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Abstract—Hopfield model of associative memory is studied in 

this work. In particular, two main problems that it possesses: the 
apparition of spurious patterns in the learning phase, implying the 
well-known effect of storing the opposite pattern, and the problem of 
its reduced capacity, meaning that it is not possible to store a great 
amount of patterns without increasing the error probability in the 
retrieving phase. In this paper, a method to avoid spurious patterns is 
presented and studied, and an explanation of the previously 
mentioned effect is given. Another technique to increase the capacity 
of a network is proposed here, based on the idea of using several 
reference points when storing patterns. It is studied in depth, and an 
explicit formula for the capacity of the network with this technique is 
provided. 
 

Keywords—Associative memory, Hopfield network, Network 
capacity, Spurious patterns.  

I. INTRODUCTION 
SSOCIATIVE memory has received much attention for the 
last two decades. Though numerous models have been 

developed and investigated, the most influential is Hopfield 
Associative Memory [1], based on his studies of collective 
computation in neural networks. 

Hopfield’s model consists in a fully-interconnected series 
of bi-valued neurons (outputs are either -1 or +1). Neural 
connection strength is determined in terms of weight matrix 
W, jiw ,  representing the synaptic connection between 

neurons i and j. This matrix is fixed, that is, once the learning 
phase (an application of Hebb’s postulate of learning [2]) has 
finished, no further synaptic modification is considered. 

Two main problems are found in this model: the apparition 
of spurious patterns and its low capacity.  

Spurious patterns are local minima of the corresponding 
energy function and not associated to any stored pattern.  

The capacity parameter α  is usually defined as the quotient 
between the maximum number of patterns to load into the 
network and the number of used neurons that achieve an 
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acceptable error probability in the retrieving phase. It has been 
shown that this constant is approximately 15.0=α  for 
Hopfield’s model. This value means that if the net is formed 
by N neurons, a maximum of NK α≤ patterns can be stored 
and retrieved with very little error probability. 

McEliece [3] showed that the asymptotic capacity of the 

network is at most 
2 log

N
N

, if most of the prototype patterns 

are to remain as fixed points. This capacity decreases to 

4 log
N

N
 if every pattern must be a fixed point. 

In this work, a technique to avoid the apparition of spurious 
states in Hopfield’s model is explained in terms of the 
decrease of the energy function associated to state vectors.  

The main contribution of this paper consists in an extension 
of this model as associative memory to overcome the problem 
of its reduced capacity. 

The organization of the paper is as follows: in Sec. II, a 
description of Hopfield model is given, putting special 
emphasis on its application as content-addressable memory. In 
Sec. III, the method to avoid the apparition of spurious 
patterns is presented. In Sec. IV, the associative memory 
model is extended by the use of multiple reference points, and 
in Sec. V, a study of the capacity of this new model is 
presented, similar to that presented in [4], followed by several 
consequences of importance. Finally, in Sec. VI some final 
remarks and conclusions are given, as well as possible future 
research lines.  

II. HOPFIELD’S MODEL 

A. The Network 
Hopfield’s model consists in a net formed by N neurons, 

whose outputs (states) are either -1 or +1. Thus, the state of 
the net at time t is completely defined by a N-dimensional 
state vector N

N tVtVtVtV }1,1{))(,),(),(()( 21 −∈= K . 
Associated to every state vector there is an energy function 

that determines the behavior of the net: 

,
1 1 1

1( )
2

N N N

i j i j i i
i j i

E V w V V Vθ
= = =

= − +∑∑ ∑  (1) 

where jiw ,  is the connection weight between neurons i and j, 

and iθ  is the threshold corresponding to i-th  neuron. Since 
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thresholds are not used in the case of associative memory, all 
of them are considered to be 0. 
By using the function 12),( , −= yxyxf δ , which takes value 1 

if yx =  and -1 otherwise, (1) can be rewritten as: 

,
1 1

1( ) ( , )
2

N N

i j i j
i j

E V w f V V
= =

= − ∑∑  (2) 

In this work, we have also considered discrete time and 
semi-parallel dynamics, where only one neuron is updated at a 
time, achieving the greatest possible descent of the energy 
function.  

B. The Associative Memory 

Let us consider },...,1:{ )( KkX k = , a set of bipolar patterns 
to be loaded into the network. In order to store these patterns, 
weight matrix W must be determined. This is achieved by 
applying Hebb’s classical rule for learning. So, the increment 
of the weights, when pattern )( iXX =  is introduced into the 
network, is given by ),(, jijiji XXfXXw ==∆  [5]. Thus, 

the final expression for the weights is: 

( ) ( ) ( ) ( )
,

1 1

( , )
K K

k k k k
i j i j i j

k k

w X X f X X
= =

= =∑ ∑ . (3) 

In this case, the energy function that is minimized by the 
network can be expressed in the following terms: 

( ) ( )

1 1 1

1( ) ( , ) ( , )
2

N N K
k k

i j i j
i j k

E V f X X f V V
= = =

= − ∑∑∑  (4) 

In order to retrieve a pattern, once the learning phase has 
finished, the net is initialized with the known part of the 
pattern. Then, the dynamics makes the network converge to a 
stable state (due to the decrease of the energy function), 
corresponding to a local minimum. Usually this stable state is 
close to the initial one.  

III. HOW TO AVOID SPURIOUS PATTERNS 
Definitions. Given a state V, its associated matrix is defined 

as )( , jiV gG =  such that ),(, jiji VVfg = . 

Its associated vector is )( kV aA =  with jiiNj ga ,)1( =−+ , 

that is, it is built by expanding the associated matrix as a 
vector of 2N  components. 

When a pattern X is loaded into the network, by modifying 
weight matrix W, not only the energy corresponding to state 

XV =  is decreased. This fact can be explained in terms of 
the associated vectors. 

With this notation, the energy function can be expressed as: 

( )

1

1( ) ,
2

k

K

VX
k

E V A A
=

= − < >∑  (5) 

where ><·,·  denotes the usual inner product. 
Lemma. Give a state V, we have VV AA −= . 
If two states have the same associated vector (as is the case 

of V and –V), they will have the same energy value. More 

concretely, the increment of energy of a state V when the 
pattern X is loaded into the network, by using (3), is given by 

1( ) ,
2 X VE V A A∆ = − < >  (6) 

 Since VA , XA  are vectors of 2N  components taking value 
in {–1,1}, their norms are the same NA EV =|||| for all V. This 
fact implies that what the network actually stores is the 
orientation of the vectors associated to loaded patterns. 
  So, as X and –X have the same associated vector, the increase 
of energy will be the same for both of them when a pattern is 
introduced into the network. This fact explains the well-
known problem of loading the opposite pattern of Hopfield’s 
associative memory. 

From (6), and using that terms in VA , XA  are either -1 or 
1, the following expression for the decrease of energy when a 
pattern is loaded is obtained [5]: 

21( ) ( 2 ( , ))
2 HE V N d V X− ∆ = −  (7) 

where ),( XVd H  is the Hamming distance between vectors V 
and X. 

Definition. The augmented pattern X̂ , associated to X, is 
defined by appending to X the possible values of its 
components. In the case of bipolar outputs, we have 

)1,1,,...,(ˆ
1 −= NXXX . 

By making use of augmented vectors, the problem of 
spurious patterns is solved, as stated in the next result: 

Theorem 1. The function ,ψ  that associates an augmented 
pattern to its corresponding associated vector, is injective. 

It can be shown that if augmented patterns are used, the 
state V whose energy decreases most when pattern X is 
introduced in the net, is XV = . By using (7), if XV ≠ , then  
we have 1 ( , )Hd V X N≤ ≤ , and this inequality holds: 
2 2 2 2 2 ( , ) 2 2HN N N N d V X N N− = + − ≤ + − ≤ + − = . 

 Therefore  

{ }
2

2 2 2 2

2 ( ) ( 2 2 ( , ))

max (2 ) , ( 2) 2 ( )
HE V N d V X

N N N N E X

− ∆ = + − ≤

≤ − = < + = − ∆
 (8) 

which demonstrates our statement. 
Then, in order to load a pattern X, it will suffice to load its 

augmented pattern, which will be the unique state maximizing 
the decrease of energy. 

It must be noted that it will only be necessary N neurons, 
since the last 2 are fixed.  

IV. ASSOCIATIVE MEMORY WITH MANY REFERENCE POINTS 
In Hopfield’s classical model, the unique reference point is 

the origin in NR . As the network stores the orientations of the 
associated vectors, it could be useful to shift patterns by 
different amounts in order to be capable of distinguish them 
more accurately. 

In this work, to load the set },...,1:{ )( KkX k = , we use as 

reference points the set NQOO }1,1},,{ )()1( −⊂{K . 
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For each k and q, }2,0,2{)()( −∈− q
i

k
i OX  for every i. Then, 

the augmented pattern (associated to) )()( qk OX −  will be 
(using the same notation for simplicity)  

)2,0,2,,...,( )()()(
1

)(
1

)()( −−−=− q
N

k
N

qkqk OXOXOX  for each k 
and q. 

By extending what was exposed in Sec. II, the weights will 
now be defined by: 

∑∑∑
= ==

−−==
Q

q

K

k
j

qk
i

qk
Q

q

q
jiji OXOXfww

1 1

)()()()(

1

)(
,, ))(,)((  (9) 

and a function F is introduced as: 

( ) ( )

1

( , ) (( ) , ( ) )
Q

q q
i j i j

q

F V V f V O V O
=

= − −∑  (10) 

such that the new energy function is  

1 2 2

1 2

3 3

,
1 1

3 3
( ) ( ) ( )
,

1 1 1 1

1( ) ( , )
2

1 (( ) , ( ) )
2

N N

i j i j
i j

Q Q N N
q q q

i j i j
q q i j

E V w F V V

w f V O V O

+ +

= =

+ +

= = = =

= − =

= − − −

∑ ∑

∑ ∑ ∑ ∑
 (11) 

The above expression can be rewritten in the following 
terms: 

1 2

1 2 1

,
1 1

( ) ( ) ( )
Q Q

q q q
q q q q

E V E V E V= ≠

= = ≠

= +∑ ∑ ∑ , (12) 

 where =
qE  is the corresponding to the terms with 21 qq =  

and ≠
21,qqE  is the rest. 

V. CAPACITY OF THE NETWORK 
The capacity of the network is a measure of the amount of 

patterns that can be introduced into the network such that at 
the retrieving phase the probability of error does not exceed a 
threshold, ep .  

Let us suppose that K patterns { }( ) : 1,...,kX k K= have been 

loaded into the network, and that state vector V matchs a 
stored pattern, 0( )kX . Suppose that state 'V  coincides with V 
except in one component. Without loss of generality, this 
component can be assumed to be the first one, that is 'i iV V=  
if 1i > and 1 1 'V V≠ . 

By denoting ( ') ( )D E E V E V= ∆ = −  the energy increment 

between these two states V and 'V , the pattern 0( )kX  is 
correctly retrieved when pattern 'V  is introduced into the net 
if 0D > . So, in order to calculate the error probability in the 
retrieval phase, the probability ( 0)P D <  must be computed. 

But 

( ) ( )

1 2

1 2 1

1 2
1 2 1

1 2 1 2

1 2 1

1 2
1 2 1

,
1 1

,
1 1

, ,
1 1

,
1 1

( ') ( ')

( ) ( )

( ') ( ) ( ') ( )

Q Q

q q q
q q q q

Q Q

q q q
q q q q

Q Q

q q q q q q
q q q q

Q Q

q q q
q q q q

D E E V E V

E V E V

E V E V E V E V

E E

= ≠

= = ≠

= ≠

= = ≠

= = ≠ ≠

= = ≠

= ≠

= = ≠

= ∆ = + −

⎛ ⎞
− + =⎜ ⎟

⎝ ⎠

= − + − =

= ∆ + ∆

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

 (13) 

and so we have to compute q qD E== ∆  and 
1 2 1 2, ,'q q q qD E≠= ∆ . 

To this end, we present some technical results which will 
guide us to the main result of this section, the capacity of the 
network with multiple reference points. Proofs for these 
lemmas are given in the Appendix. 

Lemma 1. We have 

0

3

2 2
3

N N

q i i
i k k i

D N φ ξ
+

= ≠ =

= + − +∑ ∑ ∑ ,  (14) 

where 

1) iφ  is a random variable with mean 1( )
2iE φ = −  and 

variance 3( )
4iV φ = , for all i. 

2) iξ  is a random variable with mean ( ) 0iE ξ = and variance 
( ) 3iV ξ = , for every i. 

Lemma 2. It is 

1 2

0

3 3 3
* *

,
2 2 2

'
N N N

q q i i i
i i k k i

D ψ φ ξ
+ + +

= = ≠ =

= − −∑ ∑ ∑ ∑ , (15)  

where: 
1) For 2 i N≤ ≤ , iψ  is a random variable with mean 

1( )
16iE ψ =  and variance 255( )

256iV ψ = . 

2) For i N> , iψ  is a random variable with 1( )
4iE ψ =  and 

15( )
16iV ψ = . 

3) *
iφ  is a random variable with mean * 1( )

16iE φ =  and 

variance * 255( )
256iV φ = , for all i. 

4) *
iξ  is a random variable with mean *( ) 0iE ξ = and 

variance *( ) 3iV ξ = , for every i. 
The exact formula for D is given in the following lemma, 

since last two results have provided us of the precise 
expressions for q qD E== ∆  and 

1 2 1 2, ,'q q q qD E≠= ∆ . 

Lemma 3. For 30N ≥  and 4Q ≥ ,  
( 3)D Q N= + + Ω , (16) 

where Ω  is a Gaussian random variable with mean 
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 (9 8 17)
16

Q Q Nµ + −
=  (17) 

and variance given by 
2 3 [ (256 ( 2) 86 187) 106 389]

256
Q Q K N N Nσ + − − − −

= . (18) 

This result allows us to calculate 
( 0) ( ( 3) 0)

( 3)( ( 3)) ( )

P D P Q N
Q NP Q N P µ µ

σ σ

< = + + Ω < =
Ω − − + −

= Ω < − + = <
 (19) 

Since Z µ
σ

Ω −
=  is a Gaussian with mean 0, and variance 

1, there is a zα  such that ( ) eP Z z pα< = . For example, for 
0.05ep = , it is 1.645zα = −  and for 0.01ep = , it is 

2.326zα = − . By comparing the last expression to (19), and 
taking into account that our objective is ( 0) eP D p< = , we 
arrive at 

( 3)Q N zα
µ

σ
− + −

= . (20) 

The next step is to use the proper definition of the 
parameter of capacity α . It is the quotient between the 
number of patterns and the number of neurons which achieve 

an error probability lower than ep . So, K
N

α = , that is, 

K Nα= . 
By combining (20) and the above expression for K, we get 

the following result: 
Theorem 2. The capacity of Hopfield’s associative memory 

with multiple reference points is given by 
2

2
1 T U
V zα

α
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

  (21) 

where: 

2

( 3)
3 [ (86 187) 106 389]
256
3 ( 2)

T Q N
QU Q N N

V Q N N

µ= − + −

= + + +

= +

 (22) 

From this theorem, two important corollaries can be stated: 
Corollary 1. The capacity of the network increases with the 

number of reference points. 
This results from the fact that (21) can be rewritten in the 

following terms: 
2 daQ bQ c

Q
α = + + + , (23) 

with 2
27 0

256 ( 2)
a

N N zα

= >
+

. So, for a fixed number of 

neurons N. This implies that, by increasing the number of 
reference points, capacity greater than 1 may be achieved, as 
can be verified in Fig. 1. 

Corollary 2. There exists a positive constant minα  such 
that, for fixed Q, minα α≥ . 

Fig. 1 Capacity of a network with N=50 neurons as a function of 
Q, which varies from 1 to 1000 

 
This fact can be proved just by noting that the capacity is a  

decreasing function of N, so we can fix Q and calculate the 

value min 2
3lim

4N zα

α α
→∞

= =  (it does not depend on Q). If we 

consider 0.01ep = , a value of min 0.1386α =  is obtained, and 
for 0.05ep = , a value of min 0.2771α = . 

VI. CONCLUSIONS AND FUTURE WORK  
In this paper, Hopfield associative memory has been 

studied to overcome some of the most important problems or 
lacks it possesses: spurious patterns and low capacity. 

A method to avoid the apparition of spurious patterns has 
been presented. This method also explains the well-known 
(and undesirable) phenomenon of storing the opposite of a 
pattern. 

A new technique to increase the network capacity as a 
content-addressable memory has also been proposed, based on 
the use of multiple reference points, which contributes many 
new possibilities of study and research. 

Our future work covers several aspects of these methods: 
1) Apply the technique of multiple reference points to a 

multivalued network, as the one described in [5]. 
2) Find the optimum configuration of ( )qO  for a given set of 

patterns (randomly distributed or with a specific 
distribution), that is, the value of ( )qO  which 
discriminates most the patterns. 

3) Consider a mix of fixed and random reference points. 

APPENDIX 
Proof of Lemma 1.  
Let us denote ( )qO O= . 
As the difference between vectors V and 'V  is only in the 

first component, in the expression for qD  all terms with 1i ≠  
and 1j ≠  vanish, resulting: 

( )

3
( ) ( )

1
2 1

1 1

(( ) , ( ) ) ·

· (( ) , ( ) ) (( ' ) , ( ' ) )

N K
k k

q i
i k

i i

D f X O X O

f V O V O f V O V O

+

= =

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

− − − − −

∑ ∑  (24)  

Equation (24) can be expanded in the following terms, 
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since 0( )kV X= : 

( )
0

3

1 1
2

3
( ) ( )

1 1
2

1 1

(( ) , ( ) )( (( ) , ( ) )

(( ' ) , ( ' ) ) (( ) , ( ) )·

· (( ) , ( ) ) (( ' ) , ( ' ) )

N

q i i
i

N
k k

i i
i k k

i i

D f V O V O f V O V O

f V O V O f X O X O

f V O V O f V O V O

+

=

+

= ≠

= − − − − −

− − − + − −

− − − − −

∑

∑ ∑  (25) 

Let us compute the value of each one of its terms. 

The term
3 3

2
1

2 2
(( ) , ( ) ) 1 2

N N

i
i i

f V O V O N
+ +

= =

− − = = +∑ ∑ . 

On the other hand, it is easy to see that the expression 
3

1 1
1

(( ) , ( ) ) (( ' ) , ( ' ) ) 1
N

i i
i N

f V O V O f V O V O
+

= +

− − − − = −∑ , because 

for i N>  we have { }( ) ( ' ) 2,0,2i iV O V O m− = − = ∈ − , 

1 1( )V O m− = , 1 2( ' )V O m− = , 1 2m m≠ . If 1m m=  or 2m m= , 
then the addend equals -1. Otherwise, it is 1. 

Let us define 
1 1(( ) , ( ) ) (( ' ) , ( ' ) )i i if V O V O f V O V Oφ = − − − −   (26) 

for 2 i N≤ ≤ . Let us suppose that patterns, states as well as 
reference points are independent random variables distributed 
uniformly on { }1,1 N− . Then, iφ  is a random variable taking 
value -1 or +1. 
It will take value -1 if: 
1) 1( ) ( )iV O V O− ≠ −  and 1( ' ) ( )iV O V O− = − , and this 

happens with probability 

 
1

1 1

1 1 1

(( ' ) ( ) )·
· (( ) ( ) | ( ' ) ( ) )

(( ' ) ( ) ) ( ' )

i

i i

i i i

P P V O V O
P V O V O V O V O

P V O V O P V V O O

= − = −
− ≠ − − = − =

= − = − = − = −
 (27) 

since we know that 1 1 'V V≠ . 

But then 
{ }

1 1
2,0,2}

( ) ( ' )i i
m

P P O O m P V V m
∈ −

= − = − =∑ . 

As all iV , 'iV  and iO  are identically distributed, their 
pairwise differences will be identically distributed too. Let us 
calculate this new probability distribution. 

It can be easily showed that 1
1( 0)
2iP O O− = =  and that 

1 1
1( 2) ( 2)
4i iP O O P O O− = − = − = =  . 

Thus, we have 1 1 1 1 1 1 3· · ·
2 2 4 4 4 4 8

P = + + = . 

2) 1( ) ( )iV O V O− = −  and 1( ' ) ( )iV O V O− ≠ − , and this 
happens with the same probability as in 1). 

So, 3 3( 1) 2·
8 4iP φ = − = = , hence 3 1( 1) 1

4 4iP φ = = − = . 

From these probabilities, we can deduce that iφ  has mean 
1( )
2iE φ = −  and variance 3( )

4iV φ = . 

Now, to calculate the value of the second addend, we 
consider the random variable: 

( ) ( )
1

1 1

(( ) , ( ) )·
·( (( ) , ( ) ) (( ' ) , ( ' ) ))

k k
i i

i i

f X O X O
f V O V O f V O V O

ξ = − −
− − − − −

 (28) 

2iξ = −  if  

1) ( ) ( )
1( ) ( )k k

iX O X O− = − , 1( ) ( )iV O V O− = − , and 

1( ' ) ( ' )iV O V O− ≠ −  (this term is redundant). 

2) ( ) ( )
1( ) ( )k k

iX O X O− ≠ − , 1( ) ( )iV O V O− ≠ −  (this term 
is redundant), and 1( ' ) ( ' )iV O V O− = − . 

In this case, 
( 2)iP ξ = − =  (29) 

( ) ( )
1 1

( ) ( )
1 1

(( ) ( ) ) (( ) ( ) )

(( ) ( ) ) (( ' ) ( ) )

k k
i i

k k
i i

P X O X O P V O V O

P X O X O P V O V O

= − = − − = − +

+ − ≠ − − = −
 

But, as 1 1(( ) ( ) ) (( ' ) ( ) )i iP V O V O P V O V O− = − = − = − , and 
( ) ( ) ( ) ( )

1 1(( ) ( ) ) (( ) ( ) ) 1k k k k
i iP X O X O P X O X O− = − + − ≠ − =  

we have 1
3( 2) (( ) ( ) )
8i iP P V O V Oξ = − = − = − = . 

An analogous explanation gives 3( 2)
8iP ξ = =  and 

therefore 1( 0)
4iP ξ = = . So ( ) 0iE ξ = and 3( ) 8· 3

8iV ξ = = . 

Summarizing, we have  

0

3

2 2

3
N N

q i i
i k k i

D N φ ξ
+

= ≠ =

= + − +∑ ∑ ∑  (30) 

Proof of Lemma 2. 
Let us denote 1( )qO O=  and 2( ) 'qO O= . 
Analogously to the case of qD , we have 

( )

1 2

0

3

, 1 1
2

3
( ) ( )

1 1
2

1 1

' (( ) , ( ) )( (( ') , ( ') )

(( ' ') , ( ' ') ) (( ) , ( ) )·

· (( ') , ( ') ) (( ' ') , ( ' ') )

N

q q i i
i

N
k k

i i
i k k

i i

D f V O V O f V O V O

f V O V O f X O X O

f V O V O f V O V O

+

=

+

= ≠

= − − − − −

− − − + − −

− − − − −

∑

∑ ∑  (31) 

Let iψ  be the random variable defined by 

1 1(( ) , ( ) ) (( ') , ( ') )i i if V O V O f V O V Oψ = − − − −  (32) 
For 2 i N≤ ≤ , 1iψ = −  if 

1) 1( ') ( ')iV O V O− = −  and 1( ) ( )iV O V O− ≠ − . 
2) 1( ') ( ')iV O V O− ≠ −  and 1( ) ( )iV O V O− = − . 

The probability of 2) is the same of 1), so 
1

1 1

1 1

( 1) 2 (( ') ( ') )·
· (( ) ( ) | ( ') ( ') )

3 3 3 152 · ( ' ' ) (1 )
8 4 8 32

i i

i i

i i

P P V O V O
P V O V O V O V O

P O O O O

ψ = − = − = −
− ≠ − − = − =

= − ≠ − = − =

 (33) 

Thus, 17( 1) 1 ( 1)
32i iP Pψ ψ= = − = − = . 

Then, its mean is 1( )
16iE ψ =  and its variance is 

1 255( ) 1
256 256iV ψ = − = . 
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For i N> , since ( ) ( ')i iV O V O− = − , it is 1iψ = −  if 
1) 1 1( ) ( ) ( ')iV O V O V O− = − ≠ − . 
2) 1 1( ) ( ) ( ')iV O V O V O− ≠ − = − . 

Both 1) and 2) have the same probability. So, 
1

1 1

1 1 1 1

( 1) 2 (( ) ( ) )·
· (( ') ( ) | ( ) ( ) )

3 32 · (( ) ( ') ) ( ' 0)
8 4

3 1 3·
4 2 8

i i

i i

P P V O V O
P V O V O V O V O

P V O V O P O O

ψ = − = − = −
− ≠ − − = − =

= − ≠ − = − ≠ =

= =

 (34) 

and 5( 1)
8iP ψ = = . Then, 1( )

4iE ψ =  and 15( )
16iV ψ = . 

Let us consider the random variable 

1 1(( ) , ( ) ) (( ' ') , ( ' ') )i i if V O V O f V O V Oφ∗ = − − − − . (35) 

1iφ∗ = −  if: 
1) 1( ) ( )iV O V O− ≠ −   and  1( ' ') ( ')iV O V O− = − . 
2) 1( ) ( )iV O V O− = −   and  1( ' ') ( ')iV O V O− ≠ − . 

The probability of 1) is the same as for 2), so 

1

1

( 1) 2 (( ) ( ) )·
3 5 15· (( ' ') ( ') ) 2· ·
8 8 32

i i

i

P P V O V O

P V O V O

φ∗ = − = − = −

− ≠ − = =
 (36) 

and so 
17( 1)
32iP φ∗ = = . Therefore, * 1( )

16iE φ =  and 

* 255( )
256iV φ = . 

Let us define now the random variable 

( )

( ) ( )
1

1 1

(( ) , ( ) )
(( ') , ( ') ) (( ' ') , ( ' ') ) .

k k
i i

i i

f X O X O
f V O V O f V O V O

ξ ∗ = − − ⋅

⋅ − − − − −
 (37) 

Its study is completely analogous to the already made for 

iξ . So, we have that *( ) 0iE ξ = and variance *( ) 3iV ξ = . 
Proof of Lemma 3. 
By combining (13)-(15), we arrive at the expression: 

0

1 2 1 1 2 1

1 2 1 1 2 1 0

3

1 2 1 2

3

1 2 1 1

3
* *

1 2 1 2

( 3)
Q QN N

i i
q i q i k k

Q QN N

i i
q q q i q q q i N

Q QN N

i i
q q q i q q q i k k

D Q N φ ξ

ψ ψ

φ ξ

+

= = = = ≠

+

= ≠ = = ≠ = +

+

= ≠ = = ≠ = ≠

= + − + +

+ + −

− +

∑∑ ∑∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑ ∑

 (38) 

Let us define the following random variables. They will 
provide us of an easy way to handle the above expression for 
D. 

0 1 2 1 0

3
*

1 2 1 2

1 2

Q QN N

i i
q i k k q q q i k k

Q N

i
q i

ξ ξ

φ

+

= = ≠ = ≠ = ≠

= =

Ξ = +

Φ =

∑∑ ∑ ∑ ∑ ∑ ∑

∑∑
 

1 2 1

1 2 1

1 2 1

3
* *

1 2

1
1 2

3

2
1 1

*
1 2

Q N

i
q q q i

Q N

i
q q q i

Q N

i
q q q i N

φ

ψ

ψ

+

= ≠ =

= ≠ =

+

= ≠ = +

Φ =

Ψ =

Ψ =

Ω = −Φ + Ξ + Ψ + Ψ − Φ

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

 (39) 

If N and Q are large enough to apply the Central Limit 
Theorem ( 30N ≥  and 4Q ≥  is sufficient), we can affirm 
that: 
1) Ξ  is a Gaussian random variable with mean 1 0µ =  and 

variance 2 2
1 3 ( 2)( 1)Q N Kσ = + − . 

2) Φ  is a Gaussian random variable with mean 

2
( 1)
2

Q Nµ − −
=  and variance 2

2
3 ( 1)

4
Q Nσ −

= . 

3) *Φ  is a Gaussian random variable with mean 

3
( 1)( 2)

16
Q Q Nµ − +

=  and 2
3

255 ( 1)( 2)
256

Q Q Nσ − +
= . 

4) 1Ψ  is a Gaussian random variable with mean 

4
( 1)( 1)

16
Q Q Nµ − −

=  and  2
4

255 ( 1)( 1)
256

Q Q Nσ − −
= . 

5) 2Ψ  is a Gaussian random variable with mean 

5
3 ( 1)

4
Q Qµ −

=  and  2
5

45 ( 1)
16

Q Qσ −
= . 

Thus, Ω  is a Gaussian random variable whose mean is 

1 2 3 4 5
(9 8 17)

16
Q Q Nµ µ µ µ µ µ + −

= − − + + =  and whose 

variance is 

  2 3 [ (256 ( 2) 86 187) 106 389]
256

Q Q K N N Nσ = + − − − − . 

Proof of Theorem 3. 
It suffices to combine (20) with K Nα= , and solve for α . 
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