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Abstract—The world economic crises and budget constraints 

have caused authorities, especially those in developing countries, to 
rationalize water quality monitoring activities. Rationalization 
consists of reducing the number of monitoring sites, the number of 
samples, and/or the number of water quality variables measured. The 
reduction in water quality variables is usually based on correlation. If 
two variables exhibit high correlation, it is an indication that some of 
the information produced may be redundant. Consequently, one 
variable can be discontinued, and the other continues to be measured. 
Later, the ordinary least squares (OLS) regression technique is 
employed to reconstitute information about discontinued variable by 
using the continuously measured one as an explanatory variable. In 
this paper, two record extension techniques are employed to 
reconstitute information about discontinued water quality variables, 
the OLS and the Line of Organic Correlation (LOC). An empirical 
experiment is conducted using water quality records from the Nile 
Delta water quality monitoring network in Egypt. The record 
extension techniques are compared for their ability to predict 
different statistical parameters of the discontinued variables. Results 
show that the OLS is better at estimating individual water quality 
records. However, results indicate an underestimation of the variance 
in the extended records. The LOC technique is superior in preserving 
characteristics of the entire distribution and avoids underestimation 
of the variance. It is concluded from this study that the OLS can be 
used for the substitution of missing values, while LOC is preferable 
for inferring statements about the probability distribution.  
 

Keywords—Record extension, record augmentation, monitoring 
networks, water quality indicators.  

I. INTRODUCTION 
HE quality of a water body is usually described by sets of 
physical, chemical, and biological variables, which are 

mutually interrelated. Water quality can be defined in terms of 
one variable to hundreds of compounds. Many researchers 
recognize that it is impossible to measure everything in the 
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environment and that some logical means of selecting 
variables to measure must be part of every water quality 
information system [20]. Consideration should be given to 
reducing the number of variables sampled without substantial 
loss of information. Fewer variables make it easier to analyze 
and establish dependencies or correlations between various 
water quality variables, saving time and effort [19].  

The literature reveals that correlation and regression 
analyses are commonly used to reduce the number of variables 
being measured. Correlation analysis is used to assess the 
level of association among the measured variables. If two 
variables show high correlation, it is an indication that some 
of the information produced may be redundant. Consequently, 
the measurement of one variable may be discontinued while 
maintaining the other. A regression technique is then used to 
reconstitute information about the discontinued variable using 
the continuously measured one as an explanatory variable. 

Several previous studies have shown that the concentration 
of major ionic constituents can be related to specific 
conductance (e.g., [3, 15]). Specific conductance can serve as 
an indicator from which concentrations of major ionic solutes 
can be determined, as long as suitable regression functions can 
be found [18]. Yevjevich and Harmancioglu [23] investigated 
the transfer of information by bivariate correlations between 
daily water quality variables observed along the Upper 
Potomac River Estuary, USA. Their objective was to 
determine pairs of variables that are strongly correlated, in 
order to select variables that should be sampled and variables 
that can be estimated. Harmancioglu and Yevjevich [8, 9] 
studied the effects of removing deterministic components 
(trends, periodicity, and stochastic dependence) in order to 
understand the effects of these characteristics on the amount 
of information transfer. They concluded that basic similarities 
in deterministic components are the main contributors to the 
information transfer. 

The use of regression analysis often results in an 
underestimation of the variance in extended records [1]. In 
addition, if the technique used for record extension introduces 
a bias into the value of more extreme order statistics, this will 
lead to bias in the estimates of the probability of exceedaance 
of selected extreme values or, conversely, bias in the 
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estimation of distribution percentiles [11]. In water quality, 
one may be interested not only in statistical moments but also 
in percentiles, which are used to assess compliance with 
standards or objectives. The line of organic correlation (LOC) 
was proposed as a linear fitting procedure in hydrology by 
Kritskiy and Menkel [12] and was applied to geomorphology 
by Doornkamp and King [4]. The line has also been called the 
"Maintenance of Variance Extension" or MOVE [11]. The 
LOC is widely applied to stream flow record extension at 
short-gauged stations (e.g., [11, 16, and 22]). The main 
advantage of the LOC is that the cumulative distribution 
function of the predictions, including the variance and 
probabilities of extreme events such as floods and droughts, 
estimates those of the actual records they are generated to 
represent [10]. 

The main goal of this study is to assess the usefulness of 
both the OLS and LOC techniques in reconstituting 
information about discontinued water quality variables. In the 
following section, methods and material are provided. The 
results obtained are presented and discussed in section 5. 
Finally, conclusions are presented in section 6.  

II. MATERIALS AND METHODS 
This section consists of three subsections. In the first 

subsection, a theoretical background is provided. The second 
subsection gives a description of the Nile Delta water quality 
monitoring network. The third subsection details the empirical 
experiment.  

A. Theoretical Background 
Assume that the measured variable y  has 1n  years of data, 

and the measured variable x  has 21 nn +  years, of which 1n  
are concurrent with the data observed for y , illustrated as 
follows: 
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For water quality variables reduction, one can consider that 

the assessment and selection occurred in year 1n . After 1n  
years, the measurement of variable y  is discontinued, and the 

variable x  continues to be measured. Assume that after 2n  
years, it is desired that information be reconstituted about the 
variable y . To estimate records of the discontinued variable 

y  for the period 11 +n  through 2n  years, simple linear 
regression of y  on x  can be used. 

 
ii bxay +=ˆ              (1) 

 

where 
iŷ  is the estimated value of y for i = n1+1,….n2, and a 

and b are the constant and slope of the regression equation, 
respectively. The parameters a and b are the values that 

minimize the squared error in the estimated y values. The 
solution of a and b is found by solving the normal equations 
[5]. The optimal solution to equation 1 is: 

 
)()(ˆ 1111 xxssryy ixyi −+=           (2) 

 

Regression analysis often underestimates the variance in 
extended records [1]. Matalas and Jacobs [14] demonstrated 
that unbiased estimates of mean and variance are achieved if 
the following equation is used: 
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where α is a constant that depends on n1 and n2 (see Hirsch, 
[11]), r is the product-moment correlation coefficient between 
the n1 concurrent measurements of x and y, and ei is a normal 
independent random variable with a zero mean and unit 
variance. However, due to the presence of an independent 
noise component (ei), the problem in using equation 3 is that 
studies of the same sequence of x and y by different 
investigators will almost surely lead to different values of 

iŷ  
[1, 11]. 

An alternative to linear regression is to specify that the 
extension equation must be of the form given in equation 1, 
but that a and b are to be set not to minimize the squared 
error, but rather to maintain the sample mean and variance. 
The idea which leading to the development of LOC was to 
find the values of a and b in equation 1 that satisfy the 
following equations [11]: 
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One such solution is: 
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In spite of the obvious similarity between equations 2 and 

6, it should be recognized that they have completely different 
origins [11]. If the OLS equation were used to estimate water 
quality variable, the variance of the resulting estimates would 
be smaller than it should be by a factor of r2. OLS reduces the 
variance of estimates because the OLS slope is a function not 
only of the ratio of the standard deviations (sy/sx) but also of 
the magnitude of the correlation coefficient. r Only when 
absolute r =1 do OLS estimates possess the same variance as 
would be expected based on the ratio of variances for the 
original data. 

When r = 0, there is no relationship between y and x. The 
slope then equals 0, and all OLS estimates would be identical 
and equal to y . The variance of the estimates is also zero. As 
r2 decreases from 1 to 0, the variance of OLS estimates is 
proportionately reduced [10]. This variance reduction is 
eliminated from the LOC by removing the correlation 
coefficient from the regression equation. The estimates 
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resulting from the LOC have a variance that is proportional to 
the ratio of the variances (sy 

2/sx
2) from the original data. 

Consider the situation in which a dependent variable y is to 
be estimated from values of an explanatory variable x. Slope 
and intercept estimates for the OLS equation are obtained by 
minimizing the sum of squares of residuals in units of y. Thus, 
its purpose is to minimize errors in the y direction only, 
without regard to errors in the x direction [10]. In contrast, 
situations occur in which it is just as likely that x should be 
estimated from y. It is easy to show that the two possible OLS 
lines (y on x and x on y) have different slopes. Assume that we 
are interested in estimating x from y; the regression model can 
be shown as follows: 

 

)()(ˆ 1111 yyssrxx iyxi −+=                 (7) 

 
By solving this equation to estimate y: 
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r

yy ixyi −+=               
(8) 

 Thus, the slope is )*1( 11 xy ssr , which is not equal to the 
slope shown in equation 2. The two regression lines will 
therefore differ unless the correlation coefficient r equals 1. 
When only a single line describing the functional relationship 
between two variables is desired, the OLS line is not the 
appropriate approach. Neither OLS line uniquely or 
adequately describes that relationship. However, the LOC has 
a unique solution, which is one of its advantages. The LOC 
describes the functional relationship between two variables, 
and one can use it to estimate both sides. 

B. Nile Delta Drainage WQM Network  
The drainage system in the Nile Delta is composed of 22 

catchment areas. Depending on their quality, effluents are 
either discharged into the Northern Lakes or pumped into 
irrigation canals at 21 sites along the main drains to augment 
freshwater supplies [6]. Numerous programs have been 
developed in the past to monitor the quality of the Nile water 
and agricultural drainage water in Egypt. In 1977, the 
National Water Research Center (NWRC) began to monitor a 
few volumetric and qualitative water parameters 
(predominantly concerning salinity) in several major Nile 
Delta drains. Since 1997, the NWRC has continuously 
expanded its monitoring activities to include an ever-
increasing number of sampling sites and water quality 
variables. Thirty-three water quality variables are measured 
monthly at 94 sites in the Nile Delta drainage system (Fig. 1). 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 The Nile Delta drainage system water quality monitoring 
network 

 
Four water quality variables are selected for this study, the 

Specific Conductance (EC), Total Dissolved Solids (TDS), 
Sodium (Na), and Chloride (Cl). The selection of the four 
water quality variables is based on the evaluation and redesign 
of the National Water Quality Monitoring Network carried out 
in 2001 [17], where a high correlation was shown to exist 
between these variables. Data available for the selected 
variables at the 94 monitoring locations from August 1997 to 
July 2007 are used in this study. 

C. Empirical Experiment  
Three different models are considered to estimate TDS, Na, 

and Cl using EC as an explanatory variable. An empirical 
experiment is designed to examine the utility of the two 
extension techniques for preserving the statistical 
characteristics of the discontinued water quality variables. In 
order to evaluate the performance of the two record extension 
techniques, a cross-validation (jackknife) method is applied. 
In cross-validation, records of two years are removed from the 
available ten years of data. All possible successive or non-
successive two years are considered. Thus, C(10, 2)= 45 
possible combinations are considered. The records for the 
removed two years are then estimated using the two record 
extension techniques calibrated with the remaining eight 
years.  

The experimental design is as follows. For each of the three 
selected models at the 94 monitoring sites, the two record 
extension techniques are applied. Thus, 12,690 (94 locations x 
3 models x 45 different sample combinations = 12,690) 
different realizations of extended water quality variable 
records are generated.  

Water quality variables generally exhibit a positive skew [2, 
7, 13], which is also confirmed by the preliminary analysis of 
the four selected variables. Consequently, the two record 
extension techniques are applied to the logarithms of the water 
quality variables.  

Evaluation of the estimated records by the two extension 
techniques is comprised of three components. The first 
component involves testing the residual series for normality 
and serial correlation. An assumption associated with the 
record extension techniques is that the residual series is 
random and approximates a normal distribution. The 
normality of residuals is tested on the log-transformed 
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generated time series to determine whether the log-
transformed parent series is normally distributed. The 
Shapiro-Wilk test for normality is applied to the residuals 
generated from each of the trials. Autocorrelation of residuals 
is an indicator of model inadequacy, which may arise when 
the model does not accounting for time-varying factors. In 
linear regression, autocorrelation of residuals increases the 
uncertainty associated with the estimated parameters; the 
mean square error (MSE) may underestimate the variance of 
the error terms and the confidence interval, so the tests on 
model parameters are no longer strictly applicable [21].  

The second evaluation component involves the ability of 
the record extension techniques to estimate water quality 
concentration records with minimum errors. The 
Multiplicative Mean Error (MME) and the Normalized Mean 
Error (NME) are applied to individual estimated concentration 
records; the MME and NME are defined as: 
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where iŷ  and iy  are the estimated and measured values of 
the dependent variable for i=n1+1,….n2, respectively. The 
MME of the logarithms is equal to the geometric mean of 
( yŷ ), and thus, MME values equal to unity indicate an ideal 
performance of the record extension technique. The MME is 
applied to the logarithms of the extended records, while the 
NME is applied to the reverse transformed records. 

The third evaluation component involves determining the 
ability of the extension techniques to reproduce different 
statistical parameters of the water quality concentrations 
during the extension period. The deviation of a statistical 
parameter (calculated from the estimated records) from the 
target value (calculated from the observed records), expressed 
as a fraction of the target value, is calculated for each of the 
12,690 trials, and the fraction deviation is defined as follows: 
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where fkj(t) is the fractional deviation of the calculated statistic 
vkj(t) from the target value tarj(t) for trial (t), the statistical 
parameter is j, and the extension technique is k. For each 
record extension technique, the average fractional deviation is 
calculated over the 12,690 trials for each of the following 
statistical parameters: 
 

• The cross-correlation between the estimated and 
observed concentrations; 

o The target value is 1, which would correspond 
to a perfect correlation. 

• The lag-1 autocorrelation of the estimated 
concentrations; 

o The target value is the lag-1 autocorrelation of 
the observed concentrations. 

• The mean value of the estimated concentrations; 
o The target value is the mean value of the 

observed concentrations. 
• The variance of the estimated concentrations; 

o The target value is the variance of the observed 
concentrations. 

 
The full range of non-exceedance percentiles from the 5th 

percentile to the 95th percentile is compared to target values 
during the extension period. A ratio U of each statistic for the 
extended records to that for the observed records is computed. 
The ratio U is used to assess the performance of the record 
extension techniques in preserving the historical 
characteristics. If the ratio U for a given statistical parameter 
is larger than 1, then the applied technique overestimates this 
statistic. If it is less than 1, the technique underestimates the 
target statistic. The ratio U is used to compare statistical 
parameters with the target equivalent. Additionally, the MME 
and NME are computed for different non-exceedance 
percentiles during the extended period. 

III. RESULTS 
The results are divided according to the three evaluation 

components. The three subsections discuss the results for 
residual tests, error measures for individual water quality 
records, and the estimation of statistical parameters. 

A. Residual tests 
The first evaluation component examines the residual series 

for normality and autocorrelation. Table I summarizes the 
results obtained for the first evaluation component. Table I 
shows the average lag-1 autocorrelation (SER) obtained for all 
of the trials conducted for both extension techniques. The 
95% confidence limits are shown in the columns entitled 
±95%. The values given in Table I are average values 
obtained from the 12,690 trials. The standard deviations (stdv) 
of prediction are shown below the average values. The 
confidence limits depend on the level of significance of the 
test and the sample size. The level of significance is constant 
for all trials, but the sample size varies due to the existence of 
missing values in the data set. Table I also shows the 
percentage of trials in which the lag-1 autocorrelation is 
significant, as well as the percentage of trials in which the 
residuals fail the normality test. 

Strictly speaking, the confidence limits shown have no 
specific meaning associated with the averaged test statistics 
due to the different sample sizes used in obtaining both test 
statistics and confidence limits. However, one may note that 
the standard deviation associated with the confidence limits is 
quite small, indicating that the confidence limits are not very 
dispersed. Thus, the average confidence limits, with the 
associated standard deviations, provide a general indication as 
to the range of confidence limits encountered in all trials. 
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Similarly, the average test statistic values, along with the 
associated standard deviations, provide a general indication as 
to the range of autocorrelation of residuals encountered over 
all trials. 

 
TABLE I 

RESULTS FOR THE RESIDUALS AUTOCORRELATION AND NORMALITY TESTS  

 
Table I shows that the test statistics display a large variance, 

which indicates that the values of the test statistics obtained 
from the 12,690 trials are widely dispersed about the mean 
value. The standard deviation of the lag-1 autocorrelation is 
135% of the mean value for OLS and 153% of the mean value 
for LOC. Although the mean value for the two techniques 
falls within the average 95% confidence limits, one would 
expect a large portion of the trials to “fail” the test due to the 
high standard error associated. Table I shows the fraction of 
trials for which each technique fails the autocorrelation test as 
well as the normality test. Autocorrelation of the residuals is 
found in 22% and 19% of the trials conducted for the OLS 
and LOC, respectively. For the normality test, 29% and 26% 
of the trials show that the residuals are not following the 
normal distribution for the OLS and LOC, respectively. 

The assumption of a normal distribution is involved only 
when testing hypotheses, requiring the residuals from the 
regression equation to be normally distributed. The most 
important hypothesis test in regression is determining whether 
the slope coefficient is significantly different from zero. The 
slope in the regression model (b) is a linear function of the 
observations xi and yi, and a linear combination of normally 
distributed variables is itself normally distributed. Inferences 
regarding the variance of b are thus drawn from estimating the 
MSE from the sample, rather the true variance. The difficulty 
with variables that are not normally distributed is that the MSE 
may underestimate the variance of b. Consequently, the MSE 
is no longer an unbiased estimator of the variance of b and 
indeed may actually underestimate the uncertainty in b, 
resulting in more confidence being placed in the regression 
model parameters than is warranted. 

Autocorrelation in residuals also increases the uncertainty 
in b. In the case of autocorrelated residuals, the constant and 
the slope in the regression model are still unbiased, but no 
longer have a minimum variance. If serial correlation of the 
residuals occurs, the estimates of the regression coefficients 
are no longer the most efficient estimates possible, although 
they remain unbiased. This means that the confidence 
intervals are too narrow. Thus, the OLS may indicate a greater 
precision in the regression coefficients than is actually the 
case. For the second and third evaluation components, 

evaluation is therefore carried out for the total number of trials 
(12,690) and for only the number of trials that pass the 
residual tests. Only 6,790 trials passed both residual tests for 
both record extension techniques. 

B. Individual Values 
The MME and NME are computed for individual 

concentration records, where each error represents the 
difference between the estimated and actual water quality 
record. The average MME values of the estimated water 
quality concentrations over all of the trials are 1.17 and 1.19 
for the OLS and LOC techniques, respectively (Table II). The 
average NME values are 4.50 and 5.25 for OLS and LOC, 
respectively. The standard deviation is greater with LOC than 
with OLS, which indicates not only that the average error with 
LOC is greater than that with OLS, but also that the error 
obtained with LOC is more widely dispersed around the mean 
value. An application of the t-test average MME as well as the 
NME results shows that there is a significant difference 
between the two techniques in estimating discontinued water 
quality records. 

 
TABLE II 

AVERAGE ERROR MEASURES FOR RECORD EXTENSION TECHNIQUES 

Error Measure 
(number of 

trials) 

Extension 
Technique t-test 

OLS LOC t p-value 

MME  
(12,690) 

mean 1.17 1.19 
-14.9 0 stdv 0.11 0.14 

MME  
(6,790) 

mean 1.15 1.17 
-10.2 0 stdv 0.08 0.11 

NME 
(12,690) 

mean 4.50 5.25 
-2.6 0.01 stdv 22.20 24.22 

NME  
(6,790) 

mean 0.28 0.72 
-2.5 0.01 stdv 9.86 11.06 

 
When using only trials that meet the record extension 
technique assumptions, the MME and NME still show a 
significant difference, which indicates that OLS shows better 
performance than LOC in the estimation of individual water 
quality records. Results also show a significant reduction in 
the NME values when using only trials that meet the record 
extension technique assumptions. Overall, better results may 
be obtained if the record extension technique assumptions are 
met. 

C. Statistical Parameters 
Table III shows the average fractional deviation illustrated 

by the two record extension techniques for the correlation, 
lag-1 autocorrelation, mean, and variance values. Table III 
shows that, the two extension techniques have no difference in 
the fractional deviation from the target correlation coefficient. 
However, using only trials that meet the statistical technique 
assumptions (6,790 trials), both the average fractional 

Extension  
technique -95% SER +95% 

% 
SER 

Failed  

Normality 
Failed % 

OLS 
Mean -0.41 0.20 0.41 

22 29 
stdv 0.01 0.27 0.01 

LOC 
Mean -0.41 0.17 0.41 

19 26 
stdv 0.01 0.26 0.01 
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deviation and the standard deviation are reduced. This 
indicates that these trials produce better results. This is not the 
case for the lag-1 autocorrelation, where a significant increase 
of the average deviation is detected. However, a significant 
reduction in the standard deviation is associated with an 
increasing average deviation. The standard deviation is about 
150% of the average deviation when using all of the trials 
(12,690), while it is 75% when using the selected trials 
(6,790). The mean and variance estimations of the observed 
records did not exhibit this significant reduction. The 
deviation from the variance results indicates that the OLS is 
negatively deviated, or in other words, the variance of the 
observed values is underestimated, while the LOC 
overestimates the variance. Both techniques are equivalent in 
estimating the mean values. 

 
TABLE III 

AVERAGE FRACTIONAL DEVIATION FOR DIFFERENT STATISTICS 
Statistical  
parameter technique No. of 

 trials 
Average 
deviation 

Standard 
deviation 

Cross- 
Correlation 

OLS 12,690 -0.23 0.22 
6,790 -0.20 0.20 

LOC 12,690 -0.23 0.22 
6,790 -0.20 0.18 

Lag-1  
autocorrelation 

OLS 12,690 0.23 32.61 
6,790 0.41 28.25 

LOC 12,690 0.21 32.36 
6,790 0.39 28.01 

Mean 
OLS 12,690 -0.01 0.10 

6,790 -0.03 0.09 

LOC 12,690 0.01 0.12 
6,790 -0.00 0.10 

Variance 
OLS 12,690 -0.30 0.49 

6,790 -0.34 0.47 

LOC 12,690 0.40 1.82 
6,790 0.35 1.74 

 
As a summary of Table III, there is no significant difference 

between the two record extension techniques in the cross-
correlation, lag-1 autocorrelation, or the mean value 
estimation. The OLS underestimates the variance, while the 
LOC overestimates it. The LOC average deviation for the 
estimation of the variance is associated with a standard 
deviation about 4.5 times the average value, while the 
standard deviation for the OLS is about 1.5 times the average 
value. 

Figs. 2 and 3 summarize the results obtained for the ratio U. 
Fig. 2 shows the U ratio distribution for the estimation of the 
statistical moments, and Fig. 3 shows the U ratio distribution 
for the estimation of the full range of non-exceedance 
percentiles. The box plots in Figs. 2a and 3a are plotted using 
the 6,790 selected trials, while Figs. 2b and 3b are plotted 
using the total 12,690 trials. In these figures, the box plots 
represent the distribution of U for a given statistical parameter 
and record extension technique. The accuracy of each 
approach can be judged by the degree of dispersion in the box 
plots, by the degree that the median approaches the value of 1, 

and by the symmetry of the box plot about the value of 1. 
Fig. 2 shows box plots that represent the distribution of U 

for the estimation of the mean and standard deviation. For the 
mean estimation, the OLS and LOC techniques give values of 
U with median values of 0.98 and 0.99, respectively. This is 
true for both groups of trials. Box plots for both extension 
techniques are symmetric around 1 and have similar 
dispersions. For the estimation of the standard deviation, the 
box plots show that the OLS technique tends to underestimate 
the standard deviation. Figs. 2a and 2b show that more than 
75% of the computed standard deviations are less than the 
historical values, with median values of 0.77 and 0.79 for 
6,790 and 12,690 trials, respectively. For the LOC technique, 
the U median values are 1.03 and 1.02 for the selected and 
total trials, respectively. The box plots of LOC are more 
symmetric around 1 than those of the OLS technique. The box 
plots for the OLS and LOC techniques give similar 
dispersions. 

For the OLS estimation of non-exceedance percentiles, Fig. 
3 indicates that the median values of U for low percentiles are 
greater than 1 and are less than 1 for high percentiles. The 
LOC median values of U for the percentile range are between 
0.97 and 1.00 using 6,790 trials (Fig. 3a) and between 0.99 
and 1.01 using 12,690 trials (Fig. 3b). 

The OLS box plots show that the median values range 
between 0.90 and 1.06 using the 6,790 trials and between 0.92 
and 1.07 using the 12,690 trials. In general, the LOC box plots 
are symmetrical about 1 and show relatively less dispersion 
than that corresponding to the OLS technique. The OLS box 
plots show that, for low percentiles, almost 75% of the records 
are greater than 1, and almost 75% of the records are less than 
1 for high percentiles. These results suggest that the OLS 
technique tends to overestimate low percentiles and 
underestimate high percentiles. The LOC technique reduces 
the bias toward overestimation of low concentrations and 
underestimation of high concentrations exhibited by OLS. 

Fig. 4 illustrates the MME exhibited by the two extension 
techniques in estimating the non-exceedance percentiles. Figs. 
4a and 4b show that the MME values for OLS are greater than 
1 for the estimation of low percentiles and less than 1 for the 
estimation of high percentiles. The LOC MME values are 
closer to 1 than for the OLS, except at the median, where both 
values are equal. 
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Fig. 2 Box plots of the U ratio for the statistical moments 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Box plots of the ratio U for different percentiles 
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Fig. 4 MME of the tested extension techniques for the estimation of various percentiles 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 NME of the tested extension techniques for the estimation of various percentiles 
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Fig. 5 illustrates the NME exhibited by the two extension 
techniques in estimating the non-exceedance percentiles. The 
NME shows behavior similar to that of the MME, since the 
LOC NME values are closer to zero than those for the OLS, 
except at the median, where both values are nearly identical. 
Thus, error measures performed on the logarithms of the 
extended records or on the reverse transformed values show 
equivalent results. Figs. 3, 4, and 5 clearly depict regression 
overestimation of low concentrations and underestimation of 
high concentrations, as would be expected from the tendency 
to produce an extended record with low variance. 
 

IV. CONCLUSION 
Ordinary least squares (OLS) regression and LOC 

techniques are applied to reconstitute information about 
discontinued variables using data from the Nile Delta water 
quality monitoring network. Different statistical performance 
measures are used to assess each of the extension techniques 
and their ability to maintain statistical characteristics of the 
water quality records. Verification of the model assumptions 
ensures better estimation of the individual records while also 
preserving the statistical characteristics. 

The two techniques produce extended records that have 
unbiased mean or median values. The OLS substantially 
reduces variability, and the LOC preserves variability. The 
OLS technique underestimates high concentration values and 
overestimates low values. On the other hand, the LOC 
technique tends to reduce the bias in the estimation of both 
high and low concentration values. The LOC technique 
produces extended records that relatively preserve both high 
and low percentiles. 

The LOC was better in preserving the statistical 
characteristics of the discontinued water quality variables. 
However, the OLS was superior in the estimation of 
individual records. If only individual water quality records are 
of interest, then the OLS technique is preferable, since it gave 
better results than the LOC. Therefore, it is recommended that 
the OLS be used for the substitution of missing values, while 
the LOC is preferable for gaining insight into the probability 
distribution. 

ACKNOWLEDGMENT 
The authors wish to thank Prof. Shaden Abdel-Gawad, 

president of the National Water Research Center of Egypt, for 
providing the data used in this study. The financial support 
provided by Helwan University, Cairo, Egypt, and the Natural 
Sciences and Engineering Research Council of Canada 
(NSERC) is acknowledged. 

REFERENCES   
[1] Alley, W.M. and Burns, A.W., “Mixed-station extension of monthly 

streamflow records”, Journal of Hydraulic Engineering, 109 (10), 1983, 
pp. 1272 - 1284. 

[2] Berryman, D., Bobée, B., Cluis D. and Haemmerli, J., “Nonparametric 
Tests for Trend Detection in Water Quality Time Series”, Water 
Resources Bulletin, 24(3), 1988, pp. 545 - 556. 

[3] Briggs, J.C. and Ficke, J.F., “Quality of rivers of the United States, 
(1975) water year- based on the National Stream Quality Accounting 
Network”, U.S. Geological Survey Open-File Report 78-200, 1978, p. 
436. 

[4] Doornkamp, J.C. and King C.A.M., “Numerical Analysis in 
Geomorphology, An Introduction”, St. Martins Press, New York, NY, 
1971, p. 372. 

[5] Draper, N.R. and Smith, H., “Applied regression analysis”, John Wiley, 
New York, 1966, p. 736. 

[6] DRI (Drainage Research Institute) - MADWQ, “Monitoring and analysis 
of drainage water quality in Egypt”, Interim Report, DRI, Cairo, 1988. 

[7] Harmancioglu, N.B., Fistikoglu, O., Ozkul, S.D., Singh, V.P. and 
Alpaslan, M.N., “Water Quality Monitoring Network Design”, Kluwer 
Academic Publishers, Dordrecht, the Netherlands, 1999, p. 290. 

[8] Harmancioglu, N.B. and Yevjevich, V., “Transfer of Information among 
Water Quality Variables of the Potomac River, Phase III: Transferable 
and Transferred Information”, Report to D.C. Water Resources Research 
Center of the University of the District of Columbia, Washington, D.C., 
1986, p. 81. 

[9] Harmancioglu, N.B. and Yevjevich, V., “Transfer of hydrologic 
information among river points”, Journal of Hydrology, 91, 1987, pp. 
103 - 118. 

[10] Helsel, D.R., and Hirsch, R.M., “Statistical methods in water resources”, 
U.S. Geological Survey, Chapter A3 in Hydrologic Analysis and 
Interpretation, 2002, p. 522. 

[11] Hirsch, R.M., “A comparison of four streamflow record extension 
techniques”, Water Resources Research, 18(4), 1982, pp. 1081 - 1088. 

[12] Kritskiy, S.N. and Menkel, J.F., “Some statistical methods in the 
analysis of hydrologic data”, Soviet Hydrology Selected Papers 1, 1968, 
pp. 80-98. 

[13] Lettenmaier, D.P., “Multivariate nonparametric tests for trend in water 
quality”, AWRA, Water Resources Bulletin, (24)3, 1988, pp. 505 - 512. 

[14] Matalas, N.C. and Jacobs, B., “A correlation procedure for augmenting 
hydrologic data”, U.S. Geological Survey Prof. Pap., 434-E, 1964. 

[15] McKenzie, S.W., “Long-term water quality trends in Delaware streams”, 
U.S. Geological Survey open-files report 76-71, 1976, p. 85. 

[16] Moog, D.B. and Whiting P.J., “Streamflow record extension using 
power transformations and application to sediment transport”, Water 
Resources Research, 35 (1), 1999, pp. 243 - 254. 

[17] NAWQAM, National Water Quality and Availability Management 
Project, “Evaluation and Design of Egypt National Water Quality 
Monitoring Network”, Report No.: WQ-TE-0110-005-DR, NAWQAM, 
National Water Research Center, Cairo, Egypt, 2001. 

[18] Sanders, T.G., Ward, R.C., Loftis, J.C., Steele, T.D., Adrian, D.D. and 
Yevjevich, V., “Design of Networks for Monitoring Water Quality”, 
Water Resources Publications, Littleton, Colorado, 1983, p. 328. 

[19] Strobl, R.O. and Robillard, P.D., “Network design for water quality 
monitoring of surface freshwaters: A review”, Journal of Environmental 
Management, 87, 2008, pp. 639 - 648.  

[20] Ward, R.C., Loftis, J.O. and McBride, G.B., “Design of Water Quality 
Monitoring systems”, Van Nostrand Reinhold, New York, USA, 1990, 
p. 231. 

[21] Wasserman, W., Kutner, M.H. and Neter, J., “Applied linear regression 
models” (2nd ed.). Richard D. Irwin Inc., Boston, 1989. 

[22] Vogel, R.M. and Stedinger, J.R., “Minimum variance streamflow record 
augmentation procedures”, Water Resources Research, 21(5), 1985, pp. 
715 - 723.G. O. Young, “Synthetic structure of industrial plastics (Book 
style with paper title and editor),”  in Plastics, 2nd ed. vol. 3, J. Peters, 
Ed.  New York: McGraw-Hill, 1964, pp. 15–64. 

[23] Yevjevich, V. and Harmancioglu, N.B., “Modeling Water Quality 
Variables of Potomac River at the Entrance to its Estuary, Phase II 
(Correlation of Water Quality Variables within the Framework of 
Structural Analysis)” Report to D.C. Water Resources Research Center 
of the University of the District of Columbia, Washington, D.C., 1985, 
p. 59. 

 


