
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:4, 2012

455

Verification and validation for Java classes using
Design by Contract. The modular external approach

Darı́o Ramı́rez de León, Oscar Chávez Bosquez, and Julián J. Francisco León

Abstract—Since the conception of JML, many tools, applications
and implementations have been done. In this context, the users or
developers who want to use JML seem surounded by many of these
tools, applications and so on. Looking for a common infrastructure
and an independent language to provide a bridge between these
tools and JML, we developed an approach to embedded contracts in
XML for Java: XJML. This approach offer us the ability to separate
preconditions, posconditions and class invariants using JML and
XML, so we made a front-end which can process Runtime Assertion
Checking, Extended Static Checking and Full Static Program Verifi-
cation. Besides, the capabilities for this front-end can be extended and
easily implemented thanks to XML. We believe that XJML is an easy
way to start the building of a Graphic User Interface delivering in
this way a friendly and IDE independency to developers community
wich want to work with JML.

Keywords—Model checking, verification and validation, JML,
XML, Java, Runtime Assertion Checking, Extended Static Checking,
Full Static Program Verification

I. INTRODUCTION

JML was created by Gary T. Leavens [1] and since its
conception much work have been done. This drives us

between a large amount of tools, duplication of effort & high
(collective) maintenance overhead. JML is the most popu-
lar Behavioral Interface Specification Language (BISL) for
Java [2], [3] supporting Runtime Assertion Checking (RAC),
Extended Static Checking (ESC) and Full Static Program
Verification (FSPV), in fact, is the only BISL supported by
all three of these verification technologies [2], [3].

However, the evolution of Java as programming language
and the improvements for JML tools and applications, forces
the JML community to keep on date, a hard task which
produces many variants and alternatives of these tools and
applications.

In this paper we introduce the XJML architecture. As far
as we know, it is the first approach to embedding contracts
for Java using JML and XML. XJML is built on top of JML4
using the RAC and ESC verification technologies. Also, XJML
uses Krakatoa [4], a FSPV tool for Java classes, with JML
annotations. Since XJML uses XML, we can deliver a greater

D. Ramı́rez de León is with the División Académica de Informática y
Sistemas, Universidad Juárez Autónoma de Tabasco, Tabasco, México (e-
mail: msc-dar ram@hotmail.com)

O. Chávez Bosquez is with the División Académica de Informática y
Sistemas, Universidad Juárez Autónoma de Tabasco, Tabasco, México (e-
mail: oscar.chavez@ujat.mx)

J.J. Francisco León is with the División Académica de Informática y
Sistemas, Universidad Juárez Autónoma de Tabasco, Tabasco, México (e-
mail: julian.francisco@ujat.mx)

Manuscript received April 19, 2005; revised January 11, 2007.

uncoupling between Java and JML1.
The rest of this paper is divided as follows: in the second

section we introduce the problem found when we wanted to
work with JML and its related verification techniques for
Java classes. We focus on the last efforts from the JML
community to integrate the three verification techniques: RAC,
ESC, and FSPV. Specifically JML4, JMLEclipse and Open-
JML [5]. In third section we present our architecture that
makes possible embedding contracts in XML using the Java
Modeling Language. We called this architecture XJML (X
because we can write contracts in XML, and JML for the Java
Modeling Language, one underlying language supported in
the contracts). XJML already supports RAC, ESC and FSPV,
unlike JML4 and JMLEclipse. The fourth section contains
preliminary tests and screenshots with XJML 1.0. In the fifth
section we present the related work. Last section contains
conclusions and future works.

II. THE PROBLEM

Because there are many tools, applications and implementa-
tions working with JML, users and developers who want to use
JML seem surounded by many software. To our knowledge,
JML4 and JMLEclipse were the last efforts to generate an
Integrated Verification Environment (IVE) for JML [2], [3].

Both of them, JML4 and JMLEclipse, aim to support the
RAC, ESC, and FSPV verification techniques. Nevertheless,
there is no stable release of JML4 nor JMLEclipse, and it
seems that JMLEclipse was abandoned. Moreover, it looks
that no one else, outside from the JML community has done
empirical tests with JML4 or JMLEclipse, according to its
main project pages on the Web.

In the other side, OpenJML is the main effort for JML
tools, but still under development. So, we propose XJML,
mainly motivated for the lack of one stable release of JML4,
JMLEclipse and OpenJML.

In this way, we believe that XJML can offer the first
stable release, supporting JML and the RAC, ESC and FSPV
verification techniques, all this through one XML file, within
an architecture that we have called the modular external
approach.

III. XJML’S ARCHITECTURE

Since JML is intended for Java, then the architecture for
XJML too. The main components for this architecture are:

1Unlike JML expressions in comments, annotations, java interfaces, or in
jml files



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:4, 2012

456

• The class Preprocessor, which main function is parse
the XML file who contains the contract.

• The abstract class, Processor, with abstract methods
for compile, run, add tool (RAC, ESC, FSPV) among
others. For our tests with JML we’ve developed JML-
Processor, which extends from Processor.

• One class, Compiler who executes the proper process
of compilation, choosing between JML and others speci-
fication languages (for this case, we are just working with
JML).

• The AbstractRunner, one abstract class who defines,
simply the run(String, Class<?>) mehod. This
abstract class was made it to be extended since others,
for instance, we’ve developed RACRunner, which only
delegates the RAC to the right tool.

• MyException, one abstract class inheriting from
java.lang.Exception. Its function is abstracting
the common exceptions (AssertionNotFound, ClassNa-
meNotMatch, ClassScopeNotMatch, MethodNotFound,
NotInstanceOf, NumberOfParamNotMatch, ParamNot-
Found, ReturnTypeNotMatch, WrongAssert) for our ar-
chitecture.

There are other components besides the listed above (i.e.,
the W3C XML Schema -XSD- which defines the semantic for
build contracts with XJML). The full architecture is ilustrated
in the figure 1 that shows the component diagram for the
XJML’s architecture.

A. The XJML Preprocessor Core

The heart of the XJML architecture contains two XML
Schema Definition (XSD files) who has the function to express
the semantic rules required to build con- tracts with XJML.
Besides, there are two Java class. These components are
defined as following.

1) Rules-vv-dbc.xsd: An XML schema definition contain-
ing the semantic rules required to build contracts with XJML.
This XSD import Types.xsd.

2) Types.xsd: This XSD has the definition of the main types
used in Rules-vv-dbc.xsd. For instance, the types indicating
the scope for one java class (private, protected, public), the
primitive types and wrappers valid in Java (void, int, Integer,
long, Long, etc.).

Both, Rules-vv-dbc.xsd and Types.xsd plus one XML file
(this last is the contract container, validated against Rules-vv-
dbc.xsd). This XML file (since now, called, the rules file) is
an input parameter for our Preprocessor, so, the rules file is
parsed in Preprocessor.

3) Preprocessor.java: This class together with
Processor are the core of XJML. The main functions of
the Preprocessor are:

• parse the rules file,
• check the conformance between the rules and the Java

file. for example, if we define in the rules file that a
method add(int, int) must be private, return
one int, and in our Java file, we have public void

add(int) then the Preprocessor has to report one

MethodNotFoundException because the Java file
is not valid against its rules.

• delegate the compile and run tasks to the right compiler
and runner

4) XMLElements.java: This final class only contains at-
tributes public static final java.lang.String

like CLASS_TAG, METHOD_TAG, NAME_ATTR among oth-
ers.

B. XJML Processors

The XJML processor package contains the abstract class
Processor, which has abstract methods to generate pre-
conditions, posconditions and class invariants. To do this, we
develope the final class JMLProcessor.

1) JMLProcessor.java: The intention of this final class
(which extends from Processor) is to hide, to the ordinary,
non specialized in formal methods, developer, the details of
how XJML compile the class, run the verification tools (RAC,
ESC and FSPV) and report the results of each tool. By doing
this, we believe that XJML can bring closer to the developer
the concepts of formal methods, and at the same time, we can
offer to the GUI designers one bridge between the front-end
(moreover the GUI, remember that one file must exist for each
class to verify, this file is the contract, written in XML) and
the back-end (the processors, compilers, Runners, and so
on).

By space limitations, we only focus in the public

boolean compile(java. lang.String) (inherited
from the Processor class). You will find all the source code
for the JMLProcessor and the XJML project on Eclipse in
http://sourceforge.net/projects/xjml/.

The public boolean compile(java.lang.

String) method has the job to compile the class indicated
by the input param java.lang.String. To do this,
we build one array of java.lang.String, called
argsCompiler, containing the arguments for the JML4c.
Then, we delegate the compiling task to the Compiler class
in the XJML Compiler package, passing as arguments the
compiler type and the argsCompiler. So we have:

public boolean compile(String file) {
String[] argsCompiler = {”java”, ”−jar”, ”jml4c.jar”, file +

”.java”};
return

mx.ujat.dais.tesis.msc.dario.compilers.Compiler.compile
(TYPE COMPILER.JML, argsCompiler);

}

Finally, but not least important the TYPE_COMPILER is a
public static enum defined in the Compiler class:

public static enum TYPE COMPILER {JML, OTHER}

C. The XJML Compiler

This subsystem only contains the Compiler component.
Nevertheless, the design of XJML does not prevent the cre-
ation of new Compilers, so you can extend XJML to use
another modeling languages.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:4, 2012

457

Fig. 1. Diagram component of XJML architecture

1) Compiler.java: Its duty, as you can figure it out, is to
perform the compilation process for one Java class and its
contract. To do this, the Compiler class works like one
wrapper for the jml4c [6].

The Compiler class contains, among
others, the method public static

boolean compile(TYPE_COMPILER,

java.lang.String[]). The first argument is the
compiler that XJML will invoke. Pro tem, the only supported
compiler is jml4c. The compilation task is performed
through:

Process p = Runtime.getRuntime().exec(args, null, new
File(System.getProperty(”user.dir”) + ”/tmp”))

where the System.getProperty("user.dir") +

"/tmp" is the directory where jml4c resides. As you can
see, this method must return one boolean value, this value
will be returned in this way: return p.waitFor() ==

0.
Last, the java.lang.String[] are the arguments

passed to the compiler.

D. XJML Runners

This subsystem of XJML is conformed by five compo-
nents: one AbstractRunner and the corresponding runners

for RAC (RACRunner), ESC (ESCRunner), and FSPV
(FSPVRunner). The remaining runner corresponds to the
WhyRunner. Of course, there is one Java class for each of
them.

The job of these components is to execute the V&V of
the Java class, according to its specifications, written in the
contract (the XML file).

Note that: RAC is performed through the jmlrac tool [7],
[8]. ESC is performed through ESC/Java2 [9] and FSPV is
performed through the Why platform [10].

IV. TESTING XJML 1.0

So far, we have presented the XJML’s architecture (figure
2 shows the XJML project in the Eclipse IDE). Now, it’s
time to show how XJML 1.0 works. For this, we chose
the AccountBank class presented in [11]; we believe that
the AccountBank class is analogous to “Hello World”
programs, but in the field of Verification and Validation.

The first thing to do, is write the contract for the Java class.
We will call this contract AccountBank.xml (figure 3), it
will be the contract for the AccountBank class.

For space limitations we will not include the con-
tent of any file from XJML. Instead, you will find the
AccountBank.xml in http://goo.gl/9I5eV.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:4, 2012

458

Then, if we want verify the AccountBank class with
XJML 1.0, the second thing to do is modify the class
by removing the JML expressions. So, let’s check it; our
AccountBank class (figure 4) to verify with XJML 1.0 will
find in http://goo.gl/9iObb.

Lastly, we need the Main class (figure 5). In XJML
1.0, this class has the duty to bind the Java class with
its respective contract. There are not established rules for
this class, except the fact that its public static void

main(java.lang.String[]) method is mandatory. You
can download this class through: http://goo.gl/nPux5.

In the public static void

main(java.lang.String[]) method of the Main

class, you must specify the Java class and its contract.
If you have all these three files, just have to run the

Main class. So, the figures 6 to 8 present the output for
RACRunner, ESCRunner and FSPVRunner, respectively.

V. RELATED WORK

The Java Modeling Language has evolved through the years
[12], starting its conception, passing from JML2, JML3, JML4,
JML5, JMLEclipse, OpenJML, to our knowledge, the last
effort from the JML community to produce an Integrated
Verification Environment.

Unfortunately, one first official (non-beta) release of JmlE-
clipse is targeted to be determined as we can see in [13].

Also exists OpenJML, wich is the next generation of the
core JML tools and will support Java 1.7. It is based on
OpenJDK but unfortunately the installation fails [14] if the
underlying Java VM is not a suitable Java 1.7 VM. Also there’s
a lot work to do, and the GUI features for its Eclipse plug-in
are not yet defined [14].

Regardless the efforts from the JML community to inte-
grate Runtime Assertion Checking, Extended Static Checking
and Full Static Program Verification, it seems, and to our
knowledge, there is no tool that integrates these verification
techniques, and what is more important, there is no tool for
JML that allows the user to write contracts for a Java class in
a XML file.

We choose the Extensible Markup Language (XML) as the
language to write the contract for one Java class in XJML 1.0
because of its important role in the exchange of a wide variety
of data [15].

In this sense, PiXL (Protocol Interchange using XML Lan-
guages) [16] is a clear example of how the XML technologies
and standards can be used for the integration of analysis tools.
However, PiXL has not support for JML.

So, we cay say that XJML is the first approach for JML
that allows to write contracts for one Java class in one XML
file, supporting RAC, ESC and FSPV.

VI. CONCLUSION

The Java Modeling Language (JML) is perhaps the best
known modeling language for Java classes. There is a wide
community of JML experimenting with it, and their last efforts
are focused in build one Integrated Verification Environment

(IVE) [2], where the verification techniques: Runtime Asser-
tion Checking (RAC), Extended Static Checking (ESC) and
Full Static Program Verification (FSPV), can be integrated.

Of these three verification techniques, FSPV it seems the
harder to be integrated and the last effort (OpenJML) are not
ready yet. We believe that XJML is the first in its type, where
the JML expressions are not in the Java class. Instead, these
expressions can be embedded in one XML file. Furthermore,
XJML to our knowledge, is the first tool that bring together
RAC (using jmlrac, from JML4), ESC (with ESC/Java2)
and FSPV (where unlike JML4 and JMLEclipse, XJML uses
the Why platform).

We are working with experiments using the AccountBank
class. These experiments must use RAC, ESC and FSPV
techniques, through, of course RACRunner, ESCRunner

and FSPVRunner of XJML 1.0. After this, we are going to
make sure that there are no alteration between our results and
the results of each verification technique running separately.

XJML 1.0 only supports preconditions, posconditions and
class invariants, so we hope that in the next updates of XJML
we can offer support for more JML expressions.

The third thing to do is to build a Graphic User Interface
(GUI) for XJML. Then, we are thinking in one second release
of XJML.

We hope that in XJML 2.0, the user does not need to write
the Main class (responsible for bind the Java class and its
contract). Instead, the GUI will make easier this job, hiding
this class to the user.

Finally, we hope that XJML will be useful, for the JML
community and for all the Java programers.

ACKNOWLEDGMENT

This work has been supported by the project Development

of a technological infrastructure to support the Human Rights

Commission of the state of Tabasco using advanced software

tools to care for vulnerable groups, thanks the Fondos Mix-
tos, through the Consejo Nacional de Ciencia y Tecnologı́a
(CONACYT). The number of project was TAB–2008–C03–
95740.

We also thank to Gary T. Leavens, Kuat Yessenov, Greg
Dennis, and Homero Alpuin, for all their support, email
responses, suggestions, and more.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:4, 2012

459

Fig. 2. The XJML 1.0, in Eclipse IDE

Fig. 3. The AccountBank contract



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:4, 2012

460

Fig. 4. The AccountBank class

Fig. 5. Binding the Java class with its contract: the Main class



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:4, 2012

461

Fig. 6. Running RAC through XJML 1.0

Fig. 7. Running ESC through XJML 1.0



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:4, 2012

462

Fig. 8. Running FSPV through XJML 1.0

REFERENCES

[1] Gary T. Leavens’s Home Page, http://www.cs.ucf.edu/∼leavens/
homepage.html

[2] P. Chalin, P. R. James, and G. Karabotsos: JML4: Towards an Industrial
Grade IVE for Java and Next Generation Research Platform for JML.
In: Proceedings of the International Conference on Verified Software:
Theories, Tools, Experiments (VSTTE). Toronto, Canada, Oct. 6-9 (2008)

[3] P. Chalin, P. R. James, and G. Karabotsos: An Integrated Verification
Environment for JML: Architecture and Early Results. In: Proceedings
of the Sixth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS), Cavtat, Croatia, Sept. 3-4 (2007)

[4] Krakatoa and Jessie: verification tools for Java and C programs, http:
//krakatoa.lri.fr/

[5] OpenJML jmlspecs, http://sourceforge.net/apps/trac/jmlspecs/wiki/
OpenJml

[6] JML4c, http://www.cs.utep.edu/cheon/download/jml4c/index.php
[7] JMLRAC, http://www.eecs.ucf.edu/∼leavens/JML2/docs/man/jmlrac.

html
[8] Yoonsik Cheon, Gary T. Leavens: A runtime assertion checker for the

Java Modeling Language (JML). In: Proceedings of the International
Conference On Software Engineering Research and Practice (SERP 02),
Las Vegas, Nevada, USA, June 24-27 (2002)

[9] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,
James B. Saxe, and Raymie Stata: Extended Static Checking for Java. In
Programming Language Design and Implementation (PLDI) 2002 forum.
http://research.microsoft.com/en-us/um/people/leino/papers/krml103.pdf

[10] Why platform, http://why.lri.fr/
[11] C. Oriat. Jartege: A Tool for Random Generation of Unit Tests for Java

Classes In Quality of Sofware Architectures and Software Quality, 2nd
International Workshop of Software Quality SOQUA05, LNCS 3712,
pages 242-256, Erfurt, Germany, Sept 2005.

[12] JML Tools Review & Evaluation, http://www.cs.colorado.edu/∼bec/
courses/csci5535-s10/slides/grosshans-lewis-prazen.2up.pdf

[13] JMLEclipse - jmlspecs, http://sourceforge.net/apps/trac/jmlspecs/wiki/
JmlEclipse

[14] The OpenJML User Guide, page 13, http://jmlspecs.sourceforge.net/
OpenJMLUserGuide.pdf

[15] Extensible Markup Language (XML), http://www.w3.org/XML/
[16] del Mar Gallardo, M., Martı́nez, J., Merino, P., Nuñez, P. and Pimentel,

E.: PiXL: Applying XML Standards to Support the Integration of Analysis

Tools for Protocols. In Science of Computer Programming Journal,
Volume 65, Issue 1, 57-69 (March 2007).
http://www.lcc.uma.es/∼pedro/publications/pixl gallardo.pdf


