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New Explicit Group Newton’s Iterative Methods
for the Solutions of Burger’s Equation

Tan K. B. and Norhashidah Hj. M. Ali

Abstract—In this article, we aim to discuss the formulation of two
explicit group iterative finite difference methods for time-dependent
two dimensional Burger’s problem on a variable mesh. For the
non-linear problems, the discretization leads to a non-linear system
whose Jacobian is a tridiagonal matrix. We discuss the Newton’s
explicit group iterative methods for a general Burger’s equation. The
proposed explicit group methods are derived from the standard point
and rotated point Crank-Nicolson finite difference schemes. Their
computational complexity analysis is discussed. Numerical results are
given to justify the feasibility of these two proposed iterative methods.

Keywords—Standard point Crank-Nicolson (CN), Rotated point
Crank-Nicolson (RCN), Explicit Group (EG), Explicit Decoupled
Group (EDQG).

1. INTRODUCTION

HIS paper is an extension of our previous work in [1] on

the explicit group methods for time-dependent two
dimensional convection-diffusion equations. The explicit group
(EQ) iterative scheme was first introduced by Yousif and Evans
[2] in solving the two dimensional elliptic problems by
grouping the mesh points into smaller size groups of points. In
1991, Abdullah [3] developed the explicit decoupled group
(EDQG) iterative scheme by using the same ideas of explicit
group on rotated grid. These explicit group methods have been
extensively investigated over the years in solving various types
of equations [4] — [7]. These methods are easy to implement
and require lesser computational cost and they are suitable to be
used on parallel computers. In [1] we have applied the EG and
EDG iterative schemes to solve the two dimensional
convection-diffusion problems. We also discussed the stability
and consistency of EG and EDG schemes.

Burger’s equation is an important partial differential
equation in fluid mechanics. It has been widely used for various
applications, such as mathematical model of turbulence [§],
shock wave [9] and traffic flow. There are many numerical
methods for solving Burger’s equation, such as finite difference
scheme, the Eulerian-Lagrangian method, variational iteration
method, the lattice Boltzmann method and so on.

In this paper, we introduce the explicit group Newton’s
iterative methods for the solution of the time-dependent two
dimensional Burger’s equation. In the next section, we will
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describe the formulation of these explicit group methods
followed by the computational complexity analysis in Section
III. The Numerical experiments and results are presented in
Section IV. The concluding remark is given in Section V.

II. THE EXPLICIT GROUP NEWTON’S ITERATIVE METHODS

A. Problem statement Review Stage

In this paper, we introduce the explicit group Newton’s
iterative methods for the Burger’s equation based on finite
difference approximation. We consider the time-dependent
two-dimensional Burger’s equation as follows:

ou Ou Ou 1 (d*u & u (1)
—tu| —+— |=—| =+
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subject to the initial conditions
u(x,,0)=u, (x,y), (x.y)eD. 2)

The boundary conditions
u(x,y,0)= f(x,3.1),(x,t) €0Dx(0,T] 3)

where D=[a,b]x[c,d] is a rectangular domain and 0D is its

boundary.
We define that
F=0.5u". )

Then, Equation (1) is equivalent to

ou (OF OF 1 (du ou (5)
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B. Standard Point Crank-Nicolson (CN) Newton'’s Iterative
Method

The common Crank-Nicolson finite difference formula in
discretizing (6) is:
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This equation is equivalent to
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where Sx=LA—tZ’Sy=L Afz ,szﬁandcyzﬁ. Using the

Re Ax Re Ay Ax Ay
classic Newton’s iteration method, equation (8) can be written
as the root finding problem for the function of g as

gl = (1+8x+Sy
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The Newton’s iteration [10] at each time step, is given by

agi},’j 10
[Bui’f;lw J(Wi,f) ==& (10)
where
W, = p=0,1,2,. (11)

ourthr
L]
discretization of (9). The standard point Crank-Nicolson

Newton’s iterative formula can be shown to be the following
form:

and ( %, ]— Jacobian matrix, evaluated using term by term
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The computational molecule of CN is shown in Fig. 1 (a).

The Newton’s Iterative Algorithm for standard point
Crank-Nicolson (CN) method at each time step is:

1. Do until convergence

compute g function

Do until convergence

N

3

4. solve for w in system Aw=>b
5. End Do

6. WM=wt+i

7. End Do

(a) (b)
Fig. 1 (a) Computational Molecule of (12); (b) Computational
Molecule of (16)

C. Rotated Point Crank-Nicolson (RCN) Newton's Iterative
Method

Using rotated point finite difference approximation for (6),
the difference equation becomes
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where h = Ax = Ay. On simplification, the following equation is
obtained
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where ¢_ ! Afand . _Ar. The function g for the rotated point
Re /* h
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approximation is:
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The RCN Newton’s iterative equation is as below
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The computational molecule of RCN is shown in Fig. 1 (b). Fig.
2 represents the mesh points on solution domain of RCN and
Newton’s iterative method for the case n = 9. We can see that
the evaluations at the points @ involve only the same type of RHS, , :(%Jr%u,ﬁ ;f-/’jwf,u +(Szy+cf f;'{’j W, gl
points; similarly for the points of type O. Thus, the iterations S O s O (19)
can bé generate(.i invol‘ving one type of points only. Fpr the  RHS., :(7‘ 7 ”lkle.',”jw.-ﬁﬁ( P .kfll,":j Wit = 8l
numerical exper}ment in Sectlon I.V, we chose the points Qf ws S (e )y
type @ to be involved in the iterations. After a certain i T\ T T g Y Wi T T T i Wi e T 8
convergence criteria is achieved, the solutions at the points of O RS :( Sx Cx ]W +[ S o u’“'vpj g
will be evaluated directly using (9) and (12). win T\ g e Pl T e e T 8

The Newton’s Iterative Algorithm of rotated point
Crank-Nicolson (RCN) scheme at each time step is as follows:
1. Do until convergence
2. compute g function at the points (@ ) only
3 Do until convergence
4 solve for w in system Aw=b at the points (@) only
5 End Do
6. compute "' =w + 1 at the points (@ ) only
7. End Do
8. compute g function using CN at the points (O)

9. compute w at points (O)
10. compute 1" at points (O)

Fig. 2 Grid point on x-y plane for n=9

D.Explicit Group (EG) Newton’s Iterative Method

To formulate the EG Newton’s iterative scheme for the
Burger’s equation, we apply (12) to any group of four points on
the solution domain in the inner iteration at each time step. This
will result in a (4x4) system of equations as follows

The computational molecule of EG is shown in Fig. 3. The
explicit form of (17) is obtained as

W, b, b, b, b, | RHS,
Wi,j 1 by by b, b RHS‘HJ (20)
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2
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Fig. 3 Computational Molecule of (17)

E. Explicit Decoupled Group (EDG) Newton'’s Iterative
Method

For EDG Newton’s iterative scheme, we apply (17) to any
group of four points on the solution domain in the inner
iteration at each time step. Similarly, this will also result in a
(4x4) system of equation:

o —a, 0 07 w, RHS,,
—a, a, 0 0 w)i+],j+] _ RHS:+1 LJ+l (22)
0 0 a, —da, Wi,j RHSM j
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This system leads to two explicit decoupled systems of 2x2
equations

W, _ 1 {al } RHS,f (25)
Wi+l,j+l a12 —a,d, a, RHSHI Lt
and
Wi, _ 1 |:a1 :| RHS,,, j (26)
Wi j+ al2 _aj a, aq RHS, L+

Fig. 4 shows the computational molecule of equations (25)
and (26). The iterative evaluation of (25) involves points of
type @ only, while (26) involves points of type B only.
Therefore, the implementation of (25) and (26) can be carried
out independently. We can save the execution time if the

iteration over the solution domain is only carried out on either
type of points (@ or M ). Suppose we choose to iterate on
points of type @. The EDG Newton’s iterative scheme
corresponds to iterations on these points using the group
formula (25) until convergence test is satisfied. After a
convergence criterion is achieved, the solutions at the
remaining points of type M are evaluated directly once using the
formulas of CN (9) and (12).

(a) (b)
Fig. 4 (a) Computational Molecule of (25); (b) Computational
Molecule of (26)

III. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity of
the four Newton’s iterative methods. The estimation is based on
the arithmetic operations performed at every iteration. Assume
that the solution domain is discretized with mesh size n, then
the number of internal mesh points is given by m* where m =n
— 1. There are two types of internal mesh points, which are the
iterative and direct points. Iterative points are the points which
are involved in the iteration process, while direct points are the
points that are computed directly once after the iteration
convergence criteria is achieved. Table 1 shows the number of
arithmetic operations required for every iteration of each
method (excluding the convergence test and direct solutions).
To further study the complexity analysis of the explicit group
methods, please refer to [2] —[3].

TABLEI
COMPUTATIONAL COMPLEXITY FOR FOUR NEWTON’S ITERATIVE METHODS
Methods Additional Multiplication
Standard Point CN 9m’ 8 m’
Rotated Point CN 3m’ 3m’
EG 21.75 m? 18 m?
EDG 4m? 325m?

IV. NUMERICAL EXPERIMENTS AND DISCUSSION OF RESULTS

In order to compare the performances of these Newton’s
iterative methods described in Section II, we carried out the
numerical experiments on a PC with Core 2 Duo 2.8 GHz, 2 GB
of RAM with Window XP SP3 operating system using Cygwin
C. The convergence criteria used was the maximum absolute
error test with the error tolerance equal to € =107"°.

We solve the following two-dimensional Burger’s equation

o, fou ou)_ 1[0 Ou 27
ot ox oy) Relax® o
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where p - [O,Q]X[ogz] .The initial and boundary conditions are
defined so that they satisfy the exact solution [11]:

(28)

1
S Wt)= (X, D,t>0
u(x0.t) 1+exp(Re(x+y—t)/2) (7)€ Dyt

Tables II and III in APPENDIX show the numerical results of
all four methods described in Section II when 1/RE = 1.0.
Amongst the point methods, the rotated point scheme (RCN) is
faster than the traditional CN point scheme as the number of
grid points increases due to its lower computational
complexities. It can be observed that the accuracies of EG and
EDG are as good as the CN and RCN respectively, but they
require less execution times to achieve the results. The
computing timing of EG is only 56 — 84 % of CN. The
computing timing of EDG is only 62 — 91 % of RCN. The
results of these four methods when 1/RE = 0.1 are shown in
Tables 4 and 5 in APPENDIX. The EDG scheme is the fastest
method. Figs. 5 and 6 display the execution times of these four
methods when 1/RE=1.0 and 0.1 respectively.

4000
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w
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0 100
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Fig. 5 Execution Times of standard point CN, rotated point CN, EG
and EDG Newton’s iterative methods when t =2, 1/Re = 1, dt=1/1000
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Fig. 6 Execution Times of standard point CN, rotated point CN, EG
and EDG Newton’s iterative methods when t =2, 1/Re = 0.10,
dt=1/1000

The experimental results of these methods with various
number of 1/RE (0.1, 0.01 and 0.005) are shown in Table 6 on
APPENDIX. When 1/RE is decreased, the shock of the solution
is sharper and steeper. Our Newton’s iterative methods are still
accurate and non-oscillatory since the maximum error increases
only at a small part localized to the middle part of the domain
along the line x+y=2.

15

a

Fig. 7 Surface plot of the difference between the numerical results of
EG and exact solutions at t =2, 1/Re = 0.005, At = 0.005, Ax =2/401

V.CONCLUSION

We have presented two explicit group Newton’s iterative
methods derived from the standard point and rotated point
Crank-Nicolson approximations to solve the time-dependent
two dimensional Burger’s equation. It is observed that the
computational cost for EDG is the least compared with the
other three methods. However, when 1/RE is getting smaller, a
finer mesh is preferred, as the maximum error increases when
I/RE decreases. The computation cost increases as the grid
sizes increase. The implementation of parallel technology and
domain decomposition methods will be investigated and
reported soon.

Fig. 8 Surface plot of the difference between the numerical results of
EDG and exact solutions at t =2, 1/Re = 0.005, At =0.005, Ax =2/401

APPENDIX
TABLE II
NUMERICAL RESULTS OF CN AND RCN AT 1/RE=1.0
CN RCN
Space
step Maximum Eror Time Maximum Time
(seconds) Error (seconds)
2/21 0.0000061424 0.406 0.0000246707  0.217
2/41 0.0000016167 2.310 0.0000064729  0.986

2/81 0.0000004153 17.777
2/161 0.0000001163 198.231
2/321 0.0000000958 3104.663

0.0000016577  6.198
0.0000004231  60.783
0.0000001329  1216.607
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TABLE IIT
NUMERICAL RESULTS OF EG AND EDG AT 1/RE=1.0
EG EDG
Space
step Maximum Error Time Maximum Time
(seconds) Error (seconds)
2/21 0.0000061424 0.344 0.0000246707  0.219
2/41 0.0000016167 2.201 0.0000064729  0.900
2/81 0.0000004146 13.906 0.0000016573  5.686
2/161 0.0000001087 133.466 0.0000004216  49.335
2/321 0.0000000549 1760.950 0.0000001247  754.048
TABLE IV
NUMERICAL RESULTS OF CN AND RCN AT 1/RE=0.1
CN RCN
Space
step Maximum Error Time Maximum Time
(seconds) Error (seconds)
2/21 0.005942000 0.407 0.023384424 0.187
2/41 0.001548691 1.735 0.006122375 0.873
2/81 0.000400472 9.246 0.001600764 4.294
2/161 0.000101567 62.936 0.000404833 22.984
2/321 0.000025769 699.855 0.000102175 297.523
TABLEV
NUMERICAL RESULTS OF EG AND EDG AT 1/RE=0.1
EG EDG
Space
step Maximum Error Time Maximum Time
aximu 0 (seconds) Error (seconds)
2/21 0.005942001 0.421 0.023384424 0.188
2/41 0.001548691 1.841 0.006122375 0.842
2/81 0.000400472 9.269 0.001600764 3.642
2/161 0.000101567 52.714 0.000404833 20.858
2/321 0.000025768 479.061 0.000102175 216.505
TABLE VI

MAXIMUM ERROR OF FOUR METHODS WHEN AT = 0.005, AX =2/401,T=2.0

Maximum Error

1/RE
CN EG RCN EDG
0.1 0.000023766  0.000023766  0.000072648  0.000072648
0.01  0.002657666  0.002657666  0.008096495  0.008096405
0.005 0.010284811  0.010284811  0.031722012  0.031722012
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