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Abstract—In 3D-wavelet video coding framework temporal 
filtering is done along the trajectory of motion using Motion 
Compensated Temporal Filtering (MCTF). Hence computationally 
efficient motion estimation technique is the need of MCTF. In this 
paper a predictive technique is proposed in order to reduce the 
computational complexity of the MCTF framework, by exploiting 
the high correlation among the frames in a Group Of Picture (GOP). 
The proposed technique applies coarse and fine searches of any fast 
block based motion estimation, only to the first pair of frames in a 
GOP. The generated motion vectors are supplied to the next 
consecutive frames, even to subsequent temporal levels and only fine 
search is carried out around those predicted motion vectors. Hence 
coarse search is skipped for all the motion estimation in a GOP 
except for the first pair of frames. The technique has been tested for 
different fast block based motion estimation algorithms over different 
standard test sequences using MC-EZBC, a state-of-the-art scalable 
video coder. The simulation result reveals substantial reduction (i.e. 
20.75% to 38.24%) in the number of search points during motion 
estimation, without compromising the quality of the reconstructed 
video compared to non-predictive techniques. Since the motion 
vectors of all the pair of frames in a GOP except the first pair will 
have value ±1 around the motion vectors of the previous pair of 
frames, the number of bits required for motion vectors is also 
reduced by 50%.

Keywords—Motion Compensated Temporal Filtering, predictive 
motion estimation, lifted wavelet transform, motion vector 

I. INTRODUCTION

ver the years, there has been an exponential growth in the 
users base and their demands in the multimedia domain. 

Video communication is an important component of 
multimedia applications, needing inherently higher bandwidth 
for transmission. This is achieved through video coding. The 
twin issues of the adaptation of single video bit-stream to 
varying transport conditions (bandwidth, error rate……), 
varying receiver capabilities (CPU, display size….) and 
insatiable demands of the users have been addressed through 
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scalable video coding, where the compressed bit-streams are 
required to be scaled to requirement.  

Scalability refers to a method that allows the partial 
decoding of a single compressed bitstream. Depending on the 
conditions (bit rate, errors…), the decoder can take a portion 
of the stream and decode the video sequence at different 
quality, spatial resolution and frame rates [1, 2]. 

The success of wavelet/subband coding has been shown in 
static image coding such as JPEG2000 [3]. The extension of 
this to motion picture coding relies on the efficient processing 
of motion compensation along the temporal dimension. 
Sizable amount of work has been done by many researchers 
for 3D-subband coding [4]. The MCTF applies filtering along 
the motion trajectory. This scheme has attracted many 
researchers due to its inherent property of supporting all types 
of scalability.  

The lifting based implementation of the temporal filtering 
facilitates temporal filters longer than the Haar [18], subpixel 
accuracy for ME [16, 21, 6], bidirectional MC and multiple 
reference frames [16, 6, 22], multihypothesis MC [23, 24], 
ME/MC using meshes rather than blocks [24], and  multiple-
band schemes that increase temporal scalability [25]. 

MCTF can be used in two different stages in the video 
coding framework. In Spatial-Domain MCTF (SDMCTF) 
[15], spatial filtering follows temporal filtering and in In-Band 
MCTF (IBMCTF), temporal filtering follows spatial filtering. 
IBMCTF supports all types of scalability with high 
computational complexity. Recent research focuses on 
reducing the computational complexity of the scheme, by 
applying efficient techniques for wavelet domain motion 
estimation. The large amount of motion information generated 
needs to be coded, which is an active research area [7]. In this 
paper we propose a predictive technique for reducing the 
computational complexity of the motion estimation in MCTF 
framework. The number of bits required to represent the 
motion vectors are also reduced by 50%, except for the 
motion vectors of the first pair of frames in a GOP. 

The rest of the paper is organized as follows. Section 2 
explains Lifting-based MCTF. Section 3 covers block-based 
motion models. The details of the proposed technique are 
given in section 4. Results are discussed in section 5 and 
section 6 concludes the paper. 
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II.MOTION COMPENSATED TEMPORAL FILTERING

The three primary objectives of motion adaptive temporal 
transform [5] are, (i) the low pass temporal subband frames 
should represent a high quality and reduced frame-rate video, 
(ii) the transform should exhibit high coding gain and (iii) the 
transform should be invertible.  

Fig. 1 gives the temporal decomposition of a video 
sequence, I0, I1…….I2n+1 using bi-orthogonal 5/3 wavelet  
filter with lifting implementation. 

The prediction is to calculate the high pass frame, which 
predicts the odd frame from consecutive even frames as 
follows,  

)( 1212 iii IPIH

where,

)),(),((
2
1)( 221222212212 iiiiiii MVIMCMVIMCIP

Hi is the high pass frame generated in the predict step, 
MV2i+1 2i and MV2i+1 2i+2 are the motion vectors from the 
frame 2i+1 to 2i  and 2i+1 to 2i+2 respectively. MC() is the 
motion compensation process that generates the current 
frame’s prediction from its consecutive frame.  

The update step follows the predict step to complete one 
level 5/3 subband transform which generates the low pass 
frame. 
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Fig. 1 One level lifting MCTF using bi-orthogonal 5/3 filters. 

Block based motion model 
The block based motion models are computationally 

efficient methods compared to their counter-part mesh based, 
object based and region-based models. In block-based models, 
the current frame is divided into blocks of equal size (8X8, 
16X16…NXN). For each block in a current frame, a candidate 
block in the search window of the reference frame is found by 
motion estimation, using minimum Mean Square Error (MSE) 
(or mean absolute difference (MAD) or sum of absolute 
difference (SAD)) as a cost parameter.  
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Where Cij and Rij are the samples of current and reference 
block respectively of block size N X N. 

The full search motion estimation gives global minimum 
but it is computationally very intensive. Hence various fast 
block-based motion estimation algorithms are proposed such 
as logarithmic search [8], three-step search (TSS), new three-
step search (NTSS) [9], four step search (4SS) [10], block-
based gradient decent search (BBGDS) [11], simple and 
efficient search (SES) [12], diamond search (DS) [13] and 
hexagon-based search (HEXBS) [14]. Almost all fast block 
estimation algorithms work in two stages, a low-resolution 
coarse search and following a fine-resolution inner search.  

In Diamond Search (DS) [13], for all nine candidate 
positions shown in Fig. (2), in low-resolution MSE have to be 
found. The searching will continue until the center position 
itself gives the minimum MSE or search crosses the search 
window. Then search inner four positions as shown in Fig. (2) 
in fine-resolution, whichever position gives the minimum 
MSE that is the best match (or motion vector).  

Fig. 2 Search pattern in Diamond Search. 

In Hexagon Search (HEXBS) [14], for all seven positions 
in low-resolution as shown in Fig. (3) MSE has to be found, if 
center position gives the minimum MSE or crosses the search 
window, stop searching in low-resolution. Then search in the 
fine resolution, the minimum MSE position gives the final 
motion vector. 

Fig. 3 Search pattern in Hexagon Search. 

III. PROPOSED TECHNIQUE

In any video due to its inherent nature, the frames along the 
temporal directions are highly correlated; the two stages 
(coarse and fine search) of any fast block motion estimation 
are not necessary for all the pairs of frames in a GOP.  

This research work proposes a novel predictive technique 
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for efficient implementation of fast block based motion 
technique during MCTF. In this the motion vectors between 
the first pair of frames in a GOP have to be found as usual 
with low-resolution coarse search and fine-resolution inner 
search as discussed in section II. While performing motion 
estimation between next consecutive frames and even in next 
temporal levels in a GOP, the previously available motion 
vectors are used as a result of coarse search. The predictive 
structure for MCTF used in this work is as shown in Fig. (4). 
The finer search will be performed around the predicted 
position (i.e. around the corresponding motion vector of the 
block in the previous frame).  

Fig. 4 Predictive motion estimation structure for MCTF 

Consider continuous eight frames F0, F1, … F7 (for 
GOP=8). Among these for the first pair of frames, motion 
estimation is done by both search step (coarse and fine) that 
results in motion vector MV1 as shown in Fig. (5). The 
generated motion vector will be considered as the result of 
coarse search for the next consecutive pair of frames, that will 
result in motion vectors MV2, MV3 and MV4. The motion 
vectors MV2 and MV4 are used to predict motion vectors in 
the second level (that results in MV5 and MV6) and the 
motion vector MV5 is used to predict motion vector in the 
third level (results in MV7) and fine search is done as usual 
for all motion estimation.  

In a GOP of eight frames after three level MCTF there will 
be seven motion vector sets (i.e. MV1, MV2,……MV7).
Among these motion vectors, MV1 requires 8 bits (in case of 
window size 15 X 15, for x-coordinate 4-bit and y-coordinate 
4-bit) to represent. The remaining motion vectors (i.e. MV2,
MV3 … MV7) are found by prediction technique, that requires 
only 4 bits (result of fine search around ±1 positions of the 
predicted position). Hence the number of bits required for 
motion vectors are reduced by 50%, except for the motion 

vectors of the first pair in a GOP.  

IV. SIMULATION RESULTS

Simulation of the proposed technique is done on MC-EZBC 
a state-of-the-art scalable video coder [26]. During simulation 
of the proposed technique we have considered full search 
motion estimation with 1/8 pixel accuracy, 5/3 wavelet 
transform for temporal filtering, Debauchees 9/7 wavelet filter 
for spatial wavelet transform, window size 15 X 15 and block 
size 16 X 16. Standard test sequences like Akiyo, News, 
Foreman, etc., of QCIF resolution at 30 frames per second 
showing all varieties of motions are considered. 

TABLE I
THE PSNR VALUES OF DIAMOND AND PREDICTIVE DIAMOND FAST BLOCK 

MOTION ESTIMATION TECHNIQUES FOR AKIYO TEST SEQUENCE OF QCIF
RESOLUTION FOR 96 FRAMES AND GOP OF 8.

Akiyo Diamond Predictive Diamond 
kbps Y U V Y U V 
250 32.26 34.52 36.64 32.26 34.52 36.64 
500 37.60 38.56 39.59 37.60 38.56 39.59 
750 41.27 42.09 42.77 41.27 42.09 42.77 
1050 44.48 45.75 46.02 44.48 45.75 46.02 
1300 47.04 47.05 47.54 47.04 47.05 47.54 
1550 48.57 49.28 49.74 48.57 49.28 49.74 
1800 50.06 50.95 51.13 50.06 50.95 51.13 
2100 51.47 51.73 51.95 51.47 51.73 51.95 
2400 52.39 53.00 53.42 52.39 53.00 53.42 
2800 52.47 53.15 53.45 52.47 53.15 53.45 
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Fig. 5 Comparison of PSNR Value of Diamond and Predictive 
Diamond for Akiyo Test Sequence of QCIF Resolution

The complete search and predictive search is applied during 
motion estimation in MCTF and complete encoded bit stream 
is generated by MC-EZBC. The Table 1 shows the 
comparison of Diamond and Predictive Diamond when partial 
decoding is done by extracting (10%, 20%, …) partial bit 
stream from the encoded bit stream. During complete 
extraction, at every stage the PSNR values for all the 
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components Y, U and V of Akiyo test video sequence remains 
same for Diamond and Predictive Diamond as shown in Fig. 
5.

The technique performs similarly in case of Hexagon search 
as shown in Table II and Fig. 6 for Akiyo test sequence. 

The technique is tested for various bit rates with high 
motion and camera pan video CarPhone. In this case also the 
technique performed well as shown in Table III, IV and Fig. 
7, 8.

TABLE II
THE PSNR VALUES OF HEXAGON AND PREDICTIVE HEXAGON FAST BLOCK 

MOTION ESTIMATION TECHNIQUES FOR AKIYO TEST SEQUENCE OF QCIF
RESOLUTION FOR 96 FRAMES AND GOP OF 8.

Akiyo Hexagon Predictive Hexagon 
kbps Y U V Y U V 
270 32.75 34.52 36.64 32.75 34.52 36.64 
545 38.31 39.66 40.35 38.31 39.66 40.35 
820 42.05 42.92 43.41 42.05 42.92 43.41 
1088 44.85 44.85 46.72 44.85 44.85 46.72 
1360 47.28 48.07 48.49 47.28 48.07 48.49 
1640 49.10 49.76 50.33 49.10 49.76 50.33 
1900 50.63 50.95 51.13 50.63 50.95 51.13 
2180 51.68 52.36 52.34 51.68 52.36 52.34 
2450 52.45 53.10 53.49 52.45 53.10 53.15 
2900 52.47 53.15 53.45 52.47 53.15 53.45 
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Fig. 6 Comparison of PSNR Value of Hexagon and Predictive 
Hexagon for Akiyo Test Sequence of QCIF Resolution 

The Table V shows the number of search positions in first 
GOP of various test sequence for Diamond and Hexagon non-
predictive and predictive technique. It indicates that in almost 
all types of motion video the proposed technique performed 
well. In case of slow motion video Akiyo in Predictive 
Hexagon 38.24% of reduction is observed and fast video 
Table Tennis 36.48% of reduction is observed. In case of 
Predictive Diamond the reduction for Akiyo and Table Tennis 
is 21.51% and 21.28% is observed respectively. The proposed 
technique reduces the number of search positions by 20.75% 
to 38.24% over different standard test sequence and over 
different fast motion estimation technique as shown in Table 
V.

TABLE III
THE PSNR VALUES OF DIAMOND AND PREDICTIVE DIAMOND FAST BLOCK 

MOTION ESTIMATION TECHNIQUES FOR CARPHONE TEST SEQUENCE OF QCIF
RESOLUTION FOR 96 FRAMES AND GOP OF 8.

CarPhone Diamond Predictive Diamond 
kbps Y U V Y U V 
320 32.71 37.26 36.92 32.71 37.26 36.92 
640 38.26 40.12 40.38 38.26 40.12 40.38 
960 42.10 43.24 43.03 42.10 43.24 43.03 
1280 44.77 45.47 46.00 44.77 45.47 46.00 
1600 47.25 47.02 47.50 47.25 47.02 47.50 
1920 48.71 49.05 49.36 48.71 49.05 49.36 
2240 50.49 49.73 50.01 50.49 49.73 50.01 
2560 51.53 51.43 50.8 51.53 51.43 50.80 
2890 52.25 52.53 52.63 52.25 52.53 52.63 
3200 52.28 52.64 52.67 52.28 52.64 52.67 
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Fig 7 Comparison of PSNR Value of Diamond and Predictive 
Diamond for Carphone Test Sequence of QCIF Resolution 
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TABLE IV
THE PSNR VALUES OF HEXAGON AND PREDICTIVE HEXAGON FAST BLOCK 

MOTION ESTIMATION TECHNIQUES FOR CARPHONE TEST SEQUENCE OF QCIF
RESOLUTION FOR 96 FRAMES AND GOP OF 8.

CarPhone Hexagon Predictive Hexagon 

kbps Y U V Y U V 
320 32.71 37.26 36.92 32.71 37.26 36.92 
645 38.32 40.12 40.51 38.32 40.12 40.51 
960 42.10 43.24 43.03 42.10 43.24 43.03 
1300 45.01 45.47 46.0 45.01 45.47 46.00 
1610 47.33 47.02 47.50 47.33 47.02 47.50 
1930 48.78 49.05 49.36 48.78 49.05 49.36 
2250 50.55 49.73 50.01 50.55 49.73 50.01 
2580 51.53 51.51 51.09 51.53 51.51 51.09 
2900 52.26 52.53 52.63 52.26 52.53 52.63 
3500 52.28 52.64 52.71 52.28 52.64 52.71 

The Table VI shows PSNR value for all Y, U & V 
components in case of all standard test sequences by Diamond 
and Hexagon predictive and non-predictive techniques at 1024 
kbps decoded rate from compressed bit stream. 

TABLE V
THE NUMBER OF SEARCH POSITIONS FOR HEXAGON AND DIAMOND FOR 

VARIOUS STANDARD TEST SEQUENCES FIRST GROUP OF FRAMES ON STANDARD 
AND PROPOSED TECHNIQUE.

Sequence Hexagon Predictive 
Hexagon

(% of 
reduction) 

Diamond Predictive 
Diamond 

(% of 
reduction) 

TableTennis 2387 871(36.48) 3079 649(21.08) 
Akiyo 2254 862(38.24) 2937 632(21.51) 
GrandMother 2312 864(37.37) 3011 639(21.22) 
MotherDaughte
r 2248 859(38.21) 2995 636(21.23) 
Suize 2256 859(38.07) 3005 641(21.33) 
News 2361 870(36.84) 2997 638(21.28) 
Foreman 2340 870(37.17) 3041 642(21.11) 
Carphone 2314 863(37.29) 2951 633(21.45) 
Salesman 2363 878(37.15) 3100 652(21.03) 
Coastguard 2427 876(36.09) 3170 658(20.75) 

Container 2513 892(35.49) 3087 650(21.05) 

V.CONCLUSION

This paper proposed a novel predictive motion estimation 
structure for MCTF framework. The technique reduces the 
number of search points by 20.75% - 38.24% compared to 
non-predictive technique for different fast block motion 
estimation technique depending on the standard test 
sequences. The technique will not compromise with the 
objective or subjective quality of the video. The number of 
bits required for motion vectors are also automatically reduced 
drastically. Hence the proposed technique is a candidate for 
replacing the existing non-predictive MCTF framework. 
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TABLE VI
THE PSNR OF VARIOUS QCIF STANDARD TEST SEQUENCE FOR HEXAGON AND DIAMOND SEARCH ALGORITHMS FOR STANDARD AND PROPOSED TECHNIQUE 

AT 1024 KBPS

Hexagon Predictive Hexagon Diamond Predictive Diamond Sequence
Y U Y Y U V Y U V Y U V 

Akiyo 44.85 44.85 46.72 44.85 44.85 46.72 44.48 45.75 46.02 44.48 45.75 46.02 
News 39.26 40.99 41.77 39.26 40.99 41.77 39.01 40.99 41.77 39.01 40.99 41.77 
CarPhone 45.01 45.47 46.0 45.01 45.47 46.00 44.77 45.47 46.00 44.77 45.47 46.00 
Foreman 39.26 40.99 41.77 39.26 40.99 41.77 38.94 41.41 41.76 38.94 41.41 41.76 
CoastGaurd 37.85 45.26 45.93 37.85 45.26 45.93 37.61 44.59 45.61 37.61 44.59 45.61 
Container 39.69 42.46 42.80 39.69 42.46 42.80 39.69 42.46 42.80 39.69 42.46 42.80 
GrandMother 41.16 42.62 42.92 41.16 42.62 42.92 40.89 42.62 42.83 40.89 42.62 42.83 
MotherDaug. 44.43 46.00 46.79 44.43 46.00 46.79 44.64 46.00 46.78 44.64 46.00 46.78 
SalesMan 39.26 40.99 41.77 39.26 40.99 41.77 38.94 41.41 41.76 38.94 41.41 41.76 
Suzie 45.43 48.32 48.24 45.43 48.32 48.24 45.39 48.32 48.24 45.39 48.32 48.24 
TableTennis 38.15 42.26 40.94 38.15 42.26 40.94 39.51 42.75 41.64 39.51 42.75 41.64 


