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Efficient Detection Using Sequential Probability
Ratio Test in Mobile Cognitive Radio Systems

Yeon-Jea Cho, Sang-Uk Park, Won-Chul Choi and Dong-Jo Park

Abstract—This paper proposes a smart design strategy for a
sequential detector to reliably detect the primary user’s signal,
especially in fast fading environments. We study the computation
of the log-likelihood ratio for coping with a fast changing received
signal and noise sample variances, which are considered random
variables. First, we analyze the detectability of the conventional
generalized log-likelihood ratio (GLLR) scheme when considering
fast changing statistics of unknown parameters caused by fast fading
effects. Secondly, we propose an efficient sensing algorithm for
performing the sequential probability ratio test in a robust and
efficient manner when the channel statistics are unknown. Finally,
the proposed scheme is compared to the conventional method with
simulation results with respect to the average number of samples
required to reach a detection decision.

Keywords—Cognitive radio, fast fading, sequential detection, spec-
trum sensing.

I. INTRODUCTION

SPECTRUM sensing is a core concept of cognitive radio

networks [3], [4] for ensuring that cognitive radios do not

cause harmful interference to primary user networks. Much

of the related research on sensing and detection methods [5],

[6] has already been conducted including sequential method

devised by Wald [2]. In this paper, we consider the sequential

method to reduce the average number of samples required to

reach a detection decision by using the sequential probability

ratio test (SPRT) and a practical energy detector. Spectrum

sensing for cognitive radio systems considering fast fading is

of interest in mobile communication research. The cooperative

sequential detection scheme for reducing the average sensing

time in cognitive radio networks has been well studied by

Qiyue Zou [1]; composite hypotheses using the generalized

log-likelihood ratio (GLLR) are well handled in [1] in terms

of independent and identically distributed (i.i.d.) samples ac-

quired by the detector.

In this paper, we use an energy detector for SPRT; the

sensing is based on the difference between the received signal

and noise variances. Therefore, the statistics of the acquired

signal and noise samples depend on the received signal and

noise power level, respectively. Here, we design the sequential

detector for spectrum sensing when the samples acquired by

cognitive radios are independent but not identically distributed

(i.n.i.d.). This is called fast fading and is caused by the effect

of fast changing channel characteristics in mobile cognitive

radio systems. More generally, we allow not only the received
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signal statistics but also the noise statistics to be fast changing

due to noise power uncertainty and characteristics of the

mobile radio system.

Throughout this paper, we adopt a system model similar

to that in [1] that consists of M cognitive radios and assume

that the nth acquired sample by the mth (m=1,2,. . . ,M )

cognitive radio is a zero mean Gaussian random variable with

received signal and noise variances v1,m (n) and v0,m (n)
(v1,m (n) > v0,m (n)), i.e.,

Hi : xm [n] ∼ 1√
2πvi,m (n)

exp

(
− (xm [n])

2

2vi,m (n)

)
, i = 0, 1,

(1)

where the two hypotheses are defined as

H0 : target signal is absent

H1 : target signal is present.

The nth instantaneous sample variances under H0 and H1

are v0,m (n) and v1,m (n), respectively. In this fast fading en-

vironment, unknown instantaneous variances v0,m (n) ∈ V0,m

and v1,m (n) ∈ V1,m are considered to be random variables for

n=1,2,. . . ,N and m=1,2,. . . ,M whose statistics are determined

from the channel characteristics, and p (v0,m) and p (v1,m)
are the probability density functions of v0,m (n) and v1,m (n),
respectively.

We assume that the parameter spaces V0,m and V1,m are

disjoint, where

V0,m = {x|L0,m ≤ x ≤ U0,m} (2)

and

V1,m = {y|L1,m ≤ y ≤ U1,m} . (3)

The distributions of vi,m (n) (n=1,2,. . . ,N ) by the same

cognitive radio are the same over the long term. But, the

distributions of vi,m (n) (m=1,2,. . . ,M ) between the other

cognitive radios can be different from each other. Under H0

and H1, the distributions of the acquired signal at the mth

radio are characterized by the probability density functions

p0,m (xm [n] ; v0,m (n)) and p1,m (xm [n] ; v1,m (n)), respec-

tively.

II. SEQUENTIAL DETECTION IN FAST FADING

ENVIRONMENTS

A. Sequential Detection using GLLR

As explained in Section I, the received signal and noise

variances change continuously during sensing. In this fast

fading environment, an ideal sequential probability ratio test
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(SPRT) must perform the following test:

1) The mth(m=1,2,. . . ,M ) cognitive radio acquires sample

xm [N ] and computes ln
(

p1,m(xm[N ];v0,m(N))
p0,m(xm[N ];v0,m(N))

)
.

2) The base station updates the sequential log-likelihood

ratio LLRideal
N according to

LLRideal
N

= LLRideal
N−1 +

M∑
m=1

ln

(
p1,m (xm [N ] ; v0,m (N))

p0,m (xm [N ] ; v0,m (N))

)
.

(4)

3) If LLRideal
N ≤ δ0, H0 is accepted; if LLRideal

N ≥ δ1,

H1 is accepted, where δ0 and δ1 are conceptual thresh-

olds.

4) Otherwise, take one more sample and repeat 1) to 4).

However, vi,m (n) (i=0,1, m=1,2,. . . ,M , n=1,2,. . . ,N ) is

not a deterministic value but a random variable, so an exact

computation of LLRideal
N is impossible. Thus, we try to

perform the SPRT using the GLLR by replacing vi,m (n) with

their maximum likelihood estimates and we analyze how this

scheme works with respect to the robustness of this sensing

method. We have

GLLRN =
N∑

n=1

M∑
m=1

ln

⎛
⎝p1,m

(
xm [n] ; ŷ

(N)
m

)
p0,m

(
xm [n] ; x̂

(N)
m

)
⎞
⎠ , (5)

where x̂
(N)
m and ŷ

(N)
m are the maximum likelihood estimates

of xm and ym, i.e.,

x̂
(N)
m = argmax

xm∈V0,m

N∑
n=1

ln p0,m (xm [n] ;xm)

ŷ
(N)
m = argmax

ym∈V1,m

N∑
n=1

ln p1,m (xm [n] ; ym).

Although the acquired samples are not identically dis-

tributed (received signal and noise variances are not fixed) in

fast fading environments, the maximum likelihood estimates

converge to the following values:

1) under H0, x̂
(N)
m converges to E {v0,m (n)} and ŷ

(N)
m

converges to L1,m.

2) under H1, x̂
(N)
m converges to U0,m and ŷ

(N)
m converges

to E {v1,m (n)}.

For example, under H0, Fig. 1 shows the convergence of

the maximum likelihood estimate of xm. The first figure shows

that the instantaneous noise variance v0,m (n) for n=1,2,. . . ,N
is fast changing according to the each sample time n. The

second figure shows that, in this environment, the maximum

likelihood estimate x̂
(N)
m converges to E {v0,m}. The corre-

Fig. 1. The convergence of the maximum likelihood estimate of xm. The first
figure shows that the instantaneous noise variance v0,m (n) for n=1,2,. . . ,N
is fast changing and the second figure shows that the maximum likelihood

estimate x̂
(N)
m converges to E {v0,m (n)}. v0,m (n) has a uniform distri-

bution and the above grey horizontal line indicates E {v0,m (n)} (= 0.85).
V0,m = {x|0.8 ≤ x ≤ 0.9}.

sponding proof of the above concepts is following:

x̂(N)
m = argmax

xm∈V0,m

N∑
n=1

ln p0,m (xm [n] ;xm)

= argmax
xm∈V0,m

Ev0,m

{
1

N

N∑
n=1

ln p0,m (xm [n] ;xm)

ln p0,m (xm [n] ; v0,m (n))

}

(6)

The distributions of xm [n] (n=1,2,. . . ,N ) depend on the

nth instantaneous signal variance v0,m (n), respectively. By

the law of large numbers, as N → ∞,

Ev0,m

{
1

N

N∑
n=1

ln

(
p0,m (xm [n] ;xm)

p0,m (xm [n] ; v0,m (n))

)}

= Ev0,m

{∫
p0,m (xm [n] ; v0,m (n))

× ln

(
p1,m (xm [n] ;xm)

p0,m (xm [n] ; v0,m (n))

)
dxm [n]

}

=
1

2

(
E {ln v0,m (n)} − E {v0,m (n)}

xm
− lnxm + 1

)
.

(7)

Then, we differentiate the above result with respect to xm to

find x̂
(N)
m .

d

dxm
Ev0,m

{
1

N

N∑
n=1

ln

(
p0,m (xm [n] ;xm)

p0,m (xm [n] ; v0,m (n))

)}

=
E {v0,m (n)}

2xm
2

− 1

2xm
= 0,

(8)

From the above equation, the solution is E {v0,m (n)}.

Therefore, under H0, x̂
(N)
m converges to E {v0,m (n)},

ŷ
(N)
m converges to L1,m by the pre-known bound from
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the parameter spaces, and the corresponding GLLRN,m

is expressed by
∑N

n=1 ln
(

p1,m(xm[n];L1,m)
p0,m(xm[n];E{v0,m})

)
. Similarly,

under H1, x̂
(N)
m converges to U0,m, ŷ

(N)
m converges to

E {v1,m (n)}, and the corresponding GLLRN,m is expressed

by
∑N

n=1 ln
(

p1,m(xm[n];E{v1,m})
p0,m(xm[n];U0,m)

)
. Thus, we can compute the

expectation of the related log-likelihood ratio to verify the

distinguishability of two hypotheses as in the following:

EH0

{
ln

(
p1,m (xm [n] ;L1,m)

p0,m (xm [n] ;E {v0,m})
)}

=

∫
p (v0,m) ·

∫
p0,m (xm [n] ; v0,m (n))

× ln

(
p1,m (xm [n] ;L1,m)

p0,m (xm [n] ;E {v0,m})
)
dxm [n] dv0,m

=
1

2

(
ln

E {v0,m}
L1,m

− E {v0,m}
L1,m

+ 1

)
< 0,

(9)

where E {v0,m} < L1,m.

Similarly,

EH1

{
ln

(
p1,m (xm [n] ;E {v1,m})
p0,m (xm [n] ;U0,m)

)}

=

∫
p (v1,m) ·

∫
p1,m (xm [n] ; v1,m (n))

× ln

(
p1,m (xm [n] ;E {v1,m})
p0,m (xm [n] ;U0,m)

)
dxm [n] dv0,m

=
1

2

(
− ln

E {v1,m}
U0,m

+
E {v1,m}
U0,m

− 1

)
> 0,

(10)

where E {v1,m} > U0,m.

The conditions (9) and (10) guarantee that the two hy-

potheses are also distinguishable by using the conventional

GLLR scheme in fast fading environments and also ensure

the detectability by [1, Lemma 2.1].

B. Efficient detection with unknown p (v0,m) and p (v1,m)

It is known that we do no use the conventional GLLR

scheme, to select the proper received signal and noise vari-

ances, which are used to compute LLR∗
N,m for the SPRT to

also ensure conditions (9) and (10). Here, we define

LLR∗
N,m =

N∑
n=1

ln

(
p1,m (xm [n] ; y∗m)

p0,m (xm [n] ;x∗
m)

)
, (11)

where the representative values x∗
m and y∗m are set by force.

If p (v0,m) and p (v1,m) are known, it may be possible to

choose optimal x∗
m and y∗m values with respect to the average

number of samples required to reach a detection decision. In

real mobile systems, it can be very difficult to find the exact

probability density functions of v0,m and v1,m. Therefore, we

propose a practical sensing algorithm to efficiently cope with

unknown p (v0,m) and p (v1,m).
The proposed sequential sensing algorithm is efficiently

applicable to fast fading environment and is summarized

in Algorithm 1. We verified that the conventional SPRT

Algorithm 1 The Proposed Cooperative Sequential Sensing

Algorithm in Fast Fading Environment

0: Mode1(initial state)
1: Set η0 and η1 are pre-defined values.

2: The mth (m=1,2,. . . ,M ) cognitive radio performs

the SPRT by using the GLLR.

3: When H0 is accepted, store the samples acquired by

the mth (m=1,2,. . . ,M ) cognitive radio and accumu-

late these samples in tmp
(0)
m .

4: When H1 is accepted, store the samples acquired by

the mth (m=1,2,. . . ,M ) cognitive radio and accumu-

late these samples in tmp
(1)
m .

5: If the total number of samples in tmp
(0)
m is larger

than η0 and the total number of samples in tmp
(1)
m

is larger than η1, go to Mode2.

6: Otherwise, repeat steps 2 to 6.

7: Mode2(The use of LLR∗
N,m)

8: Compute

x̂
(η0)
m = argmax

xm∈V0,m

∑η0

n=1 lnp0,m

(
x
(m)
tmp0

[n] ;xm

)
by using the samples in tmp

(0)
m .

9: Compute

ŷ
(η1)
m = argmax

ym∈V1,m

∑η1

n=1 lnp1,m

(
x
(m)
tmp1

[n] ; ym

)
by using the samples in tmp

(1)
m .

10: Use the values x∗
m and y∗m to compute

LLR∗
N,m =

∑N
n=1 ln

(
p1,m(xm[n];y∗

m)
p0,m(xm[n];x∗

m)

)
,

where x∗
m = x̂

(η0)
m and y∗m = ŷ

(η1)
m .

11: The mth (m=1,2,. . . ,M ) cognitive radio performs

the SPRT by using the LLR∗
N,m.

12: When H0 is accepted, update the samples in tmp
(0)
m .

13: When H1 is accepted, update the samples in tmp
(1)
m .

14: If initialization command is executed, go to Mode1.

15: Otherwise, repeat steps 8 to 15.

using the GLLR is a detectable scheme especially in fast

fading environments in Section II. A, from that fact, it is

possible to perform the SPRT in the initial state by using

the GLLR. In Mode1, tmp
(0)
m and tmp

(1)
m play an important

role of accumulating samples needed to obtain the maximum

likelihood estimates x̂
(η0)
m and ŷ

(η1)
m , where both η0 and η1

are the number of samples needed to obtain highly accurate

estimates. In Mode2, x̂
(η0)
m and ŷ

(η1)
m are obtained from the

samples in tmp
(0)
m and tmp

(1)
m , respectively, where

x̂(η0)
m = max

{
min

{
1

η0

η0∑
n=1

(
x
(m)
tmp0

[n]
)2

, U0,m

}
, L0,m

}
,

(12)

ŷ(η1)
m = max

{
min

{
1

η1

η1∑
n=1

(
x
(m)
tmp1

[n]
)2

, U1,m

}
, L1,m

}
.

(13)

If η0 and η1 are large enough, x̂
(η0)
m and ŷ

(η1)
m converge to

E {v0,m (n)} and E {v0,m (n)}, respectively. This fact is also
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Fig. 2. Sequential detection in fast fading environments under H0. The
simulation parameters are listed in Table I and the detection thresholds δ0 and
δ1 in the sequential method are determined through computer experiments.

proved in Section II. A. That is,

LLR∗
N,m ≈

N∑
n=1

ln

(
p1,m (xm [n] ;E {v1,m})
p0,m (xm [n] ;E {v0,m})

)
. (14)

Basically, the mobile radio signal consists of a fast fading

signal superimposed on a local mean value which remains

constant over a small area. However, when the local mean

value varies slowly, the samples in tmp
(0)
m and tmp

(1)
m are

continuously updated as in steps 12 and 13 in Algorithm 1.

In this proposed algorithm, we assume that false alarm and

miss detection probabilities are sufficiently small such that the

effect of unreliable samples induced by a false alarm and miss

detection is negligible on calculating x̂
(η0)
m and ŷ

(η1)
m .

III. SIMULATION RESULTS

To illustrate the efficiency of the proposed algorithm, sim-

ulations are conducted with respect to the average number

of samples required to reach a detection decision. In this

simulation, cooperative sensing using a sequential method is

performed with four cognitive radios (M = 4). The simulation

parameters needed to describe the fast fading environments

and used to determine η0 and η1 values are listed in Table

I, and the received signal and noise variances v1,m (n) and

TABLE I
THE SIMULATION PARAMETERS

m=1 m=2 m=3 m=4

L0,m 0.64 0.75 0.72 0.69

U0,m 0.90 0.87 0.82 0.85

L1,m 0.90 0.90 0.87 0.86

U1,m 1.15 1.18 1.02 0.99

η0 1000 1000 1000 1000

η1 1000 1000 1000 1000

Fig. 3. Sequential detection in fast fading environments under H1. The
simulation parameters are listed in Table I and the detection thresholds δ0 and
δ1 in the sequential method are determined through computer experiments.

v0,m (n) have a uniform distribution. Monte Carlo simulations

are performed in both Mode1 and Mode2 for various values of

δ0 and δ1 to find the thresholds that guarantee the pre-defined

false alarm and miss detection constraints α and β. We use

different values of δ0 and δ1 for different α = β because δ0 and

δ1 depend on α and β [1]. The simulation results are shown in

Fig. 2 and Fig. 3 under H0 and H1, respectively. Figure 2 and

Figure 3 show that Mode2 using LLR∗
N,m is more efficient

than Mode1 using GLLRN [1] in fast fading environments

with respect to average number of samples required to reach

a detection decision. In addition, Mode2 in Algorithm 1 has

less computational complexity namely, O (MN) than Mode1,

which has computational complexity O
(
MN2

)
.

IV. CONCLUSION

We have proposed an efficient sensing algorithm to cope

with fast fading by the mode change method. In Section II, we

analyzed how the SPRT using the GLLR works with respect

to the robustness of a sensing method, and then we proposed

a more efficient sensing algorithm applicable to cognitive

radio networks considering fast fading effect. Our simulation

results show that Mode2 using LLR∗
N,m is more efficient

than Mode1 using GLLRN in fast fading environments with

respect to average number of samples required to reach a

detection decision. This paper can also give some intuition

when studying a similar system model.
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