
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1602

Applying Complex Network Theory to Software

Structure Analysis
Weifeng Pan, Member, ACM,

Abstract—Complex networks have been intensively studied across
many fields, especially in Internet technology, biological engineering,
and nonlinear science. Software is built up out of many interacting
components at various levels of granularity, such as functions, classes,
and packages, representing another important class of complex net-
works. It can also be studied using complex network theory. Over the
last decade, many papers on the interdisciplinary research between
software engineering and complex networks have been published.
It provides a different dimension to our understanding of software
and also is very useful for the design and development of software
systems. This paper will explore how to use the complex network
theory to analyze software structure, and briefly review the main
advances in corresponding aspects.

Keywords—Metrics, measurement, complex networks, software.

I. INTRODUCTION

S
OFTWARE has been used in every walk of life, playing

increasingly important role. The ever-increasing expansion

of applications and users’ requirements make a steep rise in the

scale and complexity of software, which results in the decrease

in the software quality. So it is a great challenge in software

engineering to understand, measure, manage, control, and even

to low the software complexity [1]. Software structure is one

of the factors influencing software quality. So if we want to

deeply investigate the software complexity, the information

enclosed in the structure should be effectively measured [2].

Over the past few years, complex networks have been

intensively studied across many fields of science. Examples

include social networks, computer networks, the World Wide

Web, etc [3-5]. Software is built up out of many interacting

components at various levels of granularity, such as functions,

classes, and packages, representing another important class

of complex networks. It can also be studied using complex

network theory [2, 6-7]. It provides a different dimension to

our understanding of software evolutions and also are very

useful for the design and development of software systems.

Research on studying software from the perspective of com-

plex networks is emerging.

This paper aims to explore how to use the complex net-

work theory to analyze software structure, and briefly review

the main research advances in the interdisciplinary research

between software engineering (especially software structure

analysis) and complex network theory. The rest of the paper

is then organized as follows. Sections II brief the motivation of

using complex network theory in software structure analysis,

with focus on the traditional software structure metrics and

Weifeng Pan is with the School of Computer Science and Information
Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang,
P. R. China, e-mail: wfpan@mail.zjgsu.edu.cn.

their limitations. Section III gives a brief introduction to

complex network research. Section IV briefly summarize the

main progresses over the last decade in software structure

analysis using complex network theory. Last but not least,

some concluding opinions are drawn in Section V.

II. MOTIVATION: TRADITIONAL SOFTWARE STRUCTURE

METRICS AND THEIR LIMITATIONS

Till now, software programming styles have undergone

many phases such as procedure-oriented programming (POP),

object-oriented programming (OOP) and aspect-oriented

programming (AOP). The most important two are POP and

OOP while AOP is emerging. Software metrics proposed are

usually suited for a specific kind of programming style. So

once the programming style changes, the corresponding met-

rics should also be adapted. In the following subsections we

will first review the state-of-the-art in the traditional software

metrics research mainly from the POP and OOP perspective,

and then we will point out their limitations which are also

the motivation (reasons) of why we apply complex network

theory in software structure analysis.

And the rationales for the choice to focus on the metrics

of POP and OOP is threefold: POP and OOP all have been

the widely used development paradigm separately for a long

time; There are a lot of software systems developed following

the two main programming styles; And the recent work

of applying complex network theory in software structure

analysis mainly focus on the two domains.

A. Traditional Software Structure Metrics

1) Metrics for Procedure-Oriented Software: POP was very

popular in the 1970s, and became the leading programming

paradigm. The software metrics at that time mainly proposed

to quantify some aspects of procedure-oriented software.

In 1974, R. W. Wolverton proposed Lines of Code (LOC

or KLOC for thousands of lines of code) metric to measure

programmer productivity and effort [8].

In 1976, T. J. McCabe created the Cyclomatic Complexity,

v(G), which is derived from a flow graph and is mathemati-

cally computed using graph theory (i.e. it is found by determin-

ing the number of decision statements in a program) [9]. v(G)

has been applied in many areas such as code development risk

analysis, change risk analysis in maintenance, and test planing.

In 1977, M. H. Halstead created Halstead metric by calcu-

lating the number of operators and the number of operands in

a specific program [10]. And it is also applicable to estimate

development efforts and module risk. Halstead metric is very

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1603

different from the McCabe metrics. Because the former is

based on the mathematical relationships among the number

of variables, the complexity of the code and the type of pro-

gramming language statements, while the latter is determined

by the code complexity especially the control paths. Halstead

metric received many criticisms for they only measure lexical

and/or textual complexity.

In 1978, B. H. Yin and J. W. Winchester proposed two

metric groups, primary metrics and secondary metrics, to

evaluate the software design [11]. The primary metrics are

based on coupling and simplicity and expressed through values

extracted from the specification of design. It is reported these

metrics can be successfully used in error-prone areas. The

secondary metrics try to measure the communication strength

between every pair of components. The fan-in and fan-out

metrics in them can be used to estimate the worst-case

communication complexity of a specific component.

In 1978, C. L. McClure, in [12], defined another complexity

metric to quantify the control structures and variables. This

metric assigned a specific component with a small invocation

complexity if it is invoked unconditionally by only one other

component and with a higher complexity if it is invoked

conditionally.

In [13] published in 1980, N. Woodfield used a decreasing

function to weight the complexity for reviewing a given

component and proposed to use the sum of all weights to

measure the complexity of the component.

In 1981, S. Henry and D. Kafura proposed a new set of

metrics which are based on the measurement of information

flow across system components [14]. These metrics are mainly

for procedure complexity, module complexity, and module

coupling, and are successfully applied to reveal various types

of structure flaws in the design and implementation.

In 1984, K. C. Tai proposed a new metric which is based

on data flow to quantify the complexity of software [15].

Based on the above mentioned metrics many other new

metrics has been created. But a large part of them do not

receive many attentions, so here we omit them. For more

details, please refer to [1].

2) Metrics for Object-Oriented Software: From 1990s, ob-

ject oriented design is becoming more popular in software de-

velopment environment. Compared to structural development,

object oriented design is a comparatively new technology

and requires a different way of thinking, with many features

such as data abstraction, encapsulation, messaging, modularity,

polymorphism, and inheritance. So the metrics useful for

evaluating procedure-oriented software, may perhaps not fit

in with the software developed using OO language.

Till now, a significant number of object oriented metrics

have been proposed in literature. For example, metrics pro-

posed by B. F. Abreu and R. Carapuca [16], CK metrics [17],

W. Li and S. Henry metrics [18], MOOD metrics [19, 20],

M. Lorenz and J. Kidd metrics [21], etc. CK metrics are the

most popular (used) among them. Another comprehensive set

of metrics is MOOD metrics. This section will focus on the

most influential two metric suites, namely CK metrics and

MOOD metrics.

CK metrics, first presented by R. Chidamber and F. Kemerer

in [17], are the most widely used metrics to evaluate complex-

ities of OO softwares from inheritance (DIT , NOC), cou-

pling between classes (RFC, CBO) and complexity within

each class (WMC, LCOM). These metrics offer informative

insight into whether developers are following OO principles

or not in their design. It is reported that using the CK

metrics collectively is helpful for design decision making.

Many researches have sought to analyze the ability of CK

metric suite in estimating the bug proneness of classes [22-

25]. Results show that most of the metrics in CK metrics are

good indicators to predict bug prone classes.

F. B. Abreu et at. defined MOOD (Metrics for Object

Oriented Design) metrics [19, 20]. MOOD refers to a basic

structural mechanism of the OO paradigm as encapsulation

(MHF, AHF), inheritance (MIF, AIF), polymorphism (POF),

and message passing (COF). In MOOD metrics, two main

features are used in every metric, i.e., methods and attributes.

Methods are used to perform operations so as to obtain or

modify the status of objects. Attributes are used to represent

the status of each object in the system. Each method or

attribute is either visible or hidden from a given class.

B. Limitations

The traditional structural metrics (i.e., procedure- and OO

software metrics) mainly focus on the local features of a

specific software system, e.g., the number of classes, the

number of methods, etc. But they fail to deeply explore the

rich information in software topological structure. Due to the

lack of suitable tools and theories, people seldom investigate

the software structure as a whole, making themselves be in

dark about the nature of software.

III. COMPLEX NETWORK

Complex systems and complexity science, in recent years

come into the people’s attentions, and are viewed as the “21st

Century Science” by the founder of Santa Fe Institute, George

Cowan. His basic view is that the structure determines the

function, emphasizing the view of the system as a whole

[26]. With the development of computer technology and its

wide application in complex systems studies, people can

capture, store and analyze data with an unprecedented scale.

The complex network study is emerging (see fig. 1). People

used network model to represent and explore many real-world

systems, i.e., nodes represent system elements, while edges

represent the interaction between them.

1998 2000 2002 2004 2006 2008
0

1000

2000

3000

4000

S

C
I P

ap
er

Year
1998 2000 2002 2004 2006 2008

0

1000

2000

3000

4000

E

I P
ap

er

Year

Fig. 1. Statistics of the published SCI (left) and EI (right) papers [27]

It is believed that promoting the study wave of complex

networks are two famous papers. In 1998, D. J. Watts and

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1604

his advisor S. H. Strogatz in the Cornell University of United

States published a paper titled Collective dynamics of ’small-

world’ networks in Nature, revealing the small-world feature

shared by many real-world networks such as grid and actors

network [28]. By saying small-world, it means the network has

small average path length and large clustering coefficient. At

the same time, they proposed a small-world network model to

explain the emergence of this feature. A year later, Professor

A. L. Barabási and his Ph.D student R. Albert published

another famous paper, Emergence of scaling in random net-

works in Science, revealing the scale-free feature shared by

many real-world networks [29]. By saying scale-free, it means

the degree of nodes obeys the power-law degree distribution.

At the same time, they believe “growth” and “preferential

attachment” together are the main reasons to the emergence of

scale-free feature, and propose BA scale-free network model

to explain the emergence of this feature.

The outstanding work of D. J. Watts, S. H. Strogatz, A. L.

Barabási and R. Albert’s make the complex network research

enter a new era, namely the “new science of networks” [30-

32], receiving many attentions from a wide range of experts

in various fields. The number of papers and monographs

on complex networks are emerging. A wide range of real-

world networks, from the Internet [33, 34] to WWW [29,35],

from Large power networks [28] to the global transportation

network [36, 37], from the organism in the brain [38] to

a variety of metabolic networks [39], from the scientific

collaboration network [40] to a variety of economic [41], etc.,

and even language [42], numbers [43], music [44], earthquakes

[45], which are not networks in the eyes of ordinary people,

can also be studied from the perspective of complex networks.

It was found that although these networks from different areas,

representing different systems, but all have a similar “small

world” and “scale-free” features, and other statistical charac-

teristics of the topology have also been revealed. People built

a lot of network evolution models to explain the emergence of

these features. It can be found that complex network theory has

become a powerful tool to analyze the structure as a whole and

its dynamical properties of various types of complex systems.

IV. SOFTWARE SYSTEMS AS COMPLEX NETWORKS

The research content between complex network theory and

software metrics is mainly involved in characterizing the

shared topological features of software networks, modeling

the growth of software networks, measurement of software

networks, and their applications in software practices. In the

following subsections, we will give a simple review of the

research work in each direction.

A. Characterization of Software Networks

The research work on characterizing software networks

focus on discovering and validating the topological features

such as small world, scale-free, etc., and exploring the shared

features in software structures.

In 2002, S. Valverde et al. are the first to introduce

complex network theory into software analysis [46]. They

abstract the class diagram as an undirected network, where

the nodes denote classes, and the edges denote relationships

(inheritance, association, etc.) between every pair of classes

(see fig. 2). Then they use such a method to abstract JDK

1.2 and UbiSoft ProRally 2002 and employ complex network

theory to analyze the statistic properties of these systems. They

found that these two software network all have small-world

and scale-free properties. They also make an expectation that

these interesting phenomenon may be related to the locally

optimization process in software development.

Fig. 2. The software network of JDK 1.2 (left) and its cumulative degree
distribution (right) [46]

In software systems, the relationships between software

entities (classes, methods, etc.) such as collaboration, invoking,

etc. reflecting the control flow. So the directions in software

network is meaningful and should be taken into considerations

[47]. By this line, in 2003, some researchers use directed

networks to represent the topological structures of software

systems. C. R. Myers used directed networks to represent

software systems, and analyze class collaboration graph of

3 OO software systems, and static procedure class graph

of 3 process-oriented software systems. They found that 3

interesting phenomenons: a) Though these software networks

from different systems, and even programmed by different

languages, they all share small-world and scale-free features;

b) The imbalance existing in the exponents of in/out-degree

distribution, i.e., the exponent of out-degree distribution is

larger than that of in-degree distribution; And c) the negative

correlation between in degree and out degree. They expected

it may owe to the reuse in software development, i.e., simple

classes with small out-degree are easy to be reused, so their in-

degrees are larger. Then S. Valverde and R. Soé also use direct

network to describe class diagram and they not only found

the small-world and scale-free features, but also found these

software network shared hierarchical and modularity [48].

Later, people began to analyze software structure from

multi-levels of granularity, such as method level, class level,

package level, file level, etc. A. P. S. Moura et al. use network

model to represent software systems programmed by C and

C++ language, i.e., the head files are nodes, and their co-

occurrence relationships are edges. They found such a head

file network also displays a scale-free feature and has a small-

world structure. Meanwhile, they show the scale-free feature

due to network growth and small-world feature is the result

of performance optimization of the program [49]. N. LaBelle

and E. Wallingford show the software network at package

level also are of small-world and scale-free type [50]. S.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1605

Valverde and R. V. Solé explore the software network at

class and method level with classes and methods are nodes

and the reference relationships between them are edges [51].

They also found scale-free and small-world features in such a

network. Other people, like D. Li, W. Pan, G. Qi and H. Zhao,

also carried out many empirical studies in different software

systems, and validate the scale-free and small world features

of software networks [52-56].

In recent years, people began to analyze software structural

features from the perspective of software evolution [57, 58-

60]. They further find many evolution rules such as distance

among nodes increase, and diassortative hierarchical structure

in addition to scale-free and small-world properties. It provides

a new way to study software structure.

B. Modeling of Software Networks Growth

Since software systems share many features, what inner

mechanisms make them to be so? The research work on

modeling of software networks growth try to elaborate the

underline reasons.

C. R. Myers realized the fact that refactoring can improve

code evolvability by reorganizing its internal structure, and

proposed a simple model for evolving software systems, based

on a few refactoring techniques [47]. This simple refactoring

model can capture many of the salient features of the observed

systems.

S. Valverde et al. assume the complex network features

of software systems arise from the conflicting constraints in

design [46, 61]. And they further analyzed many software

systems programmed by C++, and found that a) the causal

relationship between the size of software network and the

number of subgraph, and b) software growth is very similar

to cellular network. and has duplication and rewiring phe-

nomenon. So, they finally proposed a simple model of software

network by duplication and rewiring [62].

K. He et al. explored the growth of software systems

from the perspective of design patterns. They categorized

software pattern into two groups, frozen spots and hot spots.

Frozen spots provide the coordinative dependency relationship

between roles of pattern classes, and can not be modified,

while hot spots provide the rules for extension and modulation

in pattern. And they finally present a software evolution model

based on frozen spots of software pattern [63].

B. Li et al. proposed a software evolution model CN-EM

by combination of complex network theory and evolutionary

algorithm [64]. Experimental results shown CN-EM can well

describe the emergence process of complex network properties

for many practical software systems.

H. Li et al. introduced two scale-free network models

with accelerating growth for undirected and directed software

networks [65]. Case studies on two kinds of software network

shown its goodness in predicting the emergence of power-law

growth and scale-free features.

W. Pan et al. presented a software evolution model with

weighted edges to simulate activities in real software devel-

opment process. Empirical results on eight software systems

shown its effectiveness on the description of software evolution

and the emergence of their complex network characteristics.

C. Measurement of Software Networks

Recently, some researchers began to propose some metrics

to quantify the structural properties of OO software systems

using complex network theory. In general, these metrics are

useful to evaluate some aspects of software design, and

help developers to identify problematic structures in software

networks.

R. Vasa et al. studied the change of software structure

according to the relationship between the number of nodes

and edges, predicting the software size and cost required to

construct the software [67].

Y. Ma et al. defined structural entropy according to the

degree of nodes to quantify and analyzed the orderly of

software structure. At the same time, they explored the rela-

tionships between structural entropy, software robustness and

the efficiency of the communication, providing the basis for

the optimization of software structure [68].

A. Girolamo et al., based on betweenness, proposed a suit

of metrics for OO software systems to identify and detect

the defects in software structure and problematic classes from

different levels of granularity such as class level, network level

and design level [69].

In 2006, Y. Ma et al., based on the basic properties of

software - cohesion and coupling, integrating complex network

Parameters, object-oriented metrics and code-level metrics,

proposed a hierarchical system of metrics. And they used such

a metric system to analyze the software complexity from the

perspective of macro (network), meso (community) and micro

(nodes) [70].

S. Jenkins et al. proposed a new metric, Icc to quantify the

stability of object-oriented software systems at the class level

of granularity [57].

R. Vasa et al. proposed many metrics to quantify the stability

of software system in development. They found that the size

and complexity of class changed little over time, and classes

with a large degree are tend to be modified [71].

Melton et al. studied the dependencies between classes of 81

open source systems, and found that classes can be accessed

from other classes are easy to form dependency rings, which

make the software complexity increase and stability decrease

[72].

Y. Ma et al. used network motif to study the stability of

software [73]. They found that sub-graphs with high statistical

importance are more stable and hard to form rings. Therefore,

they suggested programmers, in the development process,

should avoid the generation of rings.

D. Applications in Software Engineering Practices

Over the past decade, although many theoretical results are

obtained, however, the potentials for their applications in real-

world are not fully explored. Our research group has tried

to promote this direction, and has done some primary work

on the optimal selection of software structures and software

refactoring.

1) Optimal Selection of Software Structures: The same user

requirements can be meet by software systems with different

inner structures. The quality of the software, however, may

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1606

vary. So how to select software with an optimal structure is a

problem facing many persons, especially with the popular of

open source software development.

In [2], W. Pan et al. tried to solve such a problem with a

metric-based approach. They proposed a new metric, SQOS,

for quantitatively measuring the structural quality of Object-

Oriented (OO) softwares. With the aid of SQOS, the optimal

software structure can be obtained. The metric SQOS can be

calculated according to formula (1):

SQOS =

|Nc

|
∑

i=1

CI(i)×BPICi

N2 −N
, (1)

where |N c| is the number of classes in the OO software

systems, CI(i) is the class influence of class i, and BPICi

is the BPIC (Bug Proneness Index of Classes) of the class i.
The authors use formula (2) and (3) respectively to calculate

CI(i) and BPICi.

CI(i) =

|Nc

|
∑

j=1,j 6=i

M c
p(i, j)updated, (2)

where M c
p(i, j)updated is the weight of the corresponding

edge.

BPICi = α
WMCi

WMCsum

+ β
CBOi

CBOsum

+γ
RFCi

RFCsum

,

(3)

where BPICi is the BPIC of the class i. WMCi, CBOi,

and RFCi are the WMC, CBO, RFC of the class i,
respectively. WMCsum, CBOsum, and RFCsum are the sum

of WMC, CBO, RFC of all classes, respectively. α, β,

and γ are the weights for the corresponding metrics and meet

α+β+γ=1.

SQOS is a scalar whose value not smaller than 0. A lower

SQOS indicates a software structure with a better quality, and

bugs can not easily propagate between its classes.

In order to obtain the value of SQOS, they first created a

new type of software networks at the class level of granular-

ity, weighted class dependency networks (WCDN), in which

software components (classes) are nodes and the interaction

between every pair of nodes if any is a directed edge which is

annotated with a weight corresponding to the probability that

a bug in one component (class) will propagate to the other

(see fig. 3 as an illustration).

Fig. 3. Illustration of WCDN

And then they analyze the bug propagation process in such

a WCDN together with the bug proneness of each class, and

based on which, SQOS is proposed to measure the structural

quality of OO softwares. The empirical results on several case

studies validate the effectiveness of the proposed metric. And

they also implement a tool to automate the calculation of

SQOS.

2) Software Class Structure Refactoring: The quality of a

software system always degrade over the software evolution. In

order to keep its quality, the software should be reconditioned

from time to time.

Considering the existing methods are very complex and

resource-consuming when doing this task, the authors in [7]

present an approach to recondition the class structures of OO

software systems from the perspective of complex software

networks.

They first use attribute-method networks (see fig. 4) and

method-method networks (see fig. 5) to represent attributes,

methods and dependencies between them. Then they propose a

guided community detection algorithm to obtain the optimized

community structures in the method-method networks. Such

optimized community structures, in its essence, correspond

to the optimized class structures. So by comparison with the

original class structures, a list of refactorings can be detected.

The authors validate their approach on a famous open-source

software, JHotDraw 5.1, and the advantages of our approach

are illustrated in comparison with existing methods.

Fig. 4. A simple example of AMN

Fig. 5. A simple example of MMN

V. CONCLUSIONS

We have talked about the method to use the complex net-

work theory to analyze software structure, and briefly reviewed

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1607

the main advances. First, we reviewed the traditional software

structure metrics, including metrics for procedure-oriented

software and object-oriented software. Then we pointed out

the limitations existing in the traditional software metrics,

presenting the motivation to use complex network theory in

software structure analysis. Then we surveyed the interdis-

ciplinary research work in detail from three dimensions: a)

Characterization of software networks; b) Measurement of

software networks; and c) Applications in software engineer-

ing Practices.

The interdisciplinary research between complex networks

and software engineering is an emergent research topic. Ex-

ploring the software from the perspective of complex networks

and form the software networks, can enable deep understand-

ings with respect to the nature of software. The work presented

here summarizes the related work over the last years. However,

it is impossible for us to summarize all relative results in this

mini-review due to the space limitation. We hope that this brief

review can benefit for advancing the work of using complex

network theory in solving software engineering problems.

REFERENCES

[1] W. Pan, Software Networks-Based Analysis of Software Static Structure

and Its Applications. Wuhan: Wuhan University, 2011.

[2] W. Pan, B. Li, Y. Ma, Y. Qin, and X. Zhou, “Measuring Structural Quality
of Object-Oriented Softwares via Bug Propagation Analysis on Weighted
Software Networks”, Journal of Computer Science and Technology, vol.
25, no. 6, pp. 1202-1213, 2010.

[3] L. Costa, O. Oliveria, and G. Travieso, “Analyzing and Modeling Real-
World Phenomena with Complex Networks: a Survey of Applications”,
arXiv:0711.3199v2, 2008.

[4] J. Lü and G. Chen, “Analysis, Control and Application of Complex
Networks: a Brief Overview”, Pro. of the 2009 IEEE International

Symposium on Circuits and Systems, pp. 1601-1604, 2009.

[5] J. Lü and D. Liu, “A Brief Overview of the Complex Biological and
Engineering Networks”, Pro. of the 2007 IEEE International Symposium

on Circuits and Systems, pp. 2634-2637, 2007.

[6] W. Pan, B. Li, Y. Ma, and Jing Liu, “Multi-Granularity Evolution Analysis
of Software using Complex Network Theory”, Journal of Systems Science

and Complexity, vol. 24, pp. 1-15, 2011.

[7] W. Pan, B. Li, Y. Ma, J. Liu, and Y. Qin, “Class Structure Refactoring of
Object-Oriented Softwares using Coommunity Detection in Dependency
Networks”, Frontiers of Computer Science in China, vol. 3, no. 3, pp.
396-404, 2009,

[8] R. W. Wolverton, “The Cost of Developing Large-Scale Software”, IEEE

Transactions on Computers, vol. C-23, no. 6, pp. 615-636.

[9] T. J. McCabe, “A Complexity Measure”, IEEE Transactions on Software

Engineering, vol. SE-2, no. 4, pp. 308-320, 1976.

[10] M. H. Halstead, “Elements of Software Science”, Operating, and

Programming Systems, vol. 7, pp. 128, 1977.

[11] B. H. Yin and J. W. Winchester, “The Establishment and Use of
Measures to Evaluate the Quality of Software Designs”, Software quality

assurance workshop on Functional and performance, pp. 45-52, 1978.

[12] C. L. McClure, “A Model for Program Complexity Analysis”, Proc. of

the 3rd International Conference on Software Engineering, pp. 149-157,
1978.

[13] N. Woodfield, “Enhanced Effort Estimation by Extending Basic Pro-
gramming Models to Include Modularity Factors”, West-Lafayette, USA,
1980.

[14] S. Henry and D. Kafura, “Software Structure Metrics Based on Infor-
mation Flow”, IEEE Transactions on Software Engineering, pp. 510-518,
1981.

[15] K. C. Tai, “A Program Complexity metric based on Data Flow Infor-
mation in Control Graphs”, Proc. of the 7th International Conference on

Software Engineering, pp. 239-248, 1984.

[16] B. F. Abreu and R. Carapuca, “Candidate Metrics for Object-Oriented
Software within a Taxonomy Framework”, Journal of systems software,
vol. 26, no. 1, pp. 87-96, 1994.

[17] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object-
Oriented Design”, IEEE Transactions on Software Engineering, vol. 20,
no. 6, pp. 476-493, 1994.

[18] W. Li and S. Henry, “Object-Oriented Metrics that Predict Maintain-
ability”, Journal Of Systems And Software, vol. 23, no. 2, pp. 111-122,
1993.

[19] F. B. Abreu, “The MOOD Metrics Set”, Proc. of the ECOOP95

Workshop on Metrics, 1995.
[20] F. B. Abreu, “Design Metrics for OO Software System”, Proc. of the

ECOOP95 Quantitative Methods Workshop, 1995.
[21] M. Lorenz and J. Kidd, Object-Oriented Software Metrics: a Practical

Guide. NJ: Prentice Hall PTR, 1994.
[22] R. Subramanyan and M. S. Krishnan, “Empirical Analysis of CK Met-

rics for Object-Oriented Design Complexity: Implications for Software
Defects”, IEEE Transactions on Software Engineering, vol. 29, no. 10,
pp. 297-310, 2003.

[23] V. R. Basili, L. C. Briand, and W. L. Melo, “A Validation of Object-
Oriented Design Metrics as Quality Indicators”, IEEE Transactions on

Software Engineering, vol. 22, no. 10, pp. 751-761, 1996.
[24] K. EI Emam, S. Benlarbi, N. Goel, “The Confounding Effect of Class

Size on the Validity of Object-Oriented Metrics”, IEEE Transactions on

Software Engineering, vol. 27, no. 6, pp. 630-650, 2001.
[25] T. Gyimóthy, R. Ferenc, and I. Siket, “Empirical Validation of Object-

Oriented Metrics on Open Source Software for Fault Prediction”, IEEE

Transactions on Software Engineering, vol. 31, no. 10, pp. 897-910, 2003.
[26] B. Zhang, “Network and Complex Systems”, Scientific Chinese, vol. 10,

pp. 37-37, 2004.
[27] G. Chen, “Introduction to Complex Networks and Their Recent

Advances”, Advances in Mechanics, vol. 38, no. 6, pp. 653-662, 2008.
[28] D. J. Watts and S. H. Strogatz, “Collective Dynamics of Small World

Networks”, Nature, vol. 393, pp. 440-442, 1998.
[29] A. L. Barabási and R. Albert, “Emergence of Scaling in Random

Networks”, Science, vol. 286, pp. 509-512, 1999.
[30] Committee on Network Science for Future Army Application, Network

Science, Washington DC: National Academies Press, 2006.
[31] A. L. Barabási, Linked: the New Science of Networks, Cambridge MA:

Perseus Publishing, 2002.
[32] D. J. Watts, “The “new” Science of Networks”, Annual Review of

Sociology, vol, 30, pp. 243-270, 2004.
[33] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law Relation-

ships of The Internet Topology”, Computer Communication Review, vol.
29, no. 4, pp. 251- 262, 1999.

[34] G. Siganos, M. Faloutsos, P. Faloutsos, et al., “Power Laws and The
AS-Level Internet Topology”, IEEE/ACM Transactions on Networking,
vol. 11, no. 4, pp. 514-524, 2003.

[35] L. A. Adamic and B. A. Huberman, “Power-Law Distribution of The
World Wide Web”, Science, vol. 287, pp. 2115a, 2000.

[36] R. Guimerà, S. Mossa, A. Turtschi, et al., “The Worldwide Air Trans-
portation Network: Anomalous Centrality, Community Structure, and
Cities’ Global Roles”, Proceedings of the National Academy of Science

USA, vol. 102, pp. 3394-7799, 2005.
[37] W. Li and X. Cai, “Statistical Analysis of Airport Network of China”,

Physical Review E, vol. 68, no. 4: 46106, 2004, .
[38] O. Sporns, “Network Analysis, Complexity, and Brain Function”, Com-

plexity, vol. 8, no. 1, pp. 56-60, 2002.
[39] H. Jeong, B. Tombor, R. Albert, et al., “The Large-Scale Organizationn

of Metabolic Networks”, Nature, vol. 407, pp. 651-654, 2000.
[40] M. E. J. Newman, “Scientific Collaboration Networks. I. Network

Construction and Fundamental Results”, Physical Review E, vol. 64, no.
1, pp. 16131, 2001.

[41] M. A. Serrano and M. Boguñá, “Topology of The World Trade Web”,
Physical Review E, vol. 68, pp. 015101, 2003.

[42] A. E. Motter, A. P. S. Moura, Y. C. Lai, et al., “Topology of The
Conceptual Network of Language”, Physical Review E, vol. 65, pp.
065102, 2002.

[43] G. Corso, “Families and Clustering in a Natural Numbers Network”,
Physical Review E, vol. 60, no. 3, pp. 036106-036110, 2004.

[44] X. Liu, C. K. Tse, and M. Small, “Complex Network Structure of
Musical Compositions: Algorithmic Generation of Appealing Music”,
Physica A, vol. 389, no. 1, pp. 126-132, 2010.

[45] S. Abe and N. Suzuki, “Scale-Free Network of Earthquakes”, Euro-

physics Letters, vol. 65, no. 4, pp. 581-586, 2004.
[46] S. Valverde, R. F. i Cancho, and R. Sole, “Scale Free Networks from

Optimal Design”, Europhysics Letters, vo. 60, pp. 512-517, 2002.
[47] C. R. Myers, “Software Systems as Complex Networks: Structure,

Function, and Evolvability of Software Collaboration Graphs, Physical

Review E, vol. 68, 2003.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1608

[48] S. Valverde and R. Solé, “Hierarchical Small Worlds in Software
Architecture”, Working Paper of Santa Fe Institue, SFI/03-07-44, 2003.

[49] A. P. S. Moura, Y. C. Lai, and A. E. Motter, “Signatures of Small-World
and Scale-Free Properties in Large Computer Programs”, Physical Review

E, vol. 68, pp. 017102, 2003.
[50] N. LaBelle and E. Wallingford, “Inter-Package Dependency Networks

in Open-Source Software”, ArXiv: Cs.SE/0411096, 2004.
[51] S. Valverde and R. V. Sole, “Universal Properties of Bipartite Software

Graphs”, Proc. of the 9th IEEE International Conference on Engineering

of Complex Computer Systems, 2004.
[52] M. Han, D. Li, C. Liu, et al. “Networked Characteristics in Software

and its Contribution to Software Quality”, Computer Engineering and

Application, vol. 42, no. 20, pp. 29-31, 2006. (in Chinese)
[53] J. Liu, K. He, Y. Ma, et al., “Scale Free in Software Metrics”, Proc.

of the 30th Annual International Computer Software and Application

Conference, pp. 229-235, 2004.
[54] J. Liu, K. He, R. Peng, et al., “A Study on the Weight and Topology

Correlation of Object-Oriented Software Coupling Network”, Proc. of the

1st International Conference on Complex Systems and Applications, PP.
955-959, 2006.

[55] D. Yan, G. QI, “The Scale-free Feature and Evolving Model of Large-
Scale Software systems”, Acta Phisica Sinica, vol. 55, no. 8, pp. 3799-
3084, 2006.

[56] H. Zhang, H. Zhao, W. Cai, et al., “Using the k-core Decomposition
to Analyze the Static Structure of Large-Scale Software Systems”, The

Journal of Supercomputing, vol. 53, no. 2, pp. 352-369, 2010.
[57] S. Jenkins and S. R. Kirk, “Software Architecture Graphs as Complex

Networks: a Novel Parttion Scheme to Measure Stability and Evolution”,
Information Sciences, vol. 177, no. 12, pp. 2587-2601, 2007.

[58] M. Shi, X. Li, and X. Wang, “Evolving Topology of Java Networks”,
Proc. of the 6th World Congress on Control and Automation, PP. 21-23,
2006.

[59] L. Wang, Z. Wang, C. Yang, et al., “Linux Kernels as Complex
Networks: a Novel Method to Study Evolution”, Proc. of the 25th

International Conference on Software Maintenance, PP. 41-50, 2009.
[60] H. Li, B. Huang, and J. Lu, “Dynamical Evolution Analysis of the

Object-Oriented Software Systems”, Proc. of the 2008 IEEE World

Congress on Computational Intelligence, PP. 3035-3040, 2008.
[61] R. V. Sole and S. Valverde, “Information Theory of Complex Networks:

on Evolution and Architectural Constraints”, Proc. of the International

Conference on Complex Networks, pp. 189-207, 2004.
[62] S. Valverde and R. V. Sole, “Network Motifs in Computational Graphs:

a Case Study in Software Architecture”, Physical Review E, vol. 72, pp.
026107, 2005.

[63] K. He, R. Peng, J. Liu, et al., “Network Motifs in Computational Graphs:
a Case Study in Software Architecture”, Journal of Systems Science and

Complexity, vol. 19, no. 2, pp. 157-181, 2006.
[64] B. Li, H. Wang, Z. Li, et al., “Software Complexity Metrics Based on

Complex Networks”, Acta Electronica Sinica, vol. 34, no. 12A, pp. 2371-
2375, 2006. (in Chinese).

[65] H. Li, “Scale-Free Network Models with Accelerating Growth”, Frontier

of Computer Science in China, vol. 3, no. 3, pp. 373-380, 2009.
[66] W. Pan, B. Li, Y. Ma, and J. Liu, “A Novel Software Evolution Model

Based on Software Networks”, Complex (2), 1281-1291, 2009.
[67] R. Vasa, J. G. Schneider, C. Woodward, et al., Detecting Structural

Changes in Object Oriented Software Systems, Proc. of the International

Symposium on Empirical Software Engineering, PP. 479-486, 2005.
[68] Y. Ma, K. He, and D. Du, “A Qualitative Method for Measuring the

Structural Complexity of Software Systems based on Complex Net-
works”, Proc. of the 12th Asia-Pacific Software Engineering Conference,
PP. 257-263, 2005.

[69] A. Girolamo, L. I. Newman, and R. Rao, “The Structure and
Behavior of Class Networks in Object-Oriented Software Design”,
www.eecs.umich.edu/ leenewm/ documents/classnetworks.pdf, 2005.

[70] Y. Ma, K. He, D. Du, et al., “A Complexity Metrics Set for Large-
Scale Object-Oriented Software Systems”, Proc. of the 6th International

Conference on Computer and Information Technology, PP. 257-263, 2006.
[71] R. Vasa, J. G. Schneider, and O. Nierstrasz, “The Inevitable Stability of

Software Change”, Proc. of the 23nd IEEE International Conference on

Software Maintenance, Paris France, PP. 4-13, 2007.
[72] H. Melton and E. Tempero, “Static Members and Cycles in Java Soft-

ware”, Proc. of the 1st International Symposium on Empirical Software

Engineering and Measurement, PP. 136-145, 2007.
[73] Y. Ma, K. He, and J. Liu, “Network Motifs in Object-Oriented Soft-

ware Systems”, Dynamics of Continuous, Discrete and Impulsive System

(Series B: Applications and Algorithms) Special Issue on Software Engi-

neering and Complex Networks, vol. 16, no. S6, pp. 166-172, 2007.

