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Blind Identification of MA Models using Cumulants
Mohamed Boulouird and Moha M’Rabet Hassani

Abstract— In this paper, many techniques for blind identification
of moving average (MA) process are presented. These methods utilize
third- and fourth-order cumulants of the noisy observations of the
system output. The system is driven by an independent and identically
distributed (i.i.d) non-Gaussian sequence that is not observed. Two
nonlinear optimization algorithms, namely the Gradient Descent and
the Gauss-Newton algorithms are exposed. An algorithm based on the
joint-diagonalization of the fourth-order cumulant matrices (FOSI)
is also considered, as well as an improved version of the classical
C(q, 0, k) algorithm based on the choice of the Best 1-D Slice of
fourth-order cumulants. To illustrate the effectiveness of our methods,
various simulation examples are presented.

Keywords— Cumulants, Identification, MA models, Parameter es-
timation.

I. INTRODUCTION

IN this paper, we consider the following discrete time,
causal, non-minimum phase, linear, time-invariant process

represented on figure 1 and described by equations (1) and
(2) :

w(k)
H(z) +

x(k)

v(k)

y(k)

Fig. 1. Single channel system

x(k) =
q∑

i=0

h(i) w(k − i); {h(0) = 1} (1)

where the observations of the signal x(k) are, in general,
noisy :

y(k) = x(k) + v(k) (2)

In the above equations, the driving sequence w(k) is not
observed. The following conditions are assumed to hold.

H.1. The system input w(k) is zero mean, independent and
identically distributed (i.i.d), non-Gaussian process, with
unknown distribution, and :

Cm,w(τ1, τ2, . . . , τm−1) = γm,w δ(τ1, τ2, . . . , τm−1)

where :
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� Cm,w(τ1, τ2, . . . , τm−1) is the mth-order cumulant
of the input signal w(k).

� γm,w = Cm,w( 0, 0, . . . , 0︸ ︷︷ ︸
m−1

) �= 0, ∀ m ≥ 2

� γ2,w = σ2
w = E

{
w(k)2

}

� γ3,w = E
{
w(k)3

}
is the skewness of w(k).

� γ4,w = E
{
w(k)4

}−3
[
E
{
w(k)2

}]2
is the kurtosis

of w(k).

H.2. The measurement noise sequence v(k) is assumed to
be zero mean, i.i.d, Gaussian sequence with unknown
variance, and independent of w(k).

H.3. The order q of the model is known.

The focus of this paper is the problem of recovering the
coefficients {h(i)}i=1,...,q of the MA model from the cumulant
statistics [15]-[16] of a sample function of the observations
{y(k), 1 ≤ k ≤ N} over N consecutive instants.

Blind identification of MA models using Higher-Order
Statistics, especially third- and fourth-order cumulants, has a
wide applicability in many fields ; e.g., sonar, radar, seismic
data processing, adaptive filtering, blind equalization, array
processing, data communication, time daily estimation, image
and speech processing [12]-[14]. These statistics are very use-
ful in problems where either non-Gaussianity, non-minimum
phase assumptions, and additive Gaussian noise are present
[12].

Signal processing techniques using Higher-Order Statistics
(HOS) or cumulants have attracted considerable attention in
the literature [2]-[9]-[10]-[13]-[17]-[18]-[19]-[20]. There are
several motivations behind this interest [1]-[7]. First, higher-
order cumulants are blind to all kinds of Gaussian noise ; that
is, HOS for a Gaussian process are identically zero. Hence,
when the processed signal is non-Gaussian and the additive
noise is Gaussian, the noise will vanish in the cumulants
domain. Thus, a greater degree of noise immunity is possible.
Second, cumulants are useful in identifying non-minimum
phase systems and in reconstructing non-minimum phase
signals when the signals are non-Gaussian. That is because
cumulants preserve the phase information of the signal. Third,
cumulants are useful in detecting and characterizing the pro-
perties of nonlinear systems.

In this paper, we compare blind identification methods
using the nonlinear optimization algorithms proposed in [4]-
[5], with the well known Fourth-Order System Identification
algorithm proposed in [3]. The first approach has the advantage
of estimating a non redundant parameters vector, while the
second one exploits all the fourth-order cumulants through a
Joint-diagonalization procedure. A third approach consists in
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selecting the best 1−D slice of fourth-order cumulants in order
to improve estimation quality using the classical C(q, 0, k)
algorithm [6]. These algorithms are used to identify some
communication channels and also solar processes.

This paper is organized as follows : A fundamental rela-
tionship linking cumulants of the output signal of the model
and the coefficients is dealt in Section II. In Section III,
we expose the solutions using Gradient Descent and Gauss-
Newton algorithms. FOSI and modified C(q, 0, k) algorithms
are introduced in Sections IV and V, respectively. In Section
VI, simulation results are discussed. Finally, conclusions are
drawn in Section VII.

II. A FUNDAMENTAL RELATIONSHIP

The starting point for all linear algebraic methods of MA
parameter estimation is the Brillinger and Rosenblatt [8]
formula. It is repeated here for convenience :

Cm,x(τ1, τ2, . . . , τm−1) = γm,w×
kmax∑

k=kmin

h(k) h(k + τ1) . . . h(k + τm−1) (3)

where

{
kmin = max(0,−τ1, · · · ,−τm−1)
kmax = min(q, q − τ1, · · · , q − τm−1)

and Cm,x(.) is the mth-order cumulant of the output process
x(k). Equation (3) gives the expression of cumulants of an
MA model with respect to the parameters of the process, but it
does not show what is the direct relation between two different
order cumulants of the same MA process or between different
cumulant slices of the same order. Equation (3) can be used to
obtain such formulas that can then be used for MA parameter
estimation.

For the MA system depicted in figure 1 and described by
equations (1) and (2) with the assumptions H.1, H.2, and H.3 ;
the mth- and nth-order cumulants of the system output y(k)
are linked by the following relation :

imax∑
i=imin

h(i)

[
m−s−1∏

k=1

h(i + τk)

]
×

Cn,y(β1, β2, . . . , βn−s−1, i + α1, i + α2, . . . , i + αs) =

εn,m

jmax∑
j=jmin

h(j)

[
n−s−1∏

k=1

h(j + βk)

]
×

Cm,y(τ1, τ2, . . . , τm−s−1, j + α1, j + α2, . . . , j + αs) (4)

where m > 2, n > 2, εn,m = γn,w

γm,w
, and s is an arbitrary

integer satisfying 1 ≤ s ≤ min(m,n) − 2,

and

⎧⎪⎪⎨
⎪⎪⎩

imin = max(0,−τ1, · · · ,−τm−s−1)
imax = min(q, q − τ1, · · · , q − τm−s−1)
jmin = max(0,−β1, · · · ,−βn−s−1)
jmax = min(q, q − β1, · · · , q − βn−s−1)

Proof :
Let :

Rmn =
∑
ij

h(i)h(j)

[
m−s−1∏

k=1

h(i + τk)

]
×

[
n−s−1∏

k=1

h(j + βk)

][
s∏

k=1

h(i + j + αk)

]
(5)

Firstly, if we sum on j afterwards on i in (5), we will find :

Rmn =
∑

i

h(i)

[
m−s−1∏

k=1

h(i + τk)

]
×

∑
j

h(j)

[
n−s−1∏

k=1

h(j + βk)

][
s∏

k=1

h(i + j + αk)

]
(6)

If we multiply (6) by γn,w and take the Brillinger and
Rosenblatt formula (3) into account, we will obtain :

γn,w Rmn =
∑

i

h(i)

[
m−s−1∏

k=1

h(i + τk)

]
×

Cn,x(β1, β2, . . . , βn−s−1, i + α1, i + α2, . . . , i + αs) (7)

Changing the order of summation in (5) yields :

Rmn =
∑

j

h(j)

[
n−s−1∏

k=1

h(j + βk)

]
×

∑
i

h(i)

[
m−s−1∏

k=1

h(i + τk)

][
s∏

k=1

h(i + j + αk)

]
(8)

If we multiply the right and left sides of (8) by γm,w and
take the relation (3) into account, we will obtain :

γm,w Rmn =
∑

j

h(j)

[
n−s−1∏

k=1

h(j + βk)

]
×

Cm,x(τ1, τ2, . . . , τm−s−1, j + α1, j + α2, . . . , j + αs) (9)

From (7) and (9), we obtain the relation (4) between the
mth- and nth-order cumulants of the MA process output.

III. METHODS BASED ON NONLINEAR OPTIMIZATION
ALGORITHMS

Setting n = 3, m = 4, and s = 1 in equation (4), yields

imax∑
i=imin

h(i)h(i + τ1)h(i + τ2)C3,y(β1, i + α1) =

ε3,4

jmax∑
j=jmin

h(j)h(j + β1)C4,y(τ1, τ2, j + α1) (10)



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:6, 2007

836

where

⎧⎪⎪⎨
⎪⎪⎩

imin = max(0,−τ1,−τ2)
imax = min(q, q − τ1, q − τ2)
jmin = max(0,−β1)
jmax = min(q, q − β1)

By setting τ1 = τ2 = 0 in (10), we get the relation used
in this paper for estimating the parameters {h(i)}i=1,2,...,q of
the considered MA model.

ε4,3

q∑
i=0

h3(i)C3,y(β1, i + α1) =

jmax∑
j=jmin

h(j)h(j + β1)C4,y(0, 0, j + α1) (11)

It is important to determine the range of values of α1

and β1 so that the cumulants {C3,y(β1, i + α1)}i=0,··· ,q ,
{C4,y(0, 0, j + α1)}j=jmin,··· ,jmax , and the coefficients
{h(j + β1)} are not all zero for each equation.

By taking into account the property of causality of the model
and the domain in which third- and fourth-order cumulants of
an MA(q) process are non-zero [12], we obtain :⎧⎪⎪⎨

⎪⎪⎩
−q ≤ β1 ≤ q

−2q ≤ α1 ≤ q

−2q + β1 ≤ α1 ≤ q + β1

(12)

Using the symmetry properties of cumulants ([7]-[14]) the
set of values for α1 and β1 is defined by :{ −q ≤ β1 ≤ 0

−2q ≤ α1 ≤ q + β1

(13)

Concatenating (11) for all values of α1 and β1 defined by
(13), we obtain the following system of equations :

Mθ = r (14)

where :

θ = [h(1) · · · h(q) h2(1) h(1)h(2)

· · · h(1)h(q) h2(2) · · · h(2)h(q) h2(3)

· · · h2(q) ε4,3 ε4,3h
3(1) · · · ε4,3h

3(q)]T (15)

� ε4,3 = γ4,w/γ3,w.

� M is a matrix of dimension
[

5q2+7q+2
2 , q2+5q+2

2

]
.

� θ is a vector of dimension
[

q2+5q+2
2 , 1

]
.

� r is a vector of dimension
[

5q2+7q+2
2 , 1

]
.

A. Gradient Descent Algorithm (GDA)

The idea of this algorithm is to reduce the dimension
of the estimated parameter vector θ which has

(
q2+5q+2

2

)
components, as seen in (15). The new parameters vector θNL

is a (q + 1) length vector :

θNL = [h(1), · · · , h(q), ε4,3]T (16)

The criterion to be minimized is :

JLS = ‖r − φ(θNL)‖2

The GDA solution has the following form :

θ̂i+1
NLgr

= θ̂i
NLgr

+ λJT (r − φ(θ̂i
NLgr

)) (17)

where :
� φ is the system of equations obtained by concatenating

(11) for all values of α1 and β1 defined by (13) :

φ(θNL) = Mθ

� J is the Jacobian matrix of φ,

J =
[

∂φk

∂θNLl

]
(k,l)

where k = 1, · · · , 5q2+7q+2
2 , and l = 1, · · · , q + 1.

� λ is the step-size.

B. Gauss-Newton Algorithm (GNA)
This algorithm can be written as :

θ̂i+1
NLgn

= θ̂i
NLgn

+ µ(JT J)−1JT (r − φ(θ̂i
NLgn

)) (18)

where :
� r, φ, and J are defined in section III-A.
� θ̂NLgn has the form (16).
� µ is the step-size.
The parameter ε4,3 must be estimated since we suppose we

do not know the nature of the distribution of the input signal
w(k).

IV. A JOINT DIAGONALIZATION-BASED ALGORITHM

The Fourth-Order System Identification (FOSI) algorithm
[3] proposes a solution to the blind identification problem of
MA models based on the joint diagonalization of a set of
fourth-order cumulant matrices via a Jacobi technique. The
existing relationships between the taps of an MA system driven
by a non-Gaussian input w(k), and the (sample) fourth-order
cumulant matrices of the output process x(k) make possible
the recovery of the parameters h(i) of the system.

The procedure of joint-diagonalization exploits the fact that
any orthonormalized fourth-order cumulant matrix is diagonal
in the basis of the columns of a unitary matrix Q, which under
certain conditions is unique (up to a permutation matrix and
phase factors). Moreover, it is easy to show that the entire
set of orthonormalized fourth-order cumulant matrices can be
approximatively simultaneously diagonalized under the same
unitary transformation Q. So, after a preliminary orthonor-
malization step, a new set of orthonormalized matrices is
simultaneously diagonalized, giving rise to the determination
of the matrix Q.

The solution of this joint-diagonalization problem is equi-
valent to the minimization of the following criterion :

φ (Q,M) def=
K∑

k=1

| diag(QHM̄(k)Q) |2, (19)

where M = {M̄(k)|k = 1, . . . ,K} is the set of orthonor-
malized cumulant matrices. The system parameters estimates
are obtained from an estimate unitary matrix Q̂ minimizing the
criterion (19), plus the orthonormalizing matrix, determined
from the eigen-decomposition of a positive definite fourth-
order cumulant matrix.
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V. BEST 1-D SLICE C(q, 0, k) ALGORITHM

The classical C(q, 0, k) algorithm is written as follows [11] :

h(k) =
C4,y(q, 0, k)
C4,y(q, 0, 0)

, k = 1, . . . , q. (20)

This algorithm is very sensitive to cumulants estimation
errors and requires exact knowledge about the system order
q. Nonetheless, the amount of statistical information required
is very small, which makes it a very simple and attractive
estimation method. Actually, all the needed information may
be arranged into a vector C0, defined entry wise as Cτ2(k) =
C4,y(q, τ2, k), k = 1, . . . , q, where τ2 is fixed to zero. Thus,
(20) may be rewritten as

h = C0/C0(0), (21)

where h = [h(1) . . . h(q)]T .
We note that it should be possible to change C0 in (21) by

any other Cj , j = 1, . . . , q in order to find different parameter
estimations ĥj . Indeed, it is known that the smaller estimation
error (εj = |h− ĥj |2) is obtained by replacing C0 in (21) by
the vector Cλ with the maximum two-norm (max[CH

j Cj ])
[6]. This procedure consists in an improved algorithm that
uses τ2 = λ instead of τ2 = 0 in (21). The new identification
formula is then written as

h(k) =
Cλ(k)
Cλ(0)

=
C4,y(q, λ, k)
C4,y(q, λ, 0)

, k = 1, . . . , q. (22)

This method makes use of only (q +1)2 statistical informa-
tion, providing a reduction rate bounded by 8q regarding the
amount of statistics used by FOSI.

VI. SIMULATIONS

We now present the simulation examples to compare the
performance of those algorithms given in Sections III-A, III-
B, IV and V.

In the simulations presented in this Section, the available
data {y(k)} was generated by two different models, shown
below. In both models the input signal w(k) is a zero mean
exponentially distributed i.i.d sequence with γ2,w = σ2

w = 1
and γ3,w = 2. The additive noise sequence {v(k)} is an i.i.d,
zero mean, Gaussian sequence.

We carried out 200 Monte Carlo simulations with different
noise sequences. For each run, we computed the Normalized
Mean Square Error (NMSE) defined as :

NMSE =

∑q
i=1

(
h(i) − ĥ(i)

)2

∑q
i=1 h2(i)

where h(i) and ĥ(i) are respectively the actual and the esti-
mated impulse responses. The results present the fluctuations
of the mean NMSE, in dB, against the noise level (SNR).

Example 1 :

y(k) = w(k) − 2.333w(k − 1) + 0.667w(k − 2) + v(k)

The zeros of the system transfer function H(z) are located
at 1.9994 and 0.3336. This model has also been used in [4].
In this case N = 10240 samples for each run. The simulation
results are summarized in figure 2.
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B

)

C(q,k) with Best 1−D Slice
FOSI
Gradient
Gauss−Newton

Fig. 2. Performance of the blind identification methods for the model 1

Example 2 :

y(k) = w(k)+0.1w(k−1)−1.87w(k−2)+3.02w(k−3)
− 1.435w(k − 4) + 0.49w(k − 5) + v(k)

The zeros of the system transfer function H(z) are located
at −2, 0.7±j0.7 and 0.25±j0.433. This model has also been
used in [4]. In this case N = 40960. The simulation results
are given in figure 3.
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Fig. 3. Performance of the blind identification methods for the model 2

Figures 2 and 3 show the results of our simulations for the
two examples. The SNR is varied from −10dB to 30dB in
steps of 10dB. For each value of the SNR, 200 realizations
of the noisy signal are generated.
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The figures 2 and 3 demonstrate the effectiveness of the first
approach, concerning the methods using nonlinear optimiza-
tion techniques. In figure 3, the Gradient and Gauss-Newton
algorithms are much more powerful than FOSI and C(q, 0, k)
with Best 1-D Slice. Notice, however, that these latter ones use
only fourth-order cumulants, while the nonlinear optimization
approaches utilize both third- and fourth-order cumulants.
We note that increasing model order q severely affects the
performance of these algorithms.

VII. CONCLUSIONS

We have presented and compared four different algorithms
for consistent parameter estimation in i.i.d non-Gaussian mea-
surement noise under the assumption that the system order in
known. The methods of blind identification of MA systems
use third- and fourth-order cumulants.

Simulation examples are presented in Section VI to compare
these algorithms. In terms of quality of parameter estimation,
the nonlinear optimization-based methods over performed the
Joint-diagonalization approach as well as the C(q, 0, k) algo-
rithm incorporating Best 1-D Slice, especially for higher order
models.

Nevertheless, complexity of nonlinear optimization-based
algorithms remain much higher comparatively to the other two
methods.

REFERENCES

[1] A. Al-Smadi and A. Alshamali, “Fitting ARMA Models to Linear non-
Gaussian Processes using Higher Order Statistics”, Signal Processing,
Vol. 82, No. 11, pp. 1789-1793, November 2002.

[2] S. A. Alshebeili, A. N. Venetsanopoulos, and A. E. Çetin, “Cumulant
Based Identification Approaches for Nonminimum Phase FIR Systems”,
IEEE Transactions on Signal Processing, Vol. 41, No. 4, pp. 1576-1588,
April 1993.

[3] A. Belouchrani and B. Derras, “An Efficient Fourth-Order System Identi-
fication FOSI Algorithm Utilizing the Joint Diagonalization Procedure”,
In Proceedings of the 10-th IEEE Workshop on Statistical Signal and
Array Processing, Pennsylvania, USA, pp. 621–625, August 2000.

[4] M. Boulouird, G. Favier, and M. M. Hassani, “Parameter Estimation of
Moving Average Processes using Cumulants and Non-linear Optimiza-
tion Algorithms”, Proceedings of the 2nd IFAC International Conference
on Informatics in Control, Automation and Robotics-ICINCO’05, Bar-
celona, Spain, pp. 11-15, September 14-17, 2005.

[5] M. Boulouird, G. Favier, and M. M. Hassani, “Blind Identification of
MA Models Using Gradient Descent and Newton-Raphson Algorithms”,
Proceedings of the First Mediterranean Days of Physics-JMP1’05,
Tetuan, Morocco, November 24-26, 2005.

[6] M. Boulouird, C. E. R. Fernandes, G. Favier, M. M. Hassani, and
J. C. M. Mota, “Identification of Non-minimum Phase Systems using
Nonlinear Optimization Algorithms and a Joint-Diagonalization Based
Method”, Proceedings of the IEEE-International conference on Signal-
Image Technology and Internet-based Systems-SITIS’05, Yaounde, Ca-
meroon, November 27th - December 1st, 2005.

[7] M. Boulouird and M. M. Hassani, “Blind Channel Identification using
Higher-Order Statistics”, Submitted to the Journal of Statistical Com-
putation and Simulation, Taylor and Francis, 2005.

[8] D. Brillinger and M. Rosenblatt, “Computation and interpretation of kth
order spectra”, In Spectral Analysis of Time Signals, New York : Wiley,
pp. 907-938, 1967.

[9] P. Comon, “MA Identification Using Fourth Order Cumulants”, Signal
Processing, Vol. 26, No. 3, pp. 381-388, March 1992.

[10] J. A. R. Fonollosa and J. Vidal, “System Identification Using a Linear
Combination of Cumulants slices”, IEEE Transactions on Signal Pro-
cessing, Vol. 41, No. 7, pp. 2405-2411, July 1993.

[11] G.B. Giannakis, “Cumulants : a Powerful Tool in Signal Processing”,
Proceedings of the IEEE, Vol. 75, No. 9, pp. 1333-1334, September
1987.

[12] J. M. Mendel, “Tutorial on Higher-Order Statistics (Spectra) in Signal
Processing and System Theory : Theoretical Results and some Appli-
cations”, Proceedings of the IEEE, Vol. 79, No. 3, pp. 278-305, March
1991.

[13] Y. J. Na, K. S. Kim, I. Song, and T. Kim, “Identification of Nonminimum
Phase FIR Systems Using the Third- and Fourth-Order Cumulants”,
IEEE Transactions on Signal Processing, Vol. 43, No. 8, pp. 2018-2022,
December 1995.

[14] C. L. Nikias and J. M. Mendel, “Signal Processing With Higher Order
Spectra”, IEEE Signal Processing Magazine, pp. 10-37, July 1993.

[15] C. L. Nikias and A. P. Petropulu, “Higher-Order Spectra Analysis”, PTR
Prentice-Hall, Englewood Cliffs, New Jersey, 1993.

[16] C. L. Nikias and M. R. Raghuveer, “Bispectrum estimation : A digital
signal processing framework”, Proceedings of the IEEE, pp. 869-891,
July 1987.

[17] A. G. Stogioglou and S. McLaughlin, “MA Parameter Estimation and
Cumulant Enhancement”, IEEE Transactions on Signal Processing, Vol.
44, No. 7, pp. 1704-1718, July 1996.

[18] J. K. Tugnait, “Approaches to FIR System Identification With Noisy
Data Using Higher Order Statistics”, IEEE Transactions on Signal
Processing, Vol. 38, No. 7, pp. 1307-1317, July 1990.

[19] J. K. Tugnait, “New Results on FIR System Identification Using Higher-
Order Statistics”, IEEE ASSP Workshop on Spectrum Estimation, pp.
202-206, October 1990.

[20] J. K. Tugnait, “New Results on FIR System Identification Using Higher-
Order Statistics”, IEEE Transactions on Signal Processing, Vol. 39, No.
10, pp. 2216-2221, October 1991.

Mohamed BOULOUIRD was born in Ifrane Atlas
Saghir, Morocco, on June 1, 1976. He received the
B.Sc. degree in physics and electronics from the
Ibn Zohr University, Agadir, Morocco, in 1999, the
M.S. degree in signal processing and communica-
tions from the Cadi Ayyad University, Marrakesh,
Morocco, in 2001.

He is currently working toward the Ph.D. degree
at the Cadi Ayyad University of Marrakesh, Mo-
rocco. His research interest include linear systems,
higher order statistics, blind identification, blind

equalization and nonlinear systems.

Moha M’Rabet HASSANI is Professor in the
Department of Physics at the Faculty of Sciences
Semlalia, Cadi Ayyad University, Marrakesh, Mo-
rocco.

His research interests are in statistical signal pro-
cessing, nonlinear system, identification and equali-
zation.


