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A Double Referenced Contrast for Blind Source
Separation

Atman Jbari, Abdellah Adib, and Driss Aboutajdine

Abstract—This paper addresses the problem of blind source sep-
aration (BSS). To recover original signals, from linear instantaneous
mixtures, we propose a new contrast function based on the use of a
double referenced system. Our approach assumes statistical indepen-
dence sources. The reference vectors will be incrusted in the cumulant
to evaluate the independence. The estimation of the separating matrix
will be performed in two steps: whitening observations and joint
diagonalization of a set of referenced cumulant matrices. Computer
simulations are presented to demonstrate the effectiveness of the
suggested approach.

Keywords—Blind source separation, Referenced Cumulant, Con-
trast, Joint Diagonalization.

I. INTRODUCTION

In this paper, we consider the blind source separation
problem [1][2] which relates to separating signals without
information on the signals or the signal mixtures. It finds
numerous applications in diverse fields of engineering and
applied sciences, e.g. seismic and astrophysics exploration
[3], speech processing [5], data communications [4] and
biomedical processing [6]. The data model can be formulated
as follow. A set of M sensors receiving an instantaneous linear
mixture of signals emitted from N ≤ M sources. The vector
x(t) = [x1(t), · · · , xM (t)]T ∈ C

M×1 denotes the output of
sensors at time t which may be corrupted by an independent
additive noise n(t). We have then

x(t) = As(t) + n(t) (1)

where the matrix A ∈ C
M×N is called mixing matrix and

s(t) = [s1(t), · · · , sN (t)]T ∈ C
N×1 the vector of sources.

In this context, the objective is to find an estimate of the
A matrix or, more precisely its inverse B so as to perform
source separation, i.e. to recover the sources s(t) from the
observations x(t). As sources are unobservable, there are
some inherent indeterminacy in their estimation. That is, in
general, we can not identify the order and the power of each
components of the source vector. The separation is considered
achieved when the sources are estimated up to a factor and a
permutation scales. That means the global matrix Q can be
written as

Q = BA = PD

where, Q is a weight matrix, P is a permutation matrix and D
is a non-zero diagonal one. Then, the N ×1 estimation vector
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is given by y(t) = Bx(t).
In the past years, numerous solutions to this problem have
been proposed. The contrast functions used second or higher
order statistics to express the separation criteria depending on
considered source assumptions [1][8][9]. Their optimization
gives an estimation of the separating matrix. For example, the
JADE algorithm [7] exploits different cumulants to measure
the independence as follows

I(y) =
N∑

i,j,�=1

|Cum(yi(t), y∗
i (t), yj(t), y∗

� (t))|2 (2)

In this paper, we will introduce a new separation technique
using a referenced system as shown in the Fig.1. The double
referenced vector will be incrusted in the cumulant to construct
a new separation contrast, for whitened vectors, called Double
Referenced Contrast for Separation DRCS. The optimization
of our proposed contrast corresponds to unitary joint diago-
nalization criterion. The sources are assumed to satisfy the
following three assumptions,

A1. The sources are zero-mean, unit power, statistically
mutually independent;

A2. The sources are stationary at order r: the r-th order
cumulant Cum(si(t), · · · , si(t)︸ ︷︷ ︸

r×

) is an independent

function of t;
A3. The r-th order cumulants of all sources have the

same sign.

Fig. 1. Double referenced separation system.

In the next, we denote by S the set of vectors satisfying
these assumptions. This paper is organized as follows: In the
following section, we present and demonstrate our proposed
contrast and its optimization. Numerical simulations are given
in the Section III, followed by conclusion.
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II. PROPOSED SEPARATION TECHNIQUE

A. Double Referenced Contrast

The contrast is a multivariate function defined on a set Y
of random vectors y which only depends on the probability
density of y and whose global maxima only correspond to
some separation solutions [1]. An important pre-processing
step is the whitening observations, i.e. estimate a matrix W
such that the vector u(t) = Wx(t) has the covariance Ruu =
E[u(t)u(t)T ] equals the identity [7]. The mixing problem will
be unitary by a matrix U = WA, because

Ruu = E[u(t)u(t)T ]
= WAE[s(t)s(t)T ](WA)T

= UE[s(t)s(t)T ]UT

= UUT

= IN

(3)

In consequence, the contrast function operates on whitened
vectors to estimate an unitary matrix H such that B = HW
performs the separation. Let H denotes the set of unitary
matrices, P the set of permutation matrices and D the set of
invertible diagonal matrices. We recall and adopt the following
definition of contrast,
Definition. A contrast on set Y is a multivariate function
J (.) from the set Y to R which satisfies the following three
conditions:

C1. ∀y ∈ Y,∀D ∈ D,J (Dy) = J (y)
C2. ∀y ∈ Y,∀s ∈ S ,J (y) ≤ J (s)
C3. ∀H ∈ H, ∃P ∈ P,∃D ∈ D, J (Hs) = J (s) =⇒

H = DP

According to this definition, the maximization of a contrast
is a sufficient condition for source separation. For reference
separation methods as shown in the Fig.1, we propose, under
whitening constraint, the following contrast function,

Jz,v(y) =
∑N

i,j=1 |Cum(yi(t), y∗
i (t),

zj(t), v∗j (t), · · · , zj(t), v∗j (t)︸ ︷︷ ︸
r−2 terms

)|2 (4)

where the cumulant order r ≥ 4 is pair,
z(t) = [z1(t), · · · , zN (t)]T ∈ C

N×1 and
v(t) = [v1(t), · · · , vN (t)]T ∈ C

N×1 are two reference
vectors.
We note,

Cr
zj ,vj

(yi1 , yi2) � Cum(yi1(t), y
∗
i2

(t),
zj(t), v∗j (t), · · · , zj(t), v∗j (t)︸ ︷︷ ︸

r−2 terms

) (5)

Our proposed contrast can be rewritten as,

Jz,v(y) =
N∑

i,j=1

| Cr
zj ,vj

(yi, yi) |2 (6)

To demonstrate our contrast function, we must validate the
three conditions cited in the definition.
Condition C1. This condition is trivial for whitened vector. In
addition to diagonal structure, the matrix D will be unitary

because the whitened nature of any vector a(t) = Dy(t) that
represents an input of our proposed function. We have,

Jz,v(Dy) =
∑N

i,j=1 | Di,iD
∗
i,iCr

zj ,vj
(yi, yi) |2

= Jz,v(y)
(7)

Condition C2. We consider the following function,

Kz,v(y) =
N∑

i1,i2,j=1

| Cr
zj ,vj

(yi1 , yi2) |2 (8)

By using the relation y(t) = Qs(t) and exploiting the multi-
linearity of cumulant and independence of sources, we can
write

Cr
zj ,vj

(yi1 , yi2) =
N∑

�=1

Qi1,�Q
∗
i2,�Cr

zj ,vj
(s�, s�) (9)

Because Q is an unitary matrix, the Eq.8 can be developed
as,

Kz,v(y) =
∑N

�1,�2=1 | ∑N
i=1 Qi,�1Q

∗
i,�2

|2 ∑N
j=1

Cr
zj ,vj

(s�1 , s�1)Cr
zj ,vj

(s�2 , s�2)
∗

=
∑N

�,j=1 | Cr
zj ,vj

(s�, s�) |2
= Jz,v(s)

(10)

In other part, it is evident that Jz,v(y) ≤ Kz,v(y) and then
the condition C2 is satisfied,

Jz,v(y) ≤ Jz,v(s) (11)

Condition C3. Let Z and V two real and positive matrices
used for reference system such as,

z(t) = Zu(t);v(t) = Vu(t) (12)

By using the Eq.9 with i1 = i2, the equality of Eq.11 can be
expressed as,∑N

�1,�2=1(
∑N

i=1 | Qi,�1Q
∗
i,�2

|2 −δ�1,�2)(
∑N

j=1 Tj,�1T
∗
j,�2

| Uj,�1Uj,�2
|r−2)Cr

s�1 ,s�1
(s�1 , s�1)Cr

s�2 ,s�2
(s�2 , s�2)

∗ = 0
(13)

where δ�1,�2 denotes the Kronecker symbol, and the matrix T
is defined by

Tj,� =

{
| Zj,�Vj,� |2p; r = 4p + 2,

Zj,�V
∗
j,� | Zj,�Vj,� |2p−2; r = 4p.

(14)

The cumulant Cr
s�,s�

(s�, s�) are reals because r is pair. In
addition, if the r-th cumulant order of sources takes the same
sign, their product two by two is positif. The referenced term in
Eq.14 is also positif. Then, the validity of Eq.13 is conditioned
by

N∑
i=1

| Qi,�1Q
∗
i,�2 |2 −δ�1,�2 = 0 (15)

That means the global matrix Q must be diagonal with
possible permutation such as Q = DP.
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B. Joint diagonalization criterion
The objective of the joint diagonalization criterion (JDC)

is to estimate an unitary matrix H to reduce the global
contribution of inter-terms (off-diagonal) relatively to auto-
terms (diagonal) for a set M of N matrices [7]. It can be
expressed as

D(H, M) =
N∑

i=1

| diag(HM(i)HT ) |2 (16)

Its application is important in the blind source separation
context, where inter-terms correspond to cross-cumulants and
auto-terms correspond to auto-cumulants. The maximization of
independence is relied to the maximization of auto-cumulants
relatively to cross-cumulants.
To express our contrast function Eq.6 as JDC, let M

r
u,z,v a set

of N matrices Mr
u,zj ,vj

; j = 1, · · · , N .

[Mr
u,zj ,vj

]i1,i2(j) = Cr
zj ,vj

(ui1 , ui2) (17)

For any unitary matrix H such that y(t) = Hu(t), we have

Cr
zj ,vj

(yi, yi) =
N∑

�1,�2=1

hi,�1h
∗
i,�2Cr

zj ,vj
(u�1 , u�2) (18)

The contrast function can be developed as

Jz,v(y) =
∑N

i,j=1 | Cr
zj ,vj

(yi, yi) |2
=

∑N
i,j=1[

∑N
�1,�2=1 hi,�1h

∗
i,�2

Cr
zj ,vj

(u�1 , u�2)]
2

=
∑N

j=1(
∑N

i=1([HMr
u,zj ,vj

HT ]i,i)2)
=

∑N
j=1 | diag(HMr

u,zj ,vj
HT ) |2

= D(H, Mr
u,z,v)

(19)
The Eq.19 demonstrates that our proposed contrast can be
formulated as joint diagonalization criterion. Then, the matrix
H can be performed by maximization of the JDC of N
referenced cumulant matrices. Finally, the separating matrix
will be estimated as

B = HW (20)

We apply the joint diagonalization technique proposed in [7].

III. COMPUTER SIMULATIONS
A. Choice of reference

We will choice the reference vectors z(t) and v(t) to de-
noise the cumulant matrices. Each observation xi(t) represents
the linear mixture x0

i (t) perturbed by noise samples ni(t). We
have

xi(t) = mi(t) + ni(t); i = 1, · · · ,M (21)

So, the element of cumulant matrix can be decomposed as,

Cr
zj ,vj

(xi1 , xi2) = Cr
zj ,vj

(x0
i1

, x0
i2

) + Cr
zj ,vj

(x0
i1

, ni2)
+Cr

zj ,vj
(ni1 , x

0
i2

) + Cr
zj ,vj

(ni1 , ni2)
(22)

Based on independence between sources and noises, we can
write

Cr
zj ,vj

(xi1 , xi2) = Cr
zj ,vj

(x0
i1 , x

0
i2) + Cr

zj ,vj
(ni1 , ni2) (23)

The first term corresponds to de-noised observations when
the second represents the contribution of noises that can

be cancelled for cross-cumulant because the independence
between noise components. Then, to opposite the presence of
noises we can choice

zj(t) = xj1(t), vj(t) = xj2(t); j2 �= j1 (24)

The first term of Eq.23 can be developed as,

Cr
zj ,vj

(x0
i1

, x0
i2

) = Cr
x0

j1
,x0

j2
(x0

i1
, x0

i2
) + Cr

x0
j1

,nj2
(x0

i1
, x0

i2
)

+Cr
nj1 ,x0

j2
(x0

i1
, x0

i2
) + Cr

nj1 ,nj2
(x0

i1
, x0

i2
)

= Cr
x0

j1
,x0

j2
(x0

i1
, x0

i2
)

(25)
The second term of Eq.23 can be developed as,

Cr
zj ,vj

(ni1 , ni2) = Cr
x0

j1
,x0

j2
(ni1 , ni2) + Cr

x0
j1

,nj2
(ni1 , ni2)

+Cr
nj1 ,x0

j2
(ni1 , ni2 + Cr

nj1 ,nj2
(ni1 , ni2)

= 0
(26)

In consequence, the referenced cumulant takes the following
expression

Cr
zj ,vj

(xi1 , xi2) = Cr
x0

j1
,x0

j2
(x0

i1 , x
0
i2) (27)

The Eq.27 demonstrates that the choice of reference, corre-
sponding to Eq.24, performs the de-noised cumulant for any
distribution of noise.

B. Simulation Results

Computer simulations are conducted to illustrate the per-
formance of the proposed technique. The source signals are
three linear chirps taken respectively in the frequency ranges
[10Hz, 300 Hz], [50 Hz, 350 Hz] and [50Hz, 400 Hz]. The
mixture is obtained by a matrix randomly generated. To study
the robustness of our DRCS algorithm, with respect to the
noise effect, we corrupt the observed signals by an additive
non-gaussian noise. The following index [10], applied on
global matrix Q = BA, measures the separation quality

PI = 1
2(N−1)

[∑N
ı=1

( ∑ N
j=1|Qıj|2

maxκ|Qıκ|2 − 1
)

+
∑N

j=1

( ∑ N
ı=1|Qıj|2

maxκ|Qκj|2 − 1
)] (28)

For separation, The referenced vectors can be chosen, in
general, as linear combination of components of whitened
vector u(t). Each referenced matrix, to be diagonalized, has
N auto-terms and N(N − 1) inter-terms. The auto-terms
correspond to Cr

zj ,vj
(yi, yi) and the inter-terms correspond to

Cr
zj ,vj

(yi1 , yi2); i1 �= i2. In the first way, we will enrich the
auto-terms and the components are taken identical

z(t) = u(t);v(t) = u(t); (29)

In the second way, we will reduce the inter-terms by creating
the diversity between components such as

zj(t) = uj1(t), vj(t) = uj2(t); j2 �= j1 (30)

The equation Eq.30 corresponds also to the condition Eq.24
of minimization of noise effect. Because the most quantity of
the inter-terms than the auto-terms, the second way will be
more efficient than the proposed one. The Fig. 2 shows the
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comparison, over the PI index, for the separation performance
of three algorithms :

• DRCS-1: The reference vectors correspond to Eq.29
• DRCS-2: The reference vectors correspond

to Eq.30: z(t) = [u1(t), u2(t), u3(t)]T and
v(t) = [u2(t), u3(t), u1(t)]T .

• JADE algorithm [7].
The performance index PI versus SNR is evaluated over 100
Monte-Carlo runs.
The simulation results confirm the advantage of the choice
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Fig. 2. Performance comparison of the DRCS-1 , DRCS-2 and JADE
algorithm.

of different reference components. The DRCS-2 performs
the separation better than DRCS-1 for all values of SNR,
and JADE for SNR ∈ [0dB, 20dB]. This the important
contribution and advantage of DRCS-2 in noisy-environment.
For high values of SNR (≥ 20dB), the JADE algorithm can
improve the separation quality. The reason is the exploitation
of maximum information delivered by N2 cumulant matrices
in contrast to our approach DRCS that requires only N ones.

IV. CONCLUSIONS

In this paper, we have proposed a new separation contrast
for independence sources. Our contrast works in the case of
instantaneous linear mixture and exploits double referenced
system. After observations whitening step, the optimization
of the proposed contrast is executed by a well known joint-
diagonalization procedure. The use of a different double ref-
erence vectors gives a large choice liberty. The performances
illustrated by simulation results demonstrated the effectiveness
of our contrast with a few number of matrices that other
algorithms.
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