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Abstract—In this article, we aim to discuss the formulation of two 

explicit group iterative finite difference methods for time-dependent 

two dimensional Burger’s problem on a variable mesh. For the 

non-linear problems, the discretization leads to a non-linear system 

whose Jacobian is a tridiagonal matrix. We discuss the Newton’s 

explicit group iterative methods for a general Burger’s equation. The 

proposed explicit group methods are derived from the standard point 

and rotated point Crank-Nicolson finite difference schemes. Their 

computational complexity analysis is discussed. Numerical results are 

given to justify the feasibility of these two proposed iterative methods.  

 

Keywords—Standard point Crank-Nicolson (CN), Rotated point 

Crank-Nicolson (RCN), Explicit Group (EG), Explicit Decoupled 

Group (EDG).  

I. INTRODUCTION 

HIS paper is an extension of our previous work in [1] on 

the explicit group methods for time-dependent two 

dimensional convection-diffusion equations. The explicit group 

(EG) iterative scheme was first introduced by Yousif and Evans 

[2] in solving the two dimensional elliptic problems by 

grouping the mesh points into smaller size groups of points. In 

1991, Abdullah [3] developed the explicit decoupled group 

(EDG) iterative scheme by using the same ideas of explicit 

group on rotated grid. These explicit group methods have been 

extensively investigated over the years in solving various types 

of equations [4] – [7]. These methods are easy to implement 

and require lesser computational cost and they are suitable to be 

used on parallel computers. In [1] we have applied the EG and 

EDG iterative schemes to solve the two dimensional 

convection-diffusion problems. We also discussed the stability 

and consistency of EG and EDG schemes. 

Burger’s equation is an important partial differential 

equation in fluid mechanics. It has been widely used for various 

applications, such as mathematical model of turbulence [8], 

shock wave [9] and traffic flow. There are many numerical 

methods for solving Burger’s equation, such as finite difference 

scheme, the Eulerian-Lagrangian method, variational iteration 

method, the lattice Boltzmann method and so on.  

In this paper, we introduce the explicit group Newton’s 

iterative methods for the solution of the time-dependent two 

dimensional Burger’s equation. In the next section, we will 
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describe the formulation of these explicit group methods 

followed by the computational complexity analysis in Section 

III. The Numerical experiments and results are presented in 

Section IV. The concluding remark is given in Section V.  

II. THE EXPLICIT GROUP NEWTON’S ITERATIVE METHODS  

A. Problem statement Review Stage 

In this paper, we introduce the explicit group Newton’s 

iterative methods for the Burger’s equation based on finite 

difference approximation. We consider the time-dependent 

two-dimensional Burger’s equation as follows: 
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subject to the initial conditions 
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where [ ] [ ], ,D a b c d= ×  is a rectangular domain and D∂ is its 
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Then, Equation (1) is equivalent to 
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B. Standard Point Crank-Nicolson (CN) Newton’s Iterative 

Method 

The common Crank-Nicolson finite difference formula in 

discretizing (6) is:  
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This equation is equivalent to 
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where 
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classic Newton’s iteration method, equation (8) can be written 

as the root finding problem for the function of g as 
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The Newton’s iteration [10] at each time step, is given by 
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where 
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= Jacobian matrix, evaluated using term by term 

discretization of (9). The standard point Crank-Nicolson 

Newton’s iterative formula can be shown to be the following 

form: 
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The computational molecule of CN is shown in Fig. 1 (a).  

The Newton’s Iterative Algorithm for standard point 

Crank-Nicolson (CN) method at each time step is: 

1. Do until convergence 

2.       compute g function 

3.       Do until convergence 

4.             solve for w in system Aw=b 

5.       End Do 

6.       u
p+1

 = w + u
p
 

7. End Do 
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Fig. 1 (a) Computational Molecule of (12); (b) Computational 

Molecule of (16) 

 

C. Rotated Point Crank-Nicolson (RCN) Newton’s Iterative 

Method 

Using rotated point finite difference approximation for (6), 

the difference equation becomes  
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where h = ∆x = ∆y. On simplification, the following equation is 

obtained  
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approximation is: 
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The RCN Newton’s iterative equation is as below 
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The computational molecule of RCN is shown in Fig. 1 (b). Fig. 

2 represents the mesh points on solution domain of RCN 

Newton’s iterative method for the case n = 9. We can see that 

the evaluations at the points  involve only the same type of 

points; similarly for the points of type Ο. Thus, the iterations 

can be generated involving one type of points only. For the 

numerical experiment in Section IV, we chose the points of 

type  to be involved in the iterations. After a certain 

convergence criteria is achieved, the solutions at the points of O 

will be evaluated directly using (9) and (12). 

The Newton’s Iterative Algorithm of rotated point 

Crank-Nicolson (RCN) scheme at each time step is as follows: 

1.   Do until convergence 

2.         compute g function at the points (  ) only 

3.         Do until convergence 

4.               solve for w in system Aw=b at the points ( ) only 

5.         End Do 

6.         compute u
p+1

 = w + u
p
 at the points (  ) only 

7.   End Do 

8.   compute g function using CN at the points (O)  

9.   compute w at points (O)  

10. compute u
p+1

 at points (O)  

 

 
Fig. 2 Grid point on x-y plane for n=9 

 

D. Explicit Group (EG) Newton’s Iterative Method 

To formulate the EG Newton’s iterative scheme for the 

Burger’s equation, we apply (12) to any group of four points on 

the solution domain in the inner iteration at each time step. This 

will result in a (4x4) system of equations as follows  
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The computational molecule of EG is shown in Fig. 3. The 

explicit form of (17) is obtained as 

 

, ,1 2 3 4

1, 1,5 6 7 8

1, 1 1, 19 10 11 12

, 1 , 113 14 15 16

1

const

i j i j

i j i j

i j i j

i j i j

w RHSb b b b

w RHSb b b b

w RHSb b b b

w RHSb b b b

+ +

+ + + +

+ +

    
    
    =
    
    
       

      (20) 

 

where 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

2 2

1 1 1 5 6 7 9 2 2 1 7 9 3 6 9

2

3 1 2 5 3 9 4 3 1 5 6 2 5 7

2 2

5 4 1 7 9 5 7 8 6 1 1 3 8 7 9

2

7 5 1 3 8 3 4 9 8 1 3 4 5 7

2

9 1 4 6 7 8 10 6 1 3 8 2 7 8

11 1

, ,

, ,

, ,

,

, ,

b a a a a a a b a a a a a a a

b a a a a a b a a a a a a a

b a a a a a a a b a a a a a a

b a a a a a a a b a a a a a

b a a a a a b a a a a a a a

b a a

= − − = − − −

= + = − − −

= − − − = − −

= − − − = +

= + = − − −

= ( ) ( )
( ) ( )

( ) ( )
( )

2 2

1 2 4 3 8 12 7 1 2 4 3 4 6

2

13 8 1 5 6 4 6 9 14 1 2 8 6 9

2 2

15 9 1 2 4 2 5 8 16 1 1 2 4 5 6

2 2

1 1 2 4 5 6 3 8 7 9

3 5 6 8 2 5 7 8 3 4 6 9 2 4 7 9

, ,

, ,

, ,

const

              

a a a a b a a a a a a a

b a a a a a a a b a a a a a

b a a a a a a a b a a a a a a

a a a a a a a a a a

a a a a a a a a a a a a a a a a

− − = − − −

= − − − = +

= − − − = − −

= − − − −

+ − − +

 (21) 

 

 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:12, 2011

1937

 

 

 
Fig. 3 Computational Molecule of (17) 

 

E. Explicit Decoupled Group (EDG) Newton’s Iterative 

Method 

For EDG Newton’s iterative scheme, we apply (17) to any 

group of four points on the solution domain in the inner 

iteration at each time step. Similarly, this will also result in a 

(4x4) system of equation:  
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This system leads to two explicit decoupled systems of 2x2 

equations 
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Fig. 4 shows the computational molecule of equations (25) 

and (26). The iterative evaluation of (25) involves points of 

type  only, while (26) involves points of type � only. 

Therefore, the implementation of (25) and (26) can be carried 

out independently. We can save the execution time if the 

iteration over the solution domain is only carried out on either 

type of points (  or � ). Suppose we choose to iterate on 

points of type . The EDG Newton’s iterative scheme 

corresponds to iterations on these points using the group 

formula (25) until convergence test is satisfied. After a 

convergence criterion is achieved, the solutions at the 

remaining points of type � are evaluated directly once using the 

formulas of CN (9) and (12). 

 

 

 
(a) 

 
(b) 

Fig. 4 (a) Computational Molecule of (25); (b) Computational 

Molecule of (26) 

III. COMPUTATIONAL COMPLEXITY ANALYSIS 

In this section, we analyze the computational complexity of 

the four Newton’s iterative methods. The estimation is based on 

the arithmetic operations performed at every iteration. Assume 

that the solution domain is discretized with mesh size n, then 

the number of internal mesh points is given by m
2
 where m = n 

– 1. There are two types of internal mesh points, which are the 

iterative and direct points. Iterative points are the points which 

are involved in the iteration process, while direct points are the 

points that are computed directly once after the iteration 

convergence criteria is achieved. Table 1 shows the number of 

arithmetic operations required for every iteration of each 

method (excluding the convergence test and direct solutions). 

To further study the complexity analysis of the explicit group 

methods, please refer to [2] – [3]. 

 

 

IV. NUMERICAL EXPERIMENTS AND DISCUSSION OF RESULTS 

In order to compare the performances of these Newton’s 

iterative methods described in Section II, we carried out the 

numerical experiments on a PC with Core 2 Duo 2.8 GHz, 2 GB 

of RAM with Window XP SP3 operating system using Cygwin 

C. The convergence criteria used was the maximum absolute 

error test with the error tolerance equal to ε =10
-10

.  

We solve the following two-dimensional Burger’s equation  

 
2 2

2 2
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Re

u u u u u
u

t x y x y

  ∂ ∂ ∂ ∂ ∂
+ + = +  ∂ ∂ ∂ ∂ ∂   

          (27) 

TABLE I 

COMPUTATIONAL COMPLEXITY FOR FOUR NEWTON’S ITERATIVE METHODS 

Methods Additional Multiplication 

Standard Point CN 9 m2 8 m2 

Rotated Point CN 3 m2  3 m2 

EG 21.75 m2 18 m2 

EDG 4 m2 3.25 m2 
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where [ ] [ ]: 0, 2 0, 2D × .The initial and boundary conditions are 

defined so that they satisfy the exact solution 

 

( )
( )( ) ( )1

, , , , , 0
1 exp Re / 2

u x y t x y D t
x y t

= ∈ ≥
+ + −

 

Tables II and III in APPENDIX show the numerical

all four methods described in Section II when 1/RE = 1.0

Amongst the point methods, the rotated point scheme

faster than the traditional CN point scheme

grid points increases due to its lower computational 

complexities. It can be observed that the accuracies of EG and 

EDG are as good as the CN and RCN respectively, but they 

require less execution times to achieve the results.  The 

computing timing of EG is only 56 – 

computing timing of EDG is only 62 – 

results of these four methods when 1/RE = 0.1 are shown in 

Tables 4 and 5 in APPENDIX. The EDG scheme is

method. Figs. 5 and 6 display the execution time

methods when 1/RE=1.0 and 0.1 respectively.

 

 

Fig. 5 Execution Times of standard point CN, rotated point CN, EG 

and EDG Newton’s iterative methods when t =

Fig. 6 Execution Times of standard point CN, rotated point CN, EG 

and EDG Newton’s iterative methods when t

dt=1/1000 

 

The experimental results of these methods with various 

number of 1/RE (0.1, 0.01 and 0.005) are shown in Table 6 on 

APPENDIX. When 1/RE is decreased, the shock of the solution 

is sharper and steeper. Our Newton’s iterative methods 

accurate and non-oscillatory since the maximum error increases

only at a small part localized to the middle part of the domain 

along the line x+y=2.  
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.The initial and boundary conditions are 

defined so that they satisfy the exact solution [11]: 

, , , , , 0u x y t x y D t= ∈ ≥     (28) 

in APPENDIX show the numerical results of 

all four methods described in Section II when 1/RE = 1.0. 

Amongst the point methods, the rotated point scheme (RCN) is 

traditional CN point scheme as the number of 

grid points increases due to its lower computational 

be observed that the accuracies of EG and 

EDG are as good as the CN and RCN respectively, but they 

achieve the results.  The 

 84 % of CN. The 

 91 % of RCN. The 

results of these four methods when 1/RE = 0.1 are shown in 

4 and 5 in APPENDIX. The EDG scheme is the fastest 

xecution times of these four 

methods when 1/RE=1.0 and 0.1 respectively.  

 
, rotated point CN, EG 

 2, 1/Re = 1, dt=1/1000 

 
, rotated point CN, EG 

ewton’s iterative methods when t = 2, 1/Re = 0.10, 

results of these methods with various 

are shown in Table 6 on 

, the shock of the solution 

is sharper and steeper. Our Newton’s iterative methods are still 

e the maximum error increases 

small part localized to the middle part of the domain 

 

Fig. 7 Surface plot of the difference between the numerical 

EG and exact solutions at t = 2, 1/Re = 0.

V. CONCLUSION

We have presented two explicit group N

methods derived from the standard point and rotated point 

Crank-Nicolson approximations to solve the time

two dimensional Burger’s equation. It is observed

computational cost for EDG is the least compare

other three methods. However, when 1/RE is getting smaller, a 

finer mesh is preferred, as the maximum error increases when 

1/RE decreases. The computation cost increases as the grid 

sizes increase. The implementation of parallel technology and 

domain decomposition methods will be investigated and 

reported soon. 

Fig. 8 Surface plot of the difference between the numerical 

EDG and exact solutions at t = 2, 1/Re = 0.005, 

APPENDIX

300 400

TABLE
NUMERICAL RESULTS OF 

Space 
step 

CN 

Maximum Error 
(seconds)

2/21 0.0000061424 0.406

2/41 0.0000016167 2.310

2/81 0.0000004153 17.777
2/161 0.0000001163 198.231

2/321 0.0000000958 3104.663

 

 

 
Surface plot of the difference between the numerical results of 

= 2, 1/Re = 0.005, ∆t = 0.005, ∆x = 2/401 

ONCLUSION 

e presented two explicit group Newton’s iterative 

methods derived from the standard point and rotated point 

Nicolson approximations to solve the time-dependent 

two dimensional Burger’s equation. It is observed that the 

computational cost for EDG is the least compared with the 

However, when 1/RE is getting smaller, a 

finer mesh is preferred, as the maximum error increases when 

1/RE decreases. The computation cost increases as the grid 

increase. The implementation of parallel technology and 

domain decomposition methods will be investigated and 

 
Surface plot of the difference between the numerical results of 

and exact solutions at t = 2, 1/Re = 0.005, ∆t = 0.005, ∆x = 2/401 

PPENDIX 

 

TABLE II 
UMERICAL RESULTS OF CN AND RCN AT 1/RE=1.0 

RCN 

Time 
(seconds) 

Maximum 
Error 

Time 
(seconds) 

0.406 0.0000246707 0.217 

2.310 0.0000064729 0.986 

17.777 0.0000016577 6.198 
198.231 0.0000004231 60.783 

3104.663 0.0000001329 1216.607 
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TABLE VI 
MAXIMUM ERROR OF FOUR METHODS WHEN ∆T = 0.005, ∆X = 2/401, T = 2.0 

1/RE 

Maximum Error 

CN EG RCN EDG 

0.1 0.000023766 0.000023766 0.000072648 0.000072648 

0.01 0.002657666 0.002657666 0.008096495 0.008096405 

0.005 0.010284811 0.010284811 0.031722012 0.031722012 

 

TABLE V 

NUMERICAL RESULTS OF EG AND EDG AT 1/RE=0.1 

Space 

step 

EG EDG 

Maximum Error 
Time 

(seconds) 

Maximum 

Error 

Time 

(seconds) 

2/21 0.005942001 0.421 0.023384424 0.188 

2/41 0.001548691 1.841 0.006122375 0.842 
2/81 0.000400472 9.269 0.001600764 3.642 

2/161 0.000101567 52.714 0.000404833 20.858 

2/321 0.000025768 479.061 0.000102175 216.505 

 

 

TABLE IV 
NUMERICAL RESULTS OF CN AND RCN AT 1/RE=0.1 

Space 
step 

CN RCN 

Maximum Error 
Time 

(seconds) 
Maximum 

Error 
Time 

(seconds) 

2/21 0.005942000 0.407 0.023384424 0.187 

2/41 0.001548691 1.735 0.006122375 0.873 

2/81 0.000400472 9.246 0.001600764 4.294 
2/161 0.000101567 62.936 0.000404833 22.984 

2/321 0.000025769 699.855 0.000102175 297.523 

 

 

TABLE III 

NUMERICAL RESULTS OF EG AND EDG AT 1/RE=1.0 

Space 

step 

EG EDG 

Maximum Error 
Time 

(seconds) 

Maximum 

Error 

Time 

(seconds) 

2/21 0.0000061424 0.344 0.0000246707 0.219 
2/41 0.0000016167 2.201 0.0000064729 0.900 

2/81 0.0000004146 13.906 0.0000016573 5.686 

2/161 0.0000001087 133.466 0.0000004216 49.335 
2/321 0.0000000549 1760.950 0.0000001247 754.048 

 

 


