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Automated algorithm for removing continuous
flame spectrum based on sampled linear bases

Luis Arias, Jorge E. Pezoa, Member, IEEE, and Daniel Sbárbaro

Abstract—In this paper, an automated algorithm to estimate and re-
move the continuous baseline from measured spectra containing both
continuous and discontinuous bands is proposed. The algorithm uses
previous information contained in a Continuous Database Spectra
(CDBS) to obtain a linear basis, with minimum number of sampled
vectors, capable of representing a continuous baseline. The proposed
algorithm was tested by using a CDBS of flame spectra where Prin-
cipal Components Analysis and Non-negative Matrix Factorization
were used to obtain linear bases. Thus, the radical emissions of
natural gas, oil and bio-oil flames spectra at different combustion
conditions were obtained. In order to validate the performance in the
baseline estimation process, the Goodness-of-fit Coefficient and the
Root Mean-squared Error quality metrics were evaluated between the
estimated and the real spectra in absence of discontinuous emission.
The achieved results make the proposed method a key element in the
development of automatic monitoring processes strategies involving
discontinuous spectral bands.

Keywords—Flame spectra, removing baseline, recovering spec-
trum.

I. INTRODUCTION

SEVERAL processes involving spectral emission or ab-
sorption bands are evaluated by using these information,

allowing a quantitative analysis of the influence of many
variables or parameters in the process. Flame spectroscopy
is effective in the combustion process characterization, where
previous studies have shown that the intensity of several
radicals radiated by a flame (discontinuous emissions) in the
combustion process provide important information about the
air/fuel ratio, the CO pollutant emission or the combustion
efficiency [1]. On the other hand, the continuous emission
(baseline) of flame provide important information about the
flame temperature and soot formation [2]. Thus, for some
applications it may be necessary or desirable to separate
the discontinuous bands and baseline spectra from a flame
measured spectrum in order to extract the aforementioned
information.

Typical spectra are classified depending on the energy
distribution on Continuous and Discontinuous spectra [3], [4].
The continuous spectra is characterized because the emit-
ted or absorbed energy is distributed in a continuous non-
discrete spectrum over a wide region of wavelengths and
usually exhibits a maximum (or minimum) intensity over
the spectral bands of interest. The discontinuous spectra is
characterized because the emitted or absorbed energy is mainly
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concentrated in a narrow band of the spectrum. Usually,
a continuous spectrum exhibits low frequency components
while the discontinuous emission is characterized by high
frequency components [5]. Typical flame spectra in the visible
(VIS) band can be seen in Fig. 1, where it is possible to
identify several discontinuous emissions, like CH∗, C∗

2, Na∗

and K∗ radicals at 430 nm, 515.5 nm, 588 nm and 766
nm respectively, added to continuous baseline. The flame
discontinuous emissions are attributed to the energy emitted
by isolated atoms or molecules, while the continuous flame
emission is given mainly by the soot formation (yellow zone).
It is predominant along the flame, after the reaction zone, and
its intensity change locally depending on the flame temperature
and emissivity [6], [7], [8]. The formation of the mentioned
radicals is predominant in the reaction zone, whereas along
the flame the emission of these radicals disappear and the soot
radiation becomes predominant [6], [8], [9].

The main goal of this paper is to provide a methodology
to separate both the continuous and discontinuous spectral
information from a measured flame spectrum. Several methods
which essentially are algorithms of signal recovery have been
developed with this goal, and have been classified on auto-
mated and manual methods [5], [10]. The former methods are
automated computed to estimate the continuous baseline from
a signal, while the latter require the operator intervention by
choosing several baseline points. However, both methods are
sensible to signal parameters like noise, being mainly affected
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Fig. 1: Typical flame’s spectrum (normalized) of natural gas,
oil and bio-oil hydrocarbon fuels, where discontinuous emis-
sions are added to continuous baseline.
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the automated methods.
The automated algorithm proposed here is based on previous

information extracted from a Continuous Database Spectra
(CDBS), which allow to obtain a minimum number of real
bases to reconstruct any continuous baseline spectrum. Thus,
in order to estimate the continuous emission from a real spec-
trum containing both, continuous and discontinuous radiations,
a sampled version of the bases is used. Then, the discontinuous
emission is estimated subtracting the continuous estimated
baseline to the measured spectrum. The proposed algorithm
was tested by using a CDBS of flame spectra, from where
Principal Components Analysis (PCA) and Non-negative Ma-
trix Factorization (NNMF) were used to acquire the respective
bases. Thus, the radical emissions of natural gas, oil and bio-
oil flames spectra at different combustion conditions were
obtained. In order to validate the performance in the baseline
estimation process, the Goodness-of-fit Coefficient (GFC) and
the Root Mean-squared Error (RMSE) quality metrics between
the estimated and real spectra in absence of discontinuous
emission were evaluated.

This paper is organized as follows. The theory of continuous
spectral reconstruction based on sampled bases, and therefore
the discontinuous flame spectrum estimation is presented in
Section II. Additionally, two quality metrics used to assess
the spectral match between a real and a recovered spectrum
are presented in this section. In Section III, the experimental
validation results of the proposed algorithm are shown. Finally,
in the last section, our conclusions are drawn.

II. THEORY OF CONTINUOUS SPECTRAL
RECONSTRUCTION FROM SAMPLED BASES

It is know that emitted flame spectrum Ee in the VIS band
corresponds to the sum of continuous Ec and discontinuous
Ed spectral emissions [3], [4], that is:

Ee = Ec + Ed (1)

where each term is wavelength dependent.
The idea is to reconstruct the continuous flame radiation

Ec from the measured Ee by using previous knowledge
aboutEc. Then, Ed can be estimated. This a priori knowledge
is obtained from a CDBS constructed with continuous flame
spectral measurements, from which representative bases con-
taining much of information from the CDBS are extracted.

The recovering process of continuous spectral emission
from Ee is described in the following subsection.

A. Continuous spectrum recovering algorithm

Different methods are based on a priori knowledge about
the kind of spectra to be represented. For example, PCA,
NNMF or independent component analysis (ICA) [11], pro-
vide sets of bases which can be linearly combined to represent
a given spectrum. The advantage in the use of these methods
is that these bases can be extracted from real database.

Thus, a continuous flame spectrum can be linearly expressed
as:

ÊcN×1 = BN×n · cn×1, (2)

where B is a matrix containing the n representative vectors
forming a basis extracted from the CDBS at N wavelengths,
and the vector c contains the coefficient of the linear combina-
tion. The hat symbol over Ec represent the fact that Êc is an
approximated linear representation using only n < N vectors
to represent Ec. The number of chosen vectors obeys to reduce
the computational time consumed when the pseudoinverse of
the B matrix is needed to be computed [12]. The idea is
to define a method which allow to estimate the continuous
flame spectrum by calculating the coefficients of the linear
combination c from the measure of Ee.

It can be seen from (2) that by computing the pseudoinverse
of the matrix B (that is, B+) then the vector c can be obtained,
when a continuous real spectrum ERe

c is represented by the
linear model. Thus,

cn×1 = [B]
+
n×N · ERe

cN×1
. (3)

Assuming that the continuous baseline from a measured real
spectrum Ee can be represented by a sampled version of B
(that is, Bm) at the same spectral dimension (samples of B
with other data vector to zero), therefore, Eq. (3) can be written
as follows:

cmn×1 = [Bm]
+
n×N · EeN×1

, (4)

where cm represents the response of the sampled basis Bm

sampling Ee. By assuming that this sampling process is such
that continuous samples are observed from Ee in the absence
of discontinuous emission, then cm can be also expressed as
follows:

cmn×1 = [Bm]
+
n×N · ERe

cN×1
. (5)

Then, pluging ERe
c from (3) in (5), the process transforming

the response cm of the sampled vector basis into the coefficient
c, is expressed as follows:

cmn×1 = [Bm]
+
n×N ·BN×n · cn×1, (6)

cn×1 =
[
[Bm]

+
n×N ·BN×n

]+
· cmn×1. (7)

From the matrix transformation
[
[Bm]

+
n×N ·BN×n

]+
, the

recovered continuous spectrum Êc can be calculated by plug-
ing (7) in (2):

ÊcN×1
= BN×n ·

[
[Bm]

+
n×N ·BN×n

]+
· cmn×1, (8)

where the vector cm is calculated from Eq. (4). Note that the
spectral dimension (wavelength resolution) of the continuous
recovered spectrum depends on the spectral dimension of the
training matrix in the chosen vector basis B.

The methodology described above can be understood as
follows. The continuous spectral information contained in Ee

is extracted by sampling the measured spectrum, and then

a matrix transformation
[
[Bm]

+
n×N ·BN×n

]+
it is used to

transform cmn×1 to cn×1, whereas the spectral dimension of
ÊcN×1

is given by the spectral dimension of BN×n, which
appears in (8).
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B. Recovering discontinuous flame emissions

The recovered discontinuous flame’s emissions Êd can be
estimated by replacing the Eq. (8) on Eq. (1):

Êd = Ee −BN×n ·

[
[Bm]

+
n×N ·BN×n

]+
· cmn×1. (9)

The proposed algorithm is a general method that can be
used when a process provides continuous spectral information
and a CDBS can be constructed. Thus, it can be used to
recover the discontinuous emission/absorption bands present
in the process. As mentioned before, the combustion process
monitored by using the flame spectrum is a process which
can provide, depending on the spatial measurement zones,
continuous spectra (soot formation zone) and both, continuous
and discontinuous emission (reaction zone) simultaneously.
Therefore, the validation of the proposed method will be
carried out by using a flame spectrum database.

C. Metrics for quality evaluation in the spectral reconstruc-

tion process

Traditionally, different metrics have been used to assess
the performance on the spectral reconstruction process. The
RMSE and the GFC are two of such metrics [13], [14]. The
RMSE numerically quantify the differences between both, the
real and the reconstructed spectrum, while the GFC evaluates
the spectral projection of the reconstructed spectrum onto
the real spectrum. The RMSE between the real and the
reconstructed spectrum is defined as:

RMSE =

√√√√
N∑
j=1

(
Ee (λj)− Êc (λj)

)2

, (10)

where, in this work λj is the spectral band in absence of
discontinuous emission.

The GFC metric between the real and the reconstructed
spectrum is defined as:

GFC =

∣∣∣∑j Ee (λj) Êc (λj)
∣∣∣

[∑
j [Ee (λj)]

2
]1/2 [∑

j

[
Êc (λj)

]2]1/2 . (11)

An accurate estimation yields a GFC in [0.995,0.999), while
a GFC in [0.999,0.9999) means quite good spectral matches
and a GFC larger or equal than 0.9999 means an excellent
spectral match [15].

III. EXPERIMENTAL RESULTS

To validate the proposed model, the continuous radiation
of natural gas, oil, and bio-oil flame spectra was recon-
structed and then subtracted to the measured spectrum, thereby
recovering the discontinuous emissions. Five representative
spectra (labelled from S1 to S5) containing both, continu-
ous and discontinuous radiation, where measured at different
air/fuel conditions, each condition evaluated with the variable
lambda(1+e). Different air/fuel conditions were considered be-
cause they generate data at different continuous and discontin-
uous radiation intensities. The variable lambda(1+e) represents
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Fig. 2: Continuous samples spectra used to construct the
CDBS.

the air-to-fuel ratio of the actual combustion condition over the
corresponding stoichiometric air-to-fuel ratio, and is defined
as:

lambda(1+e) =
(air/fuel)actual

(air/fuel)stoichiometric
, (12)

that is, when lambda(1+e) is close to one the process is near to
the stoichiometric condition exhibiting at this point, a stronger
continuous spectral emission than when lambda(1+e) values
are longer.

In order to generate the vector basis of B, and conse-
quently of Bm, a CDBS of 97 continuous flame spectra was
constructed from a flame’s spectral database taken in our
laboratories since 2005 for different kinds of fuels flames.
Spectra were measured along the flame in absence of discon-
tinuous emissions. Both, the data of the CDBS and the testing
spectra (S1-S5) were measured using a USB2000 spectrometer
(previously calibrated with a HL2000 calibration lamp, Ocean
Optics Inc.) in the 400.2-800.31 nm spectral band using
N=1145 wavelength channels. Sample spectra of the CDBS
are depicted in Fig. 2.

Two different methods were computed to extract orthogonal
bases from the CDBS: PCA and NNMF. Due to PCA defines
a space with vectors pointing in the direction of maximum
variance and orthogonal between them, then the variance of
the Principal Components (PCs) extracted from the CDBS
was calculated and the results are depicted (in log scale)
in Fig. 3. From this figure, it can be concluded that the
first three PC’s contain the maximum energy representing the
CDBS. Therefore, the first three PCs (n = 3) where chosen
to construct the matrix B and Bm. These PCs are shown in
Fig. 4. Additionally, the first three NNMF vectors were used
and then, the results in the continuous recovering process were
evaluated and compared by using the same number of vector
basis. The first three vector basis extracted by means of NNMF
are shown in Fig. 5.

In order to define the optimum sampled version of B
allowing an accurate reconstruction of Ec, an exhaustive
search was made by changing the Period of Sampling (PoS) (in
nm) of B from 1 to 1145 channels. The optimum PoS for each
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fuel spectra was evaluated by calculating the average GFC

10
0

10
1

10
2

10
−40

10
−30

10
−20

10
−10

10
0

Number of PC (in log scale)

V
ar

ia
nc

e 
of

 P
C

 (
in

 lo
g 

sc
al

e)

10
0

10
1

10
−10

10
−8

10
−6

10
−4

10
−2

10
−2

Fig. 3: Variance of the principal components extracted from
CDBS.
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Fig. 4: First three principal components extracted from a flame
CDBS.
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Fig. 5: First three vectors from NNMF extracted from a flame
CDBS.

metric at each PoS between the original and the recovered
spectra in absence of discontinuous radiations, considering the
S1 to S5 samples. The results of the GFC metric for each
PoS defining Bm, by using PCA and NNMF are depicted
in Figs. 6 and 7, respectively, for natural gas, oil, and bio-
oil fuels spectra. Additionally, Table I summarizes the PoS
where the maximum average GFC occurs, and the associated
sampling wavelengths. From these results, it can be seen
that in order to reconstruct the continuous radiation from
a natural gas spectra, 10 wavelengths of sampling should
be considered, 11 wavelengths of sampling are needed for
oil continuous emission and 6 wavelengths of sampling are
needed in PCA while 4 are needed in NNMF to reconstruct the
continuous spectra radiation from bio-oil spectra. An important
observation can be highlighted from Figs. 6(a), (b), and (c):
with a PoS of N/2, that is, with only 2 wavelengths of sampling
between 400 nm and 800 nm, an important decrease in the
GFC value occurs, which however starts to increase exhibiting
an accurate value at a PoS of 928 (associated to the wavelength
of 729.09 nm). This means that with only two wavelengths of
sampling (420.2 nm and 729.09 nm) an accurate continuous
spectral recovery can be achieved.

TABLE I: Optimum PoS and their associated sampling wave-
lengths used to construct the matrix Bm for an accurate
continuous radiation recovery

Opt. Max. Avg.
Fuel PoS GFC Wavelengths

Gas PCA 123 99.9938 400.2–445.6–490.8–535.3–579.2–
NNMF 123 99.9931 622.4–664.9–706.6–747.7–788.0

Oil PCA 114 99.9940 400.2–442.3–484.2–525.6–566.4–
NNMF 114 99.9936 606.6–646.3–685.3–723.8–761.5–798.7

Bio-oil PCA 222 99.9849 400.2–482.0–562.1–640.0–715.7–789
NNMF 372 99.9845 400.2–536.4–666.9–790.9

Considering that in all cases the average GFC calculated
using PCs was closer to 100% than NNMF, then PCs vectors
were used to extract the continuous radiation of the testing
samples S1 to S5. By using the optimum empirically found
PoS with allows an accurate continuous spectral reconstruc-
tion from a measured spectrum, the matrix Bm has been
constructed by each fuel. Then, the Eq. (9) has been used
estimate the discontinuous emission. These results are depicted
in Figs. 8 to 10. In addition, Table II lists the GFC and the
RMSE metrics between the original and recovered continuous
radiation, calculated by using PCA and NNMF, for each
testing sample (S1 to S5) and for each fuel.

IV. CONCLUSION

An automated algorithm to estimate and remove the contin-
uous baseline from measured flame spectra containing both,
continuous and discontinuous bands, has been proposed. The
algorithm is based on a real CDBS from where a minimum
number of vector basis which allow a linear representation of
a continuous spectrum are extracted. These vector bases and a
sampled version of them are used to separate the continuous
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Fig. 6: GFC values as a function of the period of sampling
PoS of vector basis computed with PCA for: (a) natural gas
flame samples; (b) oil flame samples; and (c) bio-oil flame
samples.
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Fig. 7: GFC values as a function of the period of sampling
PoS of vector basis computed with NNMF for: (a) natural gas
flame samples; (b) oil flame samples; and (c) bio-oil flame
samples.
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Fig. 8: (a) The original flame spectra (solid lines) and the
recovered continuous spectra (dashed lines) of the natural
gas flames for different air/fuel conditions. (b) The recovered
discontinuous spectra of the natural gas flames with an offset
of 0.8 µw/nm · cm2 between spectra.
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Fig. 9: (a) The original flame spectra (solid lines) and the re-
covered continuous spectra (dashed lines) of the oil flames for
different air/fuel conditions. (b) The recovered discontinuous
spectra of the oil flames with an offset of 0.25 µw/nm · cm2

between spectra.



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:3, 2012

620

400
500

600
700

800

S1
S2

S3
S4

S5
0

1

2

3

x 10
−6

Wavelength (nm)

E
e (

w
/n

m
⋅
cm

2 ) 
(B

io
−

oi
l S

pe
ct

ra
)

(a)

400
500

600
700

800

S1
S2

S3
S4

S5
0

5

10

15

20

x 10
−7

Wavelength (nm)

Ê
d (

w
/n

m
⋅
cm

2 ) 
(B

io
−

oi
l S

pe
ct

ra
)

(b)

Fig. 10: (a) The original flame spectra (solid lines) and the
recovered continuous spectra (dashed lines) of the bio-oil
flames for different air/fuel conditions. (b) The recovered
discontinuous spectra of the bio-oil flames.
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TABLE II: GFC and RMSE metrics calculated between the
original and recovered continuous radiation in absence of
discontinuous emission.

Testing lambda GFC (%) RMSE (10−5)
Fuel Sample (1+e) PCA NNMF PCA NNMF

S1 1.37 99.9883 99.9872 0.4208 0.5115
S2 1.29 99.9939 99.9931 0.4309 0.5413

Gas S3 1.26 99.9943 99.9936 0.4233 0.5378
S4 1.23 99.9957 99.9952 0.2924 0.4049
S5 1.11 99.9966 99.9965 0.3414 0.4485

S1 1.18 99.9920 99.9914 0.6000 0.5880
S2 1.15 99.9937 99.9933 0.7260 0.7220

Oil S3 1.12 99.9941 99.9935 0.4200 0.4170
S4 1.08 99.9945 99.9944 0.4800 0.4850
S5 1.02 99.9957 99.9956 1.2080 1.2090

S1 1.65 99.9835 99.9831 0.1118 0.1329
S2 1.56 99.9846 99.9841 0.1629 0.2769

Bio-oil S3 1.39 99.9848 99.9844 0.2039 0.2940
S4 1.20 99.9858 99.9854 0.2350 0.3134
S5 1.14 99.9858 99.9855 0.2225 0.2773

emission from a real flame spectrum containing continuous
and discontinuous spectral information.

The algorithm has been tested by using flame spectra of
natural gas, oil, and bio-oil fuels, at different air/fuel condi-
tions. In order to determine the optimum PoS of the vector
basis for an accurate recovering process, the GFC between
the measured and the recovered spectrum has been calculated
in absence of discontinuous emission. The calculated GFC
has demonstrated the feasibility of the proposed algorithm to
recover the continuous emission from a measured spectrum,
by using three orthogonal vector basis computed by PCA and
NNMF. A minimum GFC of 0.999835 achieved by using
vectors basis from PCA and a GFC of 0.999831 achieved
by using vector basis from NNMF mean that a quite good
spectral match has been achieved. Moreover, the discontinuous
emission has been obtained by subtracting the continuous
recovered spectrum to the measured sample.

The algorithm proposed can be extended to other pro-
cesses which provide continuous spectral information to con-
struct a CDBS, and then to extract the discontinuous emis-
sion/absorption bands, being a key element in the development
of advanced control strategies for processes monitoring.
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