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Abstract—This work is focused on the steady boundary layer flow 

near the forward stagnation point of plane and axisymmetric bodies 
towards a stretching sheet.  The no slip condition on the solid 
boundary is replaced by the partial slip condition. The analytical 
solutions for the velocity distributions are obtained for the various 
values of the ratio of free stream velocity and stretching velocity, slip 
parameter, the suction and injection velocity parameter, magnetic 
parameter and dimensionality index parameter in the series forms with 
the help of homotopy analysis method (HAM). Convergence of the 
series is explicitly discussed. Results show that the flow and the skin 
friction coefficient depend heavily on the velocity slip factor. In 
addition, the effects of all the parameters mentioned above were more 
pronounced for plane flows than for axisymmetric flows. 
 

Keywords—slip flow, axisymmetric flow, homotopy analysis 
method, stagnation-point. 

I. INTRODUCTION 
TAGNATION flow, describing the fluid motion near the 
stagnation region, exists on all solid bodies moving in a 

fluid. There have been considerable interests in investigating 
plane and axisymmetric flow near a stagnation point on a 
surface. Hiemenz[1] was the first to discover that the 
stag-nation point flow can be analyzed exactly by the 
Navier-Stokes equations and he reported two-dimensional 
plane flow velocity distribution. Later, Chiam[2] investigated 
two dimensional normal and oblique stagnation-point flow of 
an incompressible viscous fluid towards a stretching surface 
while Mahapatra and Gupta[3] studied the heat transfer of 
normal stagnation flow to a stretching sheet. Recently Anu-ar 
Ishak et al[4] investigated mixed convection flow near a 
stagnation point on a vertical surface.  

In all the above mentioned studies no attention has been 
given to the effects of partial slip on the flow. The no-slip 
boundary condition is known as the central tenets of the 
Navier–Stokes theory. However, there are situations wherein 
such condition is not appropriate. Partial velocity slip may 
occur on the stretching boundary when the fluid is particulate 
such as emulsions, suspensions, foams and polymer 
solutions[5]. Effects of slip conditions are very important for 
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some fluids which exhibit wall slip. Fluids exhibiting slip are 
important in technological applications such as in the polishing 
of artificial heart valves and internal cavities. Therefore better 
understanding of the phenomenon of slip is necessary. 
Mooney[6] initiated the study of boundary layer flow with 
partial slip, many researchers[7-8] had confirmed the 
phenomenon of wall-slip fluid. Hayat and Masood[9] examined 
the effect of the slip boundary condition on the flow of fluids in 
a channel. The non-Newtonian flows with wall slip have been 
studied numerically in Refs[10-12].  

The stagnation slip flow on a fixed plate and on a moving 
one was considered by wang[13-14]. The present paper extends 
the results of previous authors by considering the effect of 
velocity slip. The method we employed here is based on the 
homotopy analytical method(HAM[15]) of solving non-linear 
equations which has already been applied to some other 
problems[16-18]. 

  

II. MATHEMATICAL FORMULATION 
Consider the steady, two-dimensional flow of a laminar, 

viscous and incompressible, electrically conducting fluid near 
the stagnation point of a flat sheet coinciding with the plane y = 
0, the flow being confined to y > 0.  x and y are the Cartesian 
coordinates with the origin at the stagnation point along and 
normal to the plate, respectively.  A uniform magnetic field is 
applied in the y-direction causing a flow resistive force in the 
x-direction. The magnetic Reynolds number is assumed to be 
small, so that the induced magnetic field will be neglected. 
Under these conditions and taking into account the boundary 
layer approximation, the system of continuity and momentum 
can be written as: 
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( ,0) wv x v= − , ( , ) eu x u ax∞ = = .                (5) 
Where k is the index, with k=1, Eqs.(1-5) is axially 

symmetric stagnation-point flow, while with k=0,  it is the plane 
flow. x-axis is the tangential direction and x is interpreted as the 
radial direction for axisymmetric flow situations. u and v are 
the velocity components along the x-axes and y-axes, 
respectively. ρ  is the density, ν is the kinematic viscosity, 
σ is the fluid electrical conductivity, 0B is the magnetic 
induction. 0λ  is the mean free path and vσ  is the tangential 
momentum accommodation coefficient. 

Near the sheet, the stream function for the viscid flow far 
from the sheet is  

1

( , ) ( )
1

kxx y F y
k

ψ
+

=
+

. 

The velocity components are then 

 1 1( ), ( )
1k k

xu F y v F y
x y k x x

ψ ψ∂ ∂′= = = − = −
∂ + ∂

.      (6). 

Substituting (6) into Eq.(2), the x-momentum equation then 
gives 
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Partial integration of (7) yields 

0
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Where 0P is the stagnation pressure. When (8) are inserted in the 
y-momentum equation,  we obtain  

2 2
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This equation cannot be true for arbitrary x and y   unless  
2 2

0
2
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where H is a constant. When (10) is evaluated as y → ∞ with 
the assumption that ( ) ( ) 0F F′′ ′′′∞ = ∞ = along with 

( ) ( 1)F k a′ ∞ = + , we find that 2H a= − . 
Further, introducing the following dimensionless quantities 

and transformations 
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When (11) are inserted in Eq. (10) , we obtain 
2 2( ) ( ) 0f ff n f nd nM f d′′′ ′′ ′ ′+ − + − − = .         (12) 

The boundary conditions (4-5) may be expressed in 
dimensionless form as 

  (0)f R= , (0) 1 (0)f fλ′ ′′= + , ( )f d′ ∞ = .       (13) 
Where the local Knudsen number xKn , the local Reynolds 
number Rex , velocity slip parameter λ , the Hartmann 
number M , the suction/injection velocity parameter R , 

velocity ratio parameter d and the dimensionality index n  
are defined respectively, as: 
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Important physical parameter for this flow is the skin friction 
coefficient. It is defined as follows: 

2 1 (0)
Ref

x

k fC
′′+

= .    

III. HAM SOLUTION FOR ( )f η  

A. Zeroth-order deformation equations 
Under the first rule of solution expression, the initial guess 

approximation for HAM solution is 

0
(1 )( )

1 2
d ef R d

ηηη η
λ

−−
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and the auxiliary linear operator is 
( )fL f f f′′′ ′′= + . 

The operator in above equation satisfies 
1 2 3[ ] 0fL C C C e ηη −+ + = , 

in which , 1,2,3,4,5iC i = are arbitrary constants. 
The zeroth order deformation problem is 
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In above equations [0,1]q ∈ is the embedding parameter, fh is 
auxiliary non-zero parameter. Due to Taylor's theorem, one can 
write  
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B. High-order deformation equations 
Differentiating the zeroth order deformation (15-16) k times 

with respect to q and then dividing by k! ,and finally setting q 
=0. We get the following Kth-order deformation equation  
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C. Recursive formulae 
We have the solution of problem as  
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Substituting (20) into (18-19),   the recurrence formulae for the 
coefficients ,

i
m ka  of ( )mf η  are obtained for 1m ≥ : 
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and the coefficients ,
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Using the above recurrence formulae, we can calculate all 
coefficients ,

i
m ka  by using only the first three  

0 1 1
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given by the initial approximation (14). Therefore, the following 
explicit, totally analytic solutions of the present flow is 
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IV. RESULTS AND DISCUSSION 
The convergence and rate of approximation for the HAM 

solution strongly depend on the values of auxiliary 
parameter fh . To see the admissible values of fh , h-curve is 
plotted in Fig.1. Fig.1 clearly elucidates that the range for the 
admissible values is 0.5 0.1fh− ≤ ≤ − . It is founded that our 

analytic approximations for 0.35fh = − agree well with the 
results of wang[13], as shown in Table.1. 

Figs 2-4 present representative profiles for the tangential 
velocity ( )f η′ and shear stress profile ( )f η′′ of both plane and 
axisymmetric flows for various slip factor λ and velocity radio 
parameter d , respectively. Fig.2 shows that the flow has a 
boundary layer when 1d > . Further the thickness of the 
boundary layer decreases with increase in 1d > . On the other 
hand an inverted boundary layer is formed when 1d < . Slip 
velocity has the tendency to warm up and slow down the 
movement of the fluid. This effect is depicted in Figs. 3-4. The 
effect of λ  both on the tangential velocity and the shear 
stresses depends on d. For d > 1, increasing λ  increases 

( )f η′ and decreases ( )f η′′ , while for d < 1 increasing λ  
decreases ( )f η′ and increases ( )f η′′ . When λ → ∞  (full slip) 
the solution is the potential flow ( )f d Rη η= + . These features 
are more pronounced for plane flows. 

TABLE I  COMPARISON OF WANG[13] OF WITH THE HAM SOLUTION FOR R = 0.0, 
M = 0.0, D = 0.0, N =1.0 

λ  WANG[13] HAM 
0.1 -1.000 -1.00026 
0.3 -0.701 -0.70776 
1.0 -0.430 -0.44031 
2.0 -0.284 -0.28690 
5.0 -0.145 -0.15111 
20.0 -0.0438 -0.04678 
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Fig. 1 The fh curve for (0)f ′′  when 0.1, 0.5, 0.0, 0.0d M Rλ = = = = . 
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Fig. 2 Velocity profiles ( )f η′  for different values of R  and M = 1.0, 

0.5λ = . 
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Fig. 3 Velocity profiles ( )f η′ for different values of λ and M = 0.5, 

R = 0.0, d = 0.5.  
 
In Fig. 2 and Figs. 5-6 , the influence of suction (R<0) and 

injection(R>0) are illustrated on the velocity profiles 
( ), ( )f fη η′ and shear stress profile ( )f η′′ , respectively. The 

variations of ( )f η′  and ( )f η′′  with 0.5λ = and M =1.0 are 
shown in Fig.2 and Fig.5 , respectively. it is seen that the effects 
of  parameters R on the velocity ( )f η′ and shear stress 

( )f η′′ are similar to those of the slip parameter. The variation of 
( )f η with 0.5λ = , d=0.5 and M = 1.0 is shown in Fig.6. It is 

noted that the variation of ( )f η  increases with increasing of 
parameter R for the each fixed valued of parameter η . 

0 0.5 1 1.5 2 2.5 3 3.5 4

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

η

f''
( η

)

 

 

n=0.5,λ=0.0
n=1.0,λ=0.0
n=0.5,λ=1.0
n=1.0,λ=1.0

 
Fig. 4 Effects of λ on ( )f η′′  at  M = 0.5,R = 0.0, d = 0.5.  
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Fig. 5 Effects of R on ( )f η′′  at M = 1.0, 0.5λ = , d=1.5, n=0.5. 
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Fig. 6 Variation of ( )f η with R  for M = 1.0, 0.5λ = , d=0.5. 

 
Finally, we compute the dimensionless shear stress at the 

wall for the various parameters involved in the problem . Effect 
of slip parameter λ on (0)f ′′ depends on d as shown in Fig.7. It 
can be seen that when 1d < , the wall shear (0)f ′′  increase with 
increase in λ . But when 1d > , (0)f ′′  decreases with increase 
in λ . Fig.8 shows that the magnitude of (0)f ′′  increases with 
increasing in d which is consistent with the fact that there is 
progressive thinning of the boundary layer with increase in d . 
Application of a magnetic field has the tendency to warm up 
and slow down the movement of the fluid. This effect is 
depicted by the increases in the values of (0)f ′′ , as shown in 
Table 2 and Fig. 9.  
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Fig. 9 Effects of M on (0)f ′′  at 0.0, 0.5R λ= =  

V. CONCLUSIONS 
The present paper studies the plane and axisymmetric 

stagnation flows towards a stretching sheet with the slip 
boundary conditions. Exact similarity solutions are obtained for 
momentum equations. The resulting equation system is then 
solved analytically by using HAM. The obtained results were 
presented graphically to elucidate interesting features of the 
solutions. A boundary layer is formed when the stretching 
velocity is less than the free stream velocity and an inverted 
boundary layer is formed when the stretching velocity exceeds 
the free stream velocity. The flow due to the lateral motion of 
the plate depends heavily on the velocity slip factor, both on the 
flow field and the shear stresses through the stagnation flow.  

Shear stress at the surface (0)f ′′ increases with increase in 
d .Also, effect of increasing values of λ  is to decrease the 
variation of (0)f ′′  and the surface Shear stress (0)f ′′  is close 

to 0 with λ → ∞ . The variation of (0)f ′′  increases with 
increasing of parameter M. The effects of all the parameters 
mentioned above were more pronounced for plane flows than 
for axisymmetric flows. It is hoped that the results obtained in 
this paper be of use for understanding of more complicated 
problems involving stagnation-point slip flows. 
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