
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2462

Complexity of Component-based Development of
Embedded Systems

M. Zheng, and V. S. Alagar

Abstract— The paper discusses complexity of component-based
development (CBD) of embedded systems. Although CBD has its
merits, it must be augmented with methods to control the complexities
that arise due to resource constraints, timeliness, and run-time de-
ployment of components in embedded system development. Software
component specification, system-level testing, and run-time reliability
measurement are some ways to control the complexity.

Keywords— Components, embedded systems, complexity, soft-
ware development, traffic controller system.

I. INTRODUCTION

COMPLEXITY hinders the correct development of soft-
ware. Some complexity is inherent in the application

domain, while additional complexity gets injected by the
methods and languages used to implement the system. In this
paper we investigate complexities that arise in the development
process of embedded systems and suggest some solutions to
control it. As a running example we discuss an autonomous
traffic controller (ATC) system.

Traffi c control systems are safety-critical real-time reactive
systems, characterized by continuous interaction with their
environment through stimulus-response behavior. Processes
in the system are responsible for synchronization with their
environment. The reactive behavior refers to two types of
synchronization in the system:

� (stimulus synchronization): a process reacts to every
stimulus from the environment, and

� (response synchronization): the system responds in a
timely fashion so that the environment can make use of
the response.

Factors contributing to the complexity of such embedded
systems are resource constraints, safety-criticality, concur-
rency, and the time-dependent functionality required of the
artifacts they control. The complexity of system requirements
permeates into several stages of development, and may lead
to faulty designs and unpredictable failures. This type of
complexity should be resolved at early stages. As remarked
by Burbeck [6], “once complexity has gotten out of control,
it takes control”.

In an earlier paper [2] we viewed the complexity of real-time
reactive system in fi ve dimensions: representational, architec-
tural, internal, functional, and computational. We may regard
the computational complexity to include the complexity arising
from resource limitations and the architectural complexity

Department of Computer Science, University of Wisconsin-LaCrosse La
Crosse, WI, 54601, USA. Email:

�
zheng.mao@uwlax.edu �

Department of Computer Science, Concordia University, Montreal, Quebec
H3G 1M8, Canada. E-mail:

�
alagar@cse.concordia.ca,vasualagar@ios.ac.cn �

to include complexity arising from adaptation requirements.
Representational complexity considers the trade offs between
different choices in the notation for an unambiguous repre-
sentations of system model, system interaction, and system
behavior. Cognitive complexity is part of representational com-
plexity, which in turn is related to the mode of human-system
interaction in different levels of abstractions. Architectural
complexity is viewed in terms of how the software compo-
nents interact through message passing mechanism, without
considering the individual complexity of the components.
Internal complexity is the complexity of individual software
component. The functional complexity characterizes the dy-
namic performance of the system. Computational complexity
quantifi es the time and resources required to complete the
process and is covered by the study of scheduling, resource
allocation, and algorithmic effi ciency.

In the requirements analysis and specifi cation phase, the
focus is on containing the representational complexity of
graphical and formal presentations for capturing and con-
veying information on environmental and system objects.
Architectural and internal complexities in embedded systems
originate in the problem domain in the form of functional
requirements and stimulus-to-response timing constraints and
characterize the design product. The architectural complexity
of the design results from the interactions among compo-
nents, which may be distributed and interact through message
sequences described in the architectural specifi cation of the
system. The internal complexity of its objects originates from
their internal behavior. In the verifi cation and validation phases
the computational complexity of the process algorithms is
considered. The complexity in testing phase is a function
of the architectural complexity related to the testability of
the software components, and the computational complexity
of testing process algorithms. The functional complexity is
defi ned as the amount of work performed by an application in
a predefi ned time slice.

In the following sections we discuss methods to augment
CBD in order to control the complexity in embedded system
development.

II. TRAFFIC CONTROLLER PROBLEM - CASE STUDY

We consider an autonomous traffi c control system as one
which adapts itself to the traffi c patterns and regulates the
traffi c in a safe manner. The traffi c controller model developed
in [3] assumes that at the proximity of the intersection, each
road is divided into six lanes; there are three lanes for incoming
traffi c in each of the northbound, southbound, eastbound, and

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2463

westbound directions. In every direction, vehicles in the right
lane turn right, vehicles in the middle lane go straight, and
vehicles in the left lane turn left. Vehicles approaching in a
lane enter the crossing on a fi rst-in-fi rst-out basis. Vehicles
cross the intersection in a fi nite amount of time; no vehicle
stops in the intersection. Incoming vehicles in the four right
lanes are allowed inside the crossing independent of any other
lane; they are collision-free. However, traffi c lights regulate
all lanes. Incoming vehicles in the middle and left lanes need
to wait until they are granted permission to enter the crossing.
Vehicles in at most two middle or left lanes can be granted
access simultaneously, only if the two lanes are collision-free.
When an approaching vehicle is detected in a middle or a left
lane � � �

, the controller for that lane requests for access rights
to the crossing from the arbiter. If the intersection is empty, or
only right lane vehicles are inside, then vehicles in lane � � �
gain access immediately. If the intersection is already opened
to one middle or left lane � � �

, then vehicles in lane � � �
gain

access only if lanes � � �
and � � �

are collision-free. If the
intersection is already opened to two middle or left lanes � � �
and � � �

, then vehicles in lane � � �
need to wait until one of

the lanes relinquishes access rights to the crossing. If lane � � �
returns access rights, then lane � � �

must be compatible with
lane � � �

in order to be granted access. Otherwise, vehicles in
lane � � �

must wait for lane � � �
to give up its access rights.

When a lane requests for access rights, the lane queues up for
allocation. Access is granted to lanes in the order in which
they request for permission, subject to collision-free property.
That is, a vehicle � �

that arrives at the intersection later than
another vehicle � �

may be given access to the intersection
if the vehicle � �

satisfi es the collision-free property, whereas
the vehicle � �

has failed to satisfy the property. When a lane
obtains access rights, it must surrender these rights within a
certain time interval.

This problem has the following complexity characteristics:

1) The environment that the system is to monitor and
control is complex, in the sense that no precise model
of it exists. An approximation would be to consider
probability distribution for the arrival pattern of vehicles
at the intersection. In reality traffi c is sporadic, heavy in
certain directions during certain periods of time. As such
a general probabilistic model cannot be given.

2) The number of vehicles that compete to cross the inter-
section during a given interval of time cannot be clearly
comprehended. The number of traffi c patterns grows
exponentially and hence no effi cient (optimal) algorithm
to regulate them with minimal delay can possibly exist.

3) The traffi c pattern is non-linear and evolves over time.
Hence, the topology of the system and the interaction of
system components are subject to change. This adaptive
complexity impacts on the architecture of the system,
thus raising the level of architectural complexity.

4) The resources that are necessary for the proper func-
tioning of the controller must be adequately suffi cient
to handle the internal book keeping and system compu-
tations. Resource complexity arises because of the need
to monitor and regulate the dynamically changing traffi c

pattern.
5) Functional and computational complexities affect the

performance of the system, in particular both liveness
and safety. The system has the liveness property if no
vehicle waits indefi nitely at the intersection before being
allowed by the controller to cross the intersection. The
system has the safety property if no two vehicles collide
while crossing the intersection.

III. SOLUTIONS FOR CONTROLLING COMPLEXITY

In the last few years CBD has received much attention
from software developers. From the theory side, component
models and their representations have emerged [1], [9].
From the practical side, necessary technologies have emerged
for supporting CBD of large systems. However, CBD for
embedded real-time systems differs from general CBD for
traditional applications: the components required for an em-
bedded system are loaded at run-time and bindings between
them are created by a middleware. Thus it is most crucial
to deal with adaptation complexity and resource complexity.
Yet CBD has the potential to control the complexity arising
in embedded software development provided techniques for
controlling the complexity is added to the basics of component
technology.

Component models developed by Sun Microsystems are
JavaBeans1 and Enterprise Javabeans2, and the model devel-
oped by Microsoft Corporation is COM3. These component
models differ in many technical details, while sharing some
important properties:

� Components are reusable, replaceable parts of a system.
� Special components, called commercial-off-the-shelf

(COTS) can be bought and fi tted with other components
developed in-house. This further increases the complexity
of system analysis.

� Components may be distributed over several computers.
� The interfaces to a component indicate the services

required and provided by it. Such services may affect
the internal state of the component.

 A. Defining Components

Representational and cognitive complexities can be met by
choosing a good notation to describe components. Visual rep-
resentations help to understand the non-linearity in component
interactions. Formal textual notations must accompany visual
notation.

A component type � � � 	
 � � defi nes a black-box view,
called frame 	 , and a grey-box view, called architecture

� . The type � may include more than one grey-box view.
The black-box defi nes the interface types, and the particular
grey-box view � as a structured implemented version of

	 . An interface of a component is an instance of either
notifies-interface type or receives-interface type. The archi-
tecture is primitive if its structuring is to be provided in an

1http:

 www.javasoft.com/beans/
2http:

 www.sun.com./products/ejb/
3http:

 www.microsoft.com/com

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2464

underlying implementation (outside the scope of component
specifi cation language). A non-primitive architecture includes
several subcomponents nested to several levels. A specifi c
implementation of a non-primitive structure is obtained by (i)
instantiating adjacent level subcomponents, and (ii) specifying
the interconnection between subcomponents by means of their
interface ties. The four kinds of ties between the interfaces of
two component instances � and � are as follows:

� binding(
� � � �

� � � �) of a receives-interface to a notifi es-
interface between two components at the same level of
nesting (assume that all components are subcomponents
of the system),

� delegating (
� � 	

� � �) from a receives-interface of a compo-
nent � to a receives-interface of a subcomponent � of

� on the adjacent level,
� subsuming (� �

�
�� � � �) from a notifi es-interface of a compo-

nent � to a notifi es-interface of a component � , where
� is a subcomponent of � on its adjacent level, and

� exempting (
�
 � �

� � � �) an interface of a component from
participating in the architectural connection.

Following the above conventions we can describe the architec-
ture of an component-based embedded system. We encapsulate
each constituent in the system as a component and describe
their bindings. For example, in the case of the traffi c-controller
system, the component ControllerL models the system that
controls the traffi c in the left lane, component ControllerR
models the system that controls the traffi c in the right lane,
and ControllerM models the system that controls the traffi c
in the middle lane. Vehicles and traffi c lights within a lane are
monitored and regulated by the controller for that lane. Thus,
the environment for a controller, say ControllerL, is the com-
ponent EnviornmentL composed from Vehicle components,
and Light components in the left lane. Since, the number of
vehicles in a lane dynamically changes, the environment com-
ponents EnviornmentL, EnviornmentM, and EnviornmentR
model dynamically changing subsystems. The environment of
the Arbiter component is the component composed from the
three environment components. We may assume that a main
component called TrafficSystem exists which interacts with
Arbiter component for providing system-level resources and
computing facility.

A visual model bridges the communication gap between
the different software development teams. Borrowing UML
notation we show the component hierarchy for left/middle
lanes in Figure 1. The fi gure is only a partial view of the
ATC system. In the fi gure we use the notation � � � � � � � � � � � � to
combine the notifies-interface type or receives-interface type.
An event decorated with � is an input event, and hence is
received by a component at its receives-interface. An event
decorated with � is an output event, and hence occurs at the
notifies-interface of a component.

 B. Specifying Components -External View

Visual diagrams are to be accompanied by formal descrip-
tions. A formally described visual model helps to precisely
interpret the details shown in the picture during subsequent
development stages. The description includes the external and

ControllerR

<<DataType>> inQueue : Queue[@PL, PLQueue]

<<GRC>>

Light
<<GRC>>

@QL

events : set = {TurnOn! , TurnOff! }

<<PortType>>

Vehicle

<<PortType>> act : @P

<<GRC>>

@PL

events : set = {Near? , GoAhead! }

<<PortType>>

@C

events : set = {TurnOn? , TurnOff? }

<<PortType>>
@P

events : set = {Near! , GoAhead? }

<<PortType>>

@S

events : set = {TurnOn! ,TurnOff! }

<<PortType>>
@T

events : set = {Near? , GoAhead! }

<<PortType>>

ControllerML

<<DataType>> inQueue : Queue[@T,TQueue]

<<GRC>>

@M

events : set = {Req! , Grant? , Ret! }

<<PortType>>

@N

events : set = {Req? , Ret? , Grant! }

<<PortType>>

Arbiter

<<DataType>> rQueue : Queue[@N,NQueue]
<<PortType>> hold1 : @N = NULLPORT
<<PortType>> hold2 : @N = NULLPORT
<<DataType>> validity : PortIDToNat[PToN]

<<GRC>>

 Fig. 1 Class Diagram for Road Traffi c Control System

internal properties of the component described. We briefly
explain the specifi cation approach that describes the external
view of components. Such a precise description reduces the
effect of architecture complexity.

A component is specifi ed both as a black-box and a gray-
box. The black-box specifi cation gives the specifi cations of the
component interfaces. The gray-box view gives the interaction
between a component and its immediate sub-components.
Notice that, the sub-components of a sub-component do not
enter into the gray-box specifi cation of a component. For a
primitive component, namely the component that does not
have a sub-component, only black-box specifi cation is given.
As an example, a Vehicle component is primitive.

a) Vehicle Interfaces: There are two interface types:

Interface Specification Description
interface vehnotML � The vehicle notifies
void Approaching(out string vid) � the controller.
interface � VehrecML � The vehicle receives
void GetToken(in string did) � � the go ahead to cross.

b) Autonomous Traffic System ATS: It is composed of
the structures TrafficSystem(TC) and Arbiter � � . The notifies-
interface of an instance of one component is linked to the
receives-interface of an instance of the other component. It is
a closed system and hence has no external interface.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2465

Frame Traffi c System ATS � architecture Traffi c System ATS �
� ; inst Traffi cSystem � � ,

Arbiter � � ;
bind � � � � � � � � to

� � � � � � � � ,
� � � � � � � � to

� � � � � � � � ;
� ;

The architecture protocol of a visual structure is a behavior
protocol that describes the gray-box behavior of the structure.
Recall that the gray-box behavior is based only on the direct
subcomponents in the structure. It describes the interplay
between the components as a trace on the invocations of the
methods in their interface specifi cations. The acceptable order
of method invocations on an interface defi nes the protocol
of that interface. There is only one method at the interface
specifi cation given above. Hence the protocol at each inter-
face is the method invocation. Frame protocol specifi es the
acceptable interplay of methods at the interfaces in the frame.
Component specifi cation help the developer reuse components.
Without such a specifi cation reuse efforts will not fully benefi t
the CBD process.

 C. Specifying Behavior - internal

A component’s behavior must be specifi ed as an Extended
State Machine(ESM). Such a description is fundamental to
analyzing the system and develop an implementation. The state
transitions in an ESM are specifi ed in guard-action notation.
The guard typically includes time constraints for the action
implied by it. The action may be given declaratively as well as
augmented with Java code for automatic code generation, and
generating test oracles. COTS are usually delivered without a
source code. In order to integrate them with other components
both a black-box specifi cation (interfaces) and its behavior
specifi cation (internal) should be provided.

A middleware is necessary for implementing a component-
based system. The middleware Enterprise JavaBeans4 defi nes
a component architecture for building distributed, object-
oriented applications. Since a complete specifi cation of the
middleware is hard to obtain, a subset of the features such
as resource pooling, and remote invocation, may be modeled
as an ESM. The full behavior of the system is the combined
behavior of the ESMs of the components and the ESM of the
middleware.

Let us consider an application A and a system S that
solves A. The system � can be constructed as a collection
of components � �

� � � � � � � 	 that interact among themselves
in solving the problem � . Each component’s state of � is
described by the set of static attributes and their current values.
Since a component’s total behavior is the cumulative effects
of its state changes (internal behavior) and message passing
(request from another component to perform a service) (ex-
ternal behavior) the total structural complexity of the software
system is a function of the internal complexity (of the object’s
internal behavior) and the architectural complexity (of the
interactions between the objects). By combining the behavior

4http: � � java.sun.com/products/ejb

models and the architectural model we should be able to assess
the reliability of the system.

Probabilistic reliability prediction [9], and measuring reli-
ability from stochastic system model [8] are two signifi cant
approaches that should be added on to CBD of embedded
systems. In [8] a Markov model and methods are given
to compute the reliability prediction as the system evolves.
The reliability of the system is calculated periodically, as
defi ned by the system administrator. A component whose
reliability falls below an acceptable threshold value should be
replaced by a behaviorally equivalent component. Based upon
the formal descriptions of behavior given above, it should be
possible to check the behavior equivalence of two components.
A component to replace an existing component is chosen if and
only if their interface specifi cations and behavior specifi cations
match. Moreover, the chosen component should have been
tested both for its internal and external behavioral properties.
Thus, early prediction, based on the architecture and behavior
models, help to reduce the development time and improve
software quality. The question is, how to test components. We
address this issue in the section IV.

idle oneBusy

allocate

twoBusybusyWait

Req / rQueue’ =
append(pid,empty)

Req / rQueue’ =
append(pid,rQueue)

Ret[pid = hold1 OR pid = hold2
&& true] / hold1’ = NULLPORT

AND hold2’ = NULLPORT

Ret[pid = hold1 OR pid = hold2
&& len(rQueue) = 0] / (hold1’ =

NULLPORT AND hold2’ =
hold2) OR (hold2’ = NULLPORT

AND hold1’ = hold1)

Ret[pid = hold1 OR pid =
hold2 && len(rQueue) > 0
] / (hold1’ = NULLPORT
AND hold2’ = hold2) OR

(hold2’ = NULLPORT AND
hold1’ = hold1)

Req[NOT in(pid, rQueue) && true] /
rQueue’ = append(pid, rQueue)

Grant[pid = head(rQueue) && hold1
= NULLPORT AND hold2 =

NULLPORT AND len(rQueue) = 1] /
rQueue’ = tail(rQueue) & hold1’ = pid

Grant[pid = head(rQueue) &&
(hold1 = NULLPORT AND hold2

<> NULLPORT AND
 isValid(hold2, head(rQueue))) OR
(hold1 <> NULLPORT AND hold2
= NULLPORT AND isValid(hold1,

head(rQueue)))] / (hold1’ = pid
AND hold2’ = hold2) OR (hold2’ =

pid AND hold1’ = hold1)

Grant[pid = head(rQueue)
&& hold1 = NULLPORT AND

hold2 = NULLPORT AND
len(rQueue) >1] / rQueue’ =
tail(rQueue) AND hold1’ = pid

ToWait[true && (hold1 = NULLPORT
AND hold2 <> NULLPORT AND NOT

 isValid(hold2, head(rQueue))) OR (hold1
<> NULLPORT AND hold2 = NULLPORT
AND NOT isValid(hold1, head(rQueue)))]

Ret[pid = hold1 OR
pid = hold2 && true] /
hold1’ = NULLPORT

AND hold2’ =
NULLPORT

Req[NOT in(pid,inQueue) && true] /
rQueue’ = append(pid,rQueue)

 Fig. 2 ESM for Arbiter

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2466

 D. Traffic Controller Example Revisted

We briefly discuss the behavior of Arbiter component.
The behavior of Arbiter component is shown in the ESM of
Figure 2. It has a single thread of control; events can not occur
concurrently. However, concurrent communication is possible
in the overall system that includes the arbiter object . The
arbiter may allocate the resource to two controllers concur-
rently if the lanes they control are collision-free. There are
twelve patterns of traffi c flow involving concurrent crossing
of the intersection by vehicles in two middle or left lanes
without collision. The three resource allocation scenarios of
the Arbiter are as follows:

1) In state allocate only one controller is accessing the
resource, and there are pending requests in the queue.

2) In state oneBusy only one controller is accessing the
resource, and there is no pending request.

3) In state twoBusy two controllers, one for middle lane
and one left lane utilizing the resource are compatible;
that is vehicles monitored by these controllers do not
collide.

In each case, collision inside the intersection is precluded. This
can be proved by mutual exclusion property on the guards of
the corresponding transition specifi cations. When the arbiter
has allocated the resource to one controller and assessed that
the next controller in the queue is not compatible with the one
already holding the resource, it goes into the state busyWait.
The resource is not allocated to the controller at the front of
the queue. Thus, when the arbiter is in state busyWait, vehicles
in only one middle or left lane will be allowed to cross the
intersection. Informal analysis is helpful, but will often fail
to reveal deadlock or starvation in the system. Often even
informal analysis is diffi cult to conduct. As an example, for a
simple system shown in Figure 3 there are thousands of states
and it is impossible to exhaustively analyze by inspection
the safety property in all states. It is essential to investigate
formal verifi cation and validation methods. In [7] a simulated
validation approach and a tool based on it are given.

IV. TESTING COMPONENT-BASED SYSTEMS

Testing and debugging embedded systems are as diffi cult as
formal verifi cation. Some of the diffi culties are:

� For COTS white-box testing cannot be conducted because
the source code is not supplied with the component.
A black-box testing of COTS is possible provided a
specifi cation of its interfaces and protocols are supplied
by the manufacturer. When only informal description of
COTS is given the testing process is error-prone.

� Middleware is an integral part of the component-based
software. It is not possible to precisely characterize all the
middleware functionalities. Yet, testing of the middleware
coupled to the components and their bindings must be
done.

� Black-box testing of components should test the inter-
faces, and the behavior. Unless a formal description of
the component interfaces and behavior are known black-
box testing is not possible.

A : Arbiter

@N1 : @N

@M1 : @M

CL1 : ControllerML

LL1 : Light

@C1 : @C

@S1 : @S

V1 : Vehicle

@P1 : @P

@T1 : @T

@N2 : @N

@M2 : @M

CL2 : ControllerML

@T2 : @T

@P2 : @P

V2 : Vehicle

@S2 : @S

@C2 : @C

LL2 : Light

@N3 : @N

@M3 : @M

CM1 : ControllerML

@T3 : @T

@P3 : @P

V3 : Vehicle

@S3 : @S

@C3 : @C

ML1 : Light

@N4 : @N

@M4 : @M

CM2 : ControllerML

@T4 : @T

@P4 : @P

V4 : Vehicle

@S4 : @S

@C4 : @C

ML2 : Light

V5 : Vehicle

@P5 : @P

@T5 : @T

 Fig. 3 Multivehicles System

� Component producers are responsible to test the source
code of components. Users of components may not be
able to conduct white-box testing even when the source
code is available to them. There are two reasons for
this: (1) the internal structures are not fully observable
in source code, and (2) components are assembled at
run-time for embedded systems, and real-time white-box
testing is not feasible.

Based on the above observations we may draw the following
conclusions:

1) Component manufacturers should certify their products.
2) COTS must be accompanied by their formal descrip-

tions.
3) Testing must be a parallel activity to system develop-

ment.
4) A repository of tested components, and a retrieval sys-

tem based on component interface descriptions must be
provided.

5) System descriptions must be symbolically simulated to
assess the reliability of tested components for use in
different application domains.

We contend that the notations that we have used for internal
and external descriptions of components are conducive for
generating test cases for black-box testing. The methods that
we have developed earlier [11], [4], [5] are applicable here, the
only extension required is modeling the interaction between
components and the middleware.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2467

V. CONCLUSION

In this paper we identifi ed different complexity types that
must be dealt in the development of embedded systems. We
offerred solutions to deal with them. In our research on real-
time reactive system development we have been developing
a number of tools to assist the development and analysis
phases of the system. We have already applied the testing and
reliability prediction tools for the ATC. The design of these
tools is both flexible and extendable so as to be applied to
other examples of component-based embedded systems.

ACKNOWLEDGEMENT

This work is partially supported by a grant from the Natural
Sciences and Engineering Research Council (NSERC) of
Canada. Part of the work was completed when the second
author was a Visiting Professor at the Institute of Software,
Chinese Academy of Sciences, Beijing, China.

REFERENCES

[1] M. Akerholm, A. Moller, H. Hansson, and M. Nolin. Towards a De-
pendable Component Technology for Embedded System Applications. In
Proceedings of the � � � � IEEE International Workshop on Object-oriented
Real-Time Dependable Systems, Sedona, Arizona, U.S.A., February
2005.

[2] V.S. Alagar, O. Ormandjieva, M. Zheng. Managing Complexity in Real-
Time Reactive Systems. In Proceedings of ICESSC 2000.

[3] V.S. Alagar, D. Muthiayen. A Rigorous Approach to Modeling Au-
tonomous Traffi c Control Systems. ISADS2003, Pisa, Italy, pp.193-202.

[4] V.S. Alagar, O. Ormandjieva, M. Zheng. Incremental Testing for Self-
Evolving Systems. Proceedings of International Conference on Quality of
Software, Dallas, U.S.A., November 6-7, 2003.

[5] V.S. Alagar, O. Ormandjieva, M. Chen, M. Zheng. Automated Test
Generation from Object-Oriented Specifi cations of Real-Time Reactive
Systems. Proceedings of 10th Asia Pacifi c Software Engineering Confer-
ence, Chiang Mai, Thailand, December 10-12, 2003.

[6] S. Burbeck. Real-time complexity metrics for smalltalk methods. IBM
Systems Journal, June 1996, pp. 1-28.

[7] S.H. Liu. Simulated Validation of Real-Time Reactive Systems with
Parametrized Events. Master of Computer Science Thesis, Concordia
University, Montreal, Canada, October 2003.

[8] Olga Ormandjieva. Quality Measurement for Real-Time Reactive Systems.
Ph.D thesis, Department of Computer Science and Software Engineering,
Concordia University, Montreal, Canada, January 2002.

[9] R.H. Reussner, I.H. Poernomo, and H.W. Schmidt. Reasoning
about Software Architectures with Contractually Specifi ed Components.
Component-Based Software Quality. LNCS 2693, Springer-Verlag, pp.
287-325, 2003.

[10] H.W. Schmidt. Trustworthy Components:compositionality and predic-
tion. Journal of Systems and Software, Elsevier Science Inc, 65(3):215-
225, 2003.

[11] M. Zheng. Automated Test Generation From Formal Specifi cation of
Real-Time Reactive Systems, Ph.D. Thesis, Department of Computer
Science, Concordia University,Montreal, Canada, 2002.

