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Abstract—Space Vector Modulation (SVM) is an optimum Pulse 
Width Modulation (PWM) technique for an inverter used in a 
variable frequency drive applications. It is computationally rigorous 
and hence limits the inverter switching frequency. Increase in 
switching frequency can be achieved using Neural Network (NN) 
based SVM, implemented on application specific chips. This paper 
proposes a neural network based SVM technique for a Voltage 
Source Inverter (VSI). The network proposed is independent of 
switching frequency. Different architectures are investigated keeping 
the total number of neurons constant. The performance of the inverter 
is compared for various switching frequencies for different 
architectures of NN based SVM. From the results obtained, the 
network with minimum resource and appropriate word length is 
identified. The bit precision required for this application is identified. 
The network with 8-bit precision is implemented in the IC XCV 400 
and the results are presented. The performance of NN based general 
purpose SVM with higher bit precision is discussed. 
 

Keywords—NN based SVM, FPGA Implementation, Layer 
Multiplexing, NN structure and Resource Reduction, Performance 
Evaluation 

I.   INTRODUCTION 

WITCHING schemes play the most important role in 
voltage source inverters, which are widely used in several 

applications, such as motor drives, active filters and 
uninterruptible power supplies. As a result, number 
of modulation strategies have been developed and are reported 
[1]. Space vector modulation technique has been increasingly 
used in the last decade, because it not only delivers an optimal 
output but also reduces harmonic content of the output 
voltage/current [2-5]. However a disadvantage of SVM is that 
it requires complex online computation that limits the inverter 
switching frequency. Power semiconductor switching speed 
has been improved dramatically in recent years. They demand 
switching frequency as high as 50 kHz. In order to use such 
high frequency switching power semiconductor devices 
effectively, the operating frequency of the SVM has to be 

increased. 
 Marginal increase in frequency is achieved using high speed 
Digital Signal Processors (DSP) in combination with a lookup 
Table [3, 4]. A neural network based SVM can further 
increase the switching frequency, particularly when 
implemented on an application specific integrated circuit chip. 
Parallelism, modularity and dynamic adaptation are three 
computational characteristics typically associated with ANNs. 
FPGA-based reconfigurable computing architectures are well 
suited to implement ANNs [6]. 

FPGA realization of ANNs with a large number of neurons 
is still a challenging task because ANN algorithms are 
“multiplication-rich” and it is relatively expensive to 
implement multipliers on FPGAs. A body of research exists to 
show that it is possible to train ANNs with integer weights. 
The interest in using integer weights stems from the fact that 
integer multipliers can be implemented more effectively than 
floating-point ones. There are also special learning algorithms, 
which use powers-of-two integers as weights [7]. The 
advantage of powers of two-integer weight learning 
algorithms is that the required multiplications in an ANN can 
be reduced to a series of shift operations. A few attempts have 
been made to implement ANNs in FPGA hardware with 
floating-point weights. Despite continuing advances in FPGA 
technology, it is still impractical to implement ANNs on 
FPGAs with floating-point precision weights [6]. Very 
recently, the concept of layer multiplexing for implementing 
ANNs on FPGA is reported [8], where the authors have 
implemented different ANN architectures with floating point 
precision weights in the IC XCV400hq-240. The results are 
very promising to implement a NN with minimum resources.  

A multi layer feed forward network based SVM proposed in 
[3] is shown to perform well. To realize a ANN based SVM 
with higher switching frequency and desired inverter 
performance, both design and implementation aspects are 
studied in this paper. They broadly include the choice of 
architecture for reduced resource in FPGA, Study of bit 
precision on inverter performance and Evaluation of inverter 
performance with NN based SVM for various switching 
frequency. Theoretically it has been shown that increase in the 
number of layers improves the performance of the  
network [9]. Increase in layers also reduces the resource 
requirement in an FPGA implementation [8]. In this paper, the 
effect of the increase in the number of layers with the total 
number of neurons being constant is investigated. The 
performance of the inverter is compared for the different 
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architectures of NN based SVM. The results obtained are 
discussed. Of the proposed different architectures, the one, 
which is suitable for FPGA implementation, is identified and 
implemented in the IC XCV400hq240. The performance of 
the NN with different bit precisions is investigated. 

II.   SPACE VECTOR MODULATION OF VOLTAGE SOURCE 
INVERTER 

 The three phase two level inverter with an active load is 
shown in Fig. 1. Its switching operation is characterized by 
eight switch states iS  = (SWa, SWb, SWc), i= 0, 1, . . ,7. 
where SWa represents the switching status of inverter Leg-A. 
It is “1”, when switch Q1 is ON & Q4 is OFF and ZERO, when 
switch Q1 is OFF & Q4 is ON. Similarly SWb & SWc is 
defined for inverter Leg-B and Leg-C. The output voltages of 
the inverter are controlled by these eight switching states. 
 
 

 
 

Fig. 1  Three-phase two-level voltage Source Inverter 
 
 
 
 

 
 

Fig. 2   Voltage vector space 
 
Let the inverter voltage vectors 0V (000) , …,  7V (111)  

correspond to the eight switching states. These vectors form 
the voltage vector space as shown in the Fig.2. The three 

phase reference voltages can be represented by a space vector 
V  with the magnitude *V and phase angle *

eθ   [10]. In a 

sampling/switching interval, the output voltage vector V  is 
expressed as 

where 70 1t ,t ,...t  are the turn on time of the vectors 

70 1V , V ,...V  respectively and TS is the sampling/switching 

time period. From the above equation the vector V can be 
decomposed into 0 1 7V ,V ,...V  in infinite number of ways. 
However, in order to reduce the number of switching actions 
and make full use of active turn on time, the vector is 
commonly split into two nearest adjacent vectors and zero 
vectors in an arbitrary sector. 
 The equations of the effective time of the inverter switching 
states is given as ta, tb and tc. 
where 
V* Magnitude of command or reference voltage vector 
ta Time period of switching vector that lags V* 
tb Time period of switching vector that leads V* 
t0 Time period of zero switching vector 
TS Switching time period 
α* Angle of V* in a 60º sector 
fs Switching frequency 
Vd DC link voltage 

( )dsK 3 T 4 V= ⋅ ⋅  

The time periods need to be distributed such that symmetrical 
PWM pulses are produced. To produce such pulses, the instant 
of switching on for each phase and each sector is calculated. 
The generalized equation for turn on instant calculation for 
phase A is given below [10]. Where, ga(α*) is defined as the 
turn on pulsewidth function. 
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 To maintain the symmetry of switching, the turn off instant 
TA-OFF is calculated and given below. 

 
For phases B and C, the switching instants are same but phase 
shifted by 120º. 

III. NEURAL BASED SVM 

Multilayer feedforward NN is used to implement SVM. The 
input to the network is the phase angle of the reference voltage 
vector *

eθ and the outputs are the turn-on pulsewidth 

functions *
ag ( )α , *

bg ( )α , *
cg ( )α  for the phases A, B, 

and C. Different architectures are proposed keeping the total 
number of neurons unchanged. The networks are trained 
independent of switching frequency. To study the influence of 
increase in layers, different architectures are proposed keeping 
the total number of neurons unchanged. The various proposed 
architectures are shown in Fig. 3 – Fig. 5 and are referred to as 
proposed architecture I, proposed architecture II, and proposed 
architecture III respectively. For the three proposed 
architectures, the total number of neurons is at 21. Proposed 
architecture-I has 1-18-3 structure (single input network with 
18 neurons in the hidden layer and 3 neurons in the output 
layer). The proposed architecture-II has 1-9-9-3 structure and 
architecture-III has 1-6-6-6-3 structure. The different 
architectures are chosen so as to increase the number of layer. 
This concept is useful for implementation in FPGA using layer 
the concept of multiplexing.  

 
 
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3   Proposed architecture I for SVM (1-18-3) 

 

 
 

Fig. 4   Proposed architecture II for SVM (1-9-9-3) 
 
 
 

 
 

Fig. 5   Proposed architecture III for SVM (1-6-6-6-3) 
 

IV.   PERFORMANCE OF VSI 
WITH DIFFERENT ANN ARCHITECTURES 

The three proposed architectures are trained using back 
propagation algorithm with 360 input – output target pairs. 
The intermediate layer use log-sigmoid activation function and 
the output layer uses linear activation function. The choice of 
activation function is based on the non-linearity and the output 
range. To compare the performance of the various 
architectures, it is decided that all the networks be trained for 
fixed number of epochs. By trial, it was found that all the 
networks settled at their least Mean Square Error (MSE) at 
one-lakh epochs. The mean square error obtained for the 
proposed networks after one-lakh epochs is shown in Table I. 
From Table I, it can be observed that the increase in the 
number of layers reduces the mean square error until an 
optimum number of layers are reached. Further increase in 
layers may not improve the performance significantly. 
 

TABLE I 
MSE OBTAINED WITH THE PROPOSED ARCHITECTURES 
Architecture Total number of epochs 

trained 
Mean Square Error (MSE) 

achieved 
Architecture I 

(1-18-3) 1,00,000 5.60e-6 

Architecture II 
(1-9-9-3) 1,00,000 7.30e-7 

Architecture III 
(1-6-6-6-3) 1,00,000 3.48e-6 

A-OFF S A_ON T = T -T
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The performance of the inverter with proposed architectures 
is evaluated using MATLAB-Tools. The schematic of the 
ANN based space vector modulated voltage source inverter is 
shown in the Fig. 6. The inverter and load parameters are 
given in Table II. The load is an active load with a back emf of 
100V/phase. The various performance waveforms are 
recorded and shown in Fig. 7(a) - 7(h). The line currents 
shown in Fig. 7 (a) demonstrate the three-phase inverter 
operation. The line voltage (Vab) and the phase voltage (Van) 
waveforms shown in Fig. 7(b) and 7(c) respectively, 
demonstrate the inverter operation for star connected load. The 
waveforms of Fig. 7(a) – 7(c) are for the proposed 
architecture II (1-9-9-3). 

 
 The THD of the line current is chosen as the inverter 
performance index. So, a line current waveform of the inverter 
for various neural structures is shown in the Fig. 7(d). The 
arrow point in Fig 7(d) is expanded and shown in Fig. 7(e). 
For all the proposed architectures with typical switching 
frequencies, THD of line current is given in Table 3 for 
comparison. The results demonstrate that proposed NN 
architectures perform equally well. Table 3 highlights that the 
total harmonic distortion increases with decrease in switching 
frequency but is independent of the architecture as the mean 
square error for all the three networks is in the order of 1e-6. 
 
 To make a general purpose NN based SVM the network is 
trained independent of switching frequency. Using such 
networks, the inverter is operated for various frequencies and 
the results are shown for selected frequencies. The line current 
of the inverter for frequencies 20 kHz and 2 kHz are shown in 
Fig. 7 (f) and 7 (g). The results demonstrate that the neural 

network based SVM, which is trained independent of 
frequency, operates well for various switching frequencies of 
the inverter. From the waveform it is seen that the distortion in 
the current waveform for 2kHz is higher than that for 20kHz. 
This confirms that the Total Harmonic Distortion (THD) in the 
line currents increases with the decrease in switching 
frequency of the inverter. The pulse pattern produced by NN 
based SVM in one sampling interval are shown in Fig. 7(h). 
The pulses are centered within the switching interval, which 
improves the harmonic performance [6]. The parameters of the 
networks proposed in this paper are independent of the 
switching frequency. The coding developed is unchanged. 
Hence when implemented in hardware, it can be used as 
general purpose NN based SVM modulator for any 
application. 
 

To choose the best network from the three proposed 
architectures, the architecture II is the winner if the criterion 
for selection is least MSE. For hardware implementation using 
FPGA it has been identified that the architecture having 
minimum number of neurons in the largest layer significantly 
reduces the resource requirement [9]. The number of neurons 
in the largest layer for architecture-I is 18, for architecture-II 
is 9 and for Architecture-III is 6. Hence for FPGA 
implementation the Architecture III is the best. 

TABLE II 
INVERTER AND LOAD PARAMETERS 

DC-link voltage 300 V 
Frequency 50 Hz 
Load resistance/phase 0.817 Ω 
Load inductance/phase 2.38 mH 
Back emf/phase 100 V 

TABLE III 
COMPARISON OF INVERTER LINE CURRENTS THD FOR VARIOUS 

ARCHITECTURES AND SWITCHING FREQUENCIES 
Switching 
frequency Architecture Line Current (ia)

THD 
Proposed Architecture I (1-18-3) 0.1340% 
Proposed Architecture II (1-9-9-3) 0.1339% 20kHz 

Proposed Architecture III (1-6-6-6-3) 0.1340% 
Proposed Architecture I (1-18-3) 0.2673% 
Proposed Architecture II (1-9-9-3) 0.2672% 10kHz 

Proposed Architecture III (1-6-6-6-3) 0.2673% 
Proposed Architecture I (1-18-3) 1.348% 
Proposed Architecture II (1-9-9-3) 1.347% 2kHz 

Proposed Architecture III (1-6-6-6-3) 1.347% 
   

Fig. 6   Schematic of the ANN based SVM inverter 
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Fig. 7 (a)   Three phase currents of a SVM VSI with 
1-9-9-3 architecture and Ts=500μs 

Fig. 7 (b)   Line voltage (Vab) of SVM VSI with 1-9-
9-3 network and Ts=500μs 

Fig 7 (c)   Phase voltage (Van) of SVM VSI with 1-9-
9-3 network and Ts=500μs 

Fig 7 (d)   Line current of phase A with proposed 
architectures for Ts=500μs 

Fig 7 (e)   Expanded view of line currents at the 
instant shown by the arrow in Fig 7(d) 

Fig. 7 (f)   Phase A line current of SVM VSI with 1-9-
9-3 network and Ts=50μs 

Fig. 7 (g)   Phase A line current of SVM VSI with 1-9-
9-3 network and Ts=500μs 

Fig 7 (h)   SVM Gate Pulses for upper devices in a 
sampling interval of Ts=500μs 
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V.   IMPLEMENTATION OF ARCHITECTURE III IN FPGA 

Reconfigurable Field Programmable Gate Arrays (FPGAs) 
provide an effective programmable resource for implementing 
hardware based ANNs. They are low cost readily available and 
reconfigurable. In order to implement the NN with minimum 
hardware, the concept of layer multiplexing [9] is used. With 
layer multiplexing it is sufficient to implement only largest layer 
(layer with largest number of neurons) in the network. The total 
number of inputs of each neuron in the implemented layer is 
equal to the number of neurons in the largest layer. The 
implemented single layer is multiplexed to execute the functions 
of all layers of the network. In the present case, the network to 
be implemented has a structure of 1-6-6-6-3. Hence the largest 
layer in this case is the hidden layer with 6 neurons. Thus it is 
sufficient to implement only 6 neurons with 6 inputs each. 

To realize a network with a total of 21 neurons, only 6 
neurons need to be implemented and that leads to considerable 
resource reduction in FPGA. The saving in the resources with 
layer multiplexing, to realize the network is given in Table IV in 
which the resources required to implement the network with and 
without layer multiplexing is determined using the approximate 
formulae given in [9]. The neurons in a layer compute in 
parallel but the layers compute sequentially. Thus the 
parallelism of the NNs is not affected. 

 

 
The general architecture of the network 1-6-6-6-3 with layer 

multiplexing is shown in the Fig. 8. The final values of weights 
and biases obtained after training are stored in an array in the 
control unit. The control unit controls the operation of the 
implemented layer by placing appropriate inputs, weights and 
biases to each of the six neurons at appropriate instances, so as 
to realize the network. 

VI   SELECTION OF BIT PRECISION 

Selecting bit precision is one of the important choices when 
implementing ANNs on FPGAs. Bit precision is used to trade-
off the capabilities of the realized ANNs against the 
implementation cost. A higher bit precision means fewer 
quantization errors in the final implementations, while a lower 
precision leads to simpler designs, greater speed and 
reductions in area requirements and power consumption. One 
way of resolving the trade-off is to determine the “minimum 
precision” required for a given problem. Traditionally, the 
minimum precision is found through “trial and error” by 
simulating the solution in software before implementation 
[10]. The MSE of the network with different input –output 
(I/O) bit precisions are tabulated in Table VI. The MSE is the 
sum of squared error between the actual targets of the network   
 

Fig. 8   General architecture of the network 
 

and the outputs obtained practically due to bit truncation for 
the given inputs divided by the total number of patterns. From 
Table V, it is seen that as the bit precision is increased, the 
mean square error is reduced. 

 
In order to study the effect of the bit truncation and 

consequently the MSE, on the inverter performance, the THD 
of the inverter line currents with the ANN implemented with 
different bit precisions is determined and is tabulated in 
Table VI. As the network is independent of switching 
frequency, the performance of the inverter is studied with the 
switching frequencies of 2kHz and 20kHz. It can be seen from 
Table VI that the % THD of line currents with 8-bit precision 
is not only too large but also it is not same in all the phases. 
With 10 and 12 bit precisions, even though the % THD is 
small, it is different in the three phases. This non uniformity is 
due to the existence of considerable amount of dc quantities. It 
is observed that, with lower bit precisions, there is 
considerable amount of dc component in the line currents as 
tabulated in Table VII. 

TABLE IV 
COMPARISON OF RESOURCE REQUIREMENT FOR 

ANN (1-6-6-6-3) WITH AND WITHOUT 
LAYER MULTIPLEXING 

Resource requirement in terms of slices 
Without 

Layer Multiplexing 
With 

Layer Lultiplexing Saving (%) 

6132 3627 40.85% 

TABLE V 
MEAN SQUARE ERROR (MSE) ACHIEVED WITH VARIOUS 

INPUT-OUTPUT BIT PRECISIONS 

Input Output 
BIT PRECISION MSE 

8-bit 78.23 e-2
10-bit 4.89 e-2 

12-bit 2.50 e-3 

16-bit 3.33 e-5 

 
TABLE VI 

THD OF THE LINE CURRENTS WITH DIFFERENT BIT PRECISIONS
% THD for fs=2kHz % THD for fs=20kHz Bit 

Precision ia ib ic ia ib ic 
8 9.634 6.946 7.797 8.607 5.880 5.821 

10 1.549 1.867 2.093 0.804 0.855 1.553 
12 1.363 1.383 1.406 0.313 0.199 0.441 
16 1.347 1.348 1.348 0.134 0.131 0.131 
32 1.347 1.347 1.348 0.130 0.130 0.130 
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16-bit precision reduces the dc quantities in the line currents 

and maintains equal THD in all lines. The same conclusion 
can be drawn form the line current waveforms shown in 
Fig. 9. The waveforms show three line-currents of the inverter, 
which is operated with NN, based SVM implemented with 
8-bit and 16-bit precision. It is seen from the Fig. 9 that, with 
8-bit precision, the three phase line currents are unbalanced 
which is due to the presence of dc quantities whereas 16-bit 
precision shows better results. Thus, it is identified that, the 
NN based SVM requires minimum of 16-bit precision for 
acceptable inverter performance for the practical application. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 (a)   Line currents of the inverter with the ANN having 8-bit 
precision for fs=2kHz 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 (b)   Line currents of the inverter with the ANN having 16-bit 
precision for fs=2kHz 

 
The NN with 8-bit precision has been implemented using 

Xilinx 6.1i, simulated with ModelSim XE II 5.7c, and 
downloaded and tested in the IC ‘XCV400hq240’ using Test 
equipment-model: MXUK-SMD-001. The outputs of the 
network are tested with the outputs simulated using the same 
precision. They are found to be the same and are given in 
Table VIII. Thus the network is found to perform well. The 
synthesis report and device utilization summary for the 
network 1-6-6-6-3 implemented in the IC XCV400hq240 with 
8-bit precision are given in the appendix. The output of the 
network is shown in Fig. 10. 

 

 

TABLE VII 
DC COMPONENT IN THE LINE CURRENTS WITH DIFFERENT BIT 

PRECISIONS 
Bit 

Precision 
DC Component for 

fs = 2kHz 
DC component for 

fs = 20kHz 

 ia ib ic ia ib ic 

8 7.874 3.389 4.485 7.648 3.534 4.114 
10 0.358 1.034 0.393 0.663 0.818 1.481 
12 0.212 0.142 0.354 0.269 0.142 0.411 
16 0.0365 0.005 0.031 0.029 0.014 0.015 
32 6.41e-4 5.85e-3 6.49e-3 4.62e-4 6.51e-5 5.27e-4 

TABLE VIII 
SAMPLE INPUT AND OUTPUT OF THE ANN 

Value of Outputs with and without Bit Truncation 

Simulated Practical 
FPGA Outputs Input 

Without Truncation With 
8-Bit Precision 

With 
8-Bit Precision 

0. 701172 
0 10110011

0.978147 
0 0000 11111010 

 
-0.978147 

1 0000 11111010 
 

-0.360113 
1 0000 01011100 

0.941406 
0 0000 11110001 

 
-1.109375 

1 0001 00011100 
 

-0.457031 
1 0000 01110101 

0.941406 
0 0000 11110001 

 
-1.109375 

1 0001 00011100 
 

-0.457031 
1 0000 01110101 

Fig. 10   Results of the ANN based SVM implemented in FPGA with 8-bit input output Precision 
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VI.   CONCLUSION 

Various implementation and performance aspects of NN 
based SVM are investigated. Towards these objective, 
different architectures of NN based SVM are proposed, trained 
and evaluated. The extensive results obtained are detailed. 
From the investigation, the 1-6-6-6-3 network is the best 
architecture with minimum resource for FPGA 
implementation and good inverter performance. The above 
architecture reduces resources by 40% using a concept of layer 
multiplexing. The identified architecture with 8-bit precision 
is implemented and tested on Xilinx XCV400hq-240 and the 
inverter performance is studied. The effect of bit precision on 
the inverter performance is evaluated and reported. The 
general purpose NN based space vector modulator is 
demonstrated for various switching frequency. The 
performance of the inverter is presented. The NN based SVM 
with 1-6-6-6-3 architecture and 16-bit precision is concluded 
to be optimum in terms of implementation and inverter 
performance. 

APPENDIX 

1. HDL Synthesis Report for the Network 1-6-6-6-3 
with 8-Bit Precision 

RTL Top Level Output File Name : network_top.ngr 
Top Level Output File Name         : network_top 
# IOs: 52 
# RAM :1 

# 1024x8-bit single-port block RAM: 1 
# ROMs: 5 

# 1024x8-bit ROM: 5 
# Registers: 427 

# 1-bit register: 247 
# 10-bit register: 12 
# 16-bit register: 42 
# 2-bit register: 6 
# 24-bit register: 18 
# 28-bit register: 42 
# 4-bit register: 10 
# 7-bit register: 6 
# 8-bit register: 44 

# Counters: 1 
# 7-bit up counter: 1 

# Multiplexers: 77 
# 2-to-1 multiplexer: 77 

# Adders/Subtractors: 25 
# 28-bit adder: 6 
# 28-bit subtractor: 12 
# 4-bit adder: 1 
# 7-bit adder: 6 

# Multipliers: 6 
# 16x8-bit multiplier: 6 

# Comparators: 6 
# 28-bit comparator greatequal: 6 

 
2. Device Utilization Summary for the Network 1-6-6-6-3 

with 8-bit Precision Selected Device: v400hq240-5 
 
 Number of Slices  : 3627 out of   4800    75%   
 Number of Slice Flip Flops : 3013 out of   9600    31%   
 Number of 4 input LUTs : 6663 out of   9600   69%   
 Number of bonded IOBs : 51 out of    170     30%   
 Number of BRAMs  : 2 out of     10     20%   
 Number of GCLKs  : 1 out of      4     25% 
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