(x− f(x− e1)]− βe⊤2 [g(y)− g(y − e2)]

+β(λ− λ∗)⊤(Ae1 +Be2)− β(x− x∗)⊤A⊤e3

−β(y − y∗)⊤B⊤e3.

Then, we can get the assertion of this lemma from the above

inequality. This completes the proof.

Remark 3.1 g(w, β) in Lemma 3.1 is different from the

search direction d(w, β) in [12], because e3(w, β) in both

directions is different.

Now, we give the new descent-projection method.

Algorithm 3.1

Step 0: Given ε > 0. Choose w0 ∈ W and γ ∈ (0, 2),
µ, η ∈ (0, 1), L1, L2 ∈ (0, 1), and β0 = β = 1. Set k := 0;

Step 1: Compute e(wk, βk). If ‖e(wk, βk)‖ < ε, then stop;

otherwise, go to step 2.
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Step 2: Search the smallest nonnegative integer mk, βk =
βµmk , such that

βk(‖f(x
k)− f(xk − e1(w

k, βk))‖
+‖g(yk)− g(yk − e2(w

k, βk))‖) ≤ L1‖e(w
k, βk)‖.

(14)

Step 3: Calculate

ρk =
(1− L1)‖e(w

k, βk)‖
2

‖g(wk, βk) + τkQ(wk)‖2
, (15)

where τk = ‖e(wk, βk)‖/‖Q(wk)‖, g(wk, βk) is defined in

Lemma 3.1.

Step 4: Compute the new iterate

wk+1 = PW [wk − γρkd(w
k, βk)],

where

d(wk, βk) = g(wk, βk) + τkQ(wk). (16)

Step 5: If

βk(‖f(x
k)− f(xk − e1(w

k, βk))‖
+‖g(yk)− g(yk − e2(w

k, βk))‖) ≤ L2‖e(w
k, βk)‖,

(17)

then β = βk/η; else β = βk. Set k := k + 1, and go to Step

1.

Lemma 3.2[6] If w ∈ W is not a solution of VI(Q,W ),
then there exist L ∈ (0, 1) and β̄ > 0, such that for all β ∈
(0, β̄),

β(‖f(x)− f(x− e1(w, β))‖
+‖g(yk)− g(yk − e2(w

k, βk))‖) ≤ L‖e(w, β)‖.
(18)

Lemma 3.3 For any w∗ ∈W ∗, we have

(wk − w∗)⊤d(wk, βk) ≥ (1− L1)‖e(w
k, βk)‖

2. (19)

Proof. It follows from (16) that

(wk − w∗)⊤d(wk, βk)

= (wk − w∗)⊤g(wk, βk) + τk(w
k − w∗)⊤Q(wk)

≥ (wk − w∗)⊤g(wk, βk) + τ(wk − w∗)⊤Q(w∗)

≥ (wk − w∗)⊤g(wk, βk)

≥ (1− L1)‖e(w
k, βk)‖

2,

where the first inequality follows from the monotonicity of

Q(·), and the second inequality follows from w∗ ∈ W ∗, and

the last inequality follows from Lemma 3.1 and Lemma 3.2.

The proof is completed.

Lemma 3.3 indicates that −d(wk, βk) is a descent direction

of the unknown distance function ‖wk − w∗‖2/2.

From Lemma 3.1 and Lemma 3.2, it is easy to deduce that

there exist a constant ς > 0, such that

g(wk, βk) ≤ ς‖e(wk, βk)‖. (20)

Lemma 3.4 The step-size defined by (15) has a positive

bound from below. That is, there exist a constant v > 0, such

that

ρk ≥ v(1− L1), ∀k ≥ 0. (21)

Proof. Note that τk = ‖e(wk, βk)‖/‖Q(wk)‖, it follows

that

‖g(wk, βk) + τkQ(wk)‖2

= ‖g(wk, βk) +
‖e(wk, βk)‖

‖Q(wk)‖
Q(wk)‖2

= ‖g(wk, βk)‖
2 + 2

‖e(wk, βk)‖

‖Q(wk)‖
g(wk, βk)

⊤Q(wk)

+‖e(wk, βk)‖
2

≤ ‖g(wk, βk)‖
2 + 2‖e(wk, βk)‖ · ‖g(w

k, βk)‖

+‖e(wk, βk)‖
2

≤
1

v
‖e(wk, βk)‖

2,

where the last inequality follows from (19) and v = 1/(1+ς)2.

Hence, it holds that

ρk =
(1− L1)‖e(w

k, βk)‖
2

‖g(wk, βk) + τkQ(wk)‖2
≥ v(1− L1).

This completes the proof.

Theorem 3.1 The sequence of {wk} generated by Algo-

rithm 3.1 is bounded. More specifically, we have

‖wk+1−w∗‖2 ≤ ‖wk−w∗‖2−γ(2−γ)(1−L1)ρk‖e(w
k, βk)‖

2.
(22)

Proof. From the nonexpansivity of the projection operator

and w∗ ∈W ∗, we have

‖wk+1 − w∗‖2

≤ ‖wk − γρkd(w
k, βk)− w∗‖2

= ‖wk − w∗‖2 − 2γρk(w
k − w∗)⊤d(wk, βk)

+γ2ρ2k‖d(w
k, βk)‖

2

≤ ‖wk − w∗‖2 − 2γρk(1− L1)‖e(w
k, βk)‖

2

+γ2ρ2k‖d(w
k, βk)‖

2

= ‖wk − w∗‖2 − γ(2− γ)(1− L1)ρk‖e(w
k, βk)‖

2,

where the second inequality follows from (18). This completes

the proof.

Theorem 3.2 Suppose that the Assumptions hold. Then

(1) lim
k→∞

‖e(wk, βk)‖/βk = 0.

(2) The whole sequence {wk} converges to a solution of

VI(Q,W ).

Proof. Let w∗ be a solution of VI(Q,W ). From (20) and

(21), we have

γv(2− γ)(1− L1)
2‖e(wk, βk) ≤ ‖w

0 − w∗‖ < +∞,

which means that

lim
k→∞

‖e(wk, βk)‖ = 0. (23)

(1) Suppose that there is an infinite index set K0, such that

‖e(wk, βk)‖/βk ≥ ε > 0. ∀k ∈ K0. (24)

From (22), we have,

lim
k→∞,k∈K0

βk = 0.
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From the bound of {wk}, we have that {f(xk) −
A⊤λk}, {g(yk) − B⊤λk} are also bounded. From the non-

expansivity of the projection operator, we have

‖xk − PX [xk − βk(f(x
k)−A⊤λk)/µ]‖

≤ βk‖f(x
k)−A⊤λk‖/µ→ 0,

‖yk − PY [y
k − βk(g(y

k)−B⊤λk)/µ]‖

≤ βk‖g(y
k)−B⊤λk‖/µ→ 0.

By the choice of βk we know that is not satisfied for mk− 1.

That is,

‖f(xk)− f(PX [xk − βkF
k/µ])‖

+‖g(yk)− g(PY [y
k − βkG

k/µ])‖

> L1
‖e(wk, βk/µ)‖

βk/µ
,

where F k = f(xk) − A⊤λk and Gk = g(yk) − B⊤λk. Let

k ∈ K0 and set k →∞, and we get

0 ← ‖f(xk)− f(PX [xk − βkF
k/µ])‖

+‖g(yk)− g(PY [y
k − βkG

k/µ])‖

> L1
‖e(wk, βk/µ)‖

βk/µ

≥ µL1
‖e(wk, βk)‖

βk

.

This contradicts with (23). Thus the assertion of (1) holds.

(2) We divide our proof into two cases: lim
k→∞

supβk > 0

and lim
k→∞

βk = 0.

(i) There is ǫ0 > 0 and an infinite set K1, such that βk ≥ ǫ0.

If k ∈ K1. From (4), we have ‖e(wk, βk)‖ ≥ ‖e(w
k, ǫ0)‖, if

k ∈ K1. Combining (22), we get

‖e(wk, ǫ0)‖ → 0.

Since {wk} is bounded, it has a cluster point w̄ ∈ W such

that‖e(w̄, ǫ0)‖ = 0. That is, w̄ is a solution of VI(Q,W ). From

Theorem 3.1, we have

‖wk+1 − w̄‖ ≤ ‖wk − w̄‖.

Thus the whole sequence {wk} converges to w̄, a solution of

VI(Q,W ).

(ii) For sufficiently large k, from (5), we have

‖e(wk, βk)‖

βk

≥ ‖e(wk, 1)‖.

From (1) of this theorem and the above inequality, we get

‖e(wk, 1)‖ → 0.

The remainder is similar to the proof in (i). This completes

the proof.

IV. PRELIMINARY COMPUTATIONAL RESULTS

In this section, we implemented Algorithm 3.1 in MATLAB

and tested it on a PC.

Problem 4.1 We consider the following optimization prob-

lem:

min
1

2
‖f(x)‖2 +

1

2
‖g(y)‖2

s.t x− y = 0,

x ≥ 0, y ≥ 0.

The KKT condition of the above problem is the following

variational inequality: Find w∗ = (x∗, y∗, z∗)⊤ ∈ W such

that






(x− x∗)⊤(f(x∗)− z∗) ≥ 0,
(y − y∗)⊤(g(y∗) + z∗) ≥ 0,
x∗ − y∗ = 0,

∀w ∈W, (25)

where

W = Rn
+ ×Rn

+ ×Rn.

The problem (24) is the special case of problem VI(Q,W )

for A = In, B = −In, and b is a zero vector of order n.

c = rand(n, 1), rand(n, 1) is the Matlab function producing a

vector with random entries.

In the following numerical experiments, we set L1 =
0.4, L2 = 0.6, γ = 1.98, µ = 0.7, w0 = 0.

Problem 4.2 In (24), we take A = rand(n) and B =
−rand(n).

TABLE I
NUMERICAL RESULTS OF ALGORITHM 3.1 APPLIED TO PROBLEM 4.1.

Problem size n No. of iter. CPU time(s) Error

10 78 0.0401 2.8929×10−7

50 82 0.0701 1.6979×10−7

100 91 0.1102 2.3856×10−7

300 88 2.8441 4.7576×10−7

500 89 7.0301 5.7576×10−7

TABLE II
NUMERICAL RESULTS OF ALGORITHM 3.1 APPLIED TO PROBLEM 4.2.

Problem size n No. of iter. CPU time(s) Error

10 73 0.0100 9.0246×10−7

50 87 0.0300 9.5531×10−7

100 228 0.2303 9.5993×10−7

300 933 28.3408 9.8335×10−7

Table 1 and Table 2 show the computational results. There,

we report the number of iterations it takes to convergence,

the run time in seconds, and the error ‖e(wk, βk)‖. Numerical

results show that the suggested method is effective for the

problems considered here.

V. CONCLUSION

In this paper, we observe a new descent direction at

each iteration, and present a descent-projection method for

monotone structured variational inequalities. Under some mild

conditions, we proved the global convergence of the two new

methods. Some preliminary computational results illustrated

the efficiency of the proposed method.
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