
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

348

Abstract—In this paper, we present a novel technique called
Self-Learning Expert System (SLES). Unlike Expert System, where
there is a need for an expert to impart experiences and knowledge to
create the knowledge base, this technique tries to acquire the
experience and knowledge automatically. To display this technique
at work, a simulation of a mobile robot navigating through an
environment with obstacles is employed using visual basic. The
mobile robot will move through this area without colliding with any
obstacle and save the path that it took. If the mobile robot has to go
through a similar environment again, then it will apply this
experience to help it move through quicker without having to check
for collision.

Keywords—Expert system, knowledge base, mobile robot, visual
basic.

I. INTRODUCTION

XPERT systems are being already used in almost all
aspects of our life, from space travel to agriculture,

Internet to underwater devices [1]. Knowledge-based systems
techniques and applications will be one of the key
technologies of the new economy [2].

The expert system receives facts from the user and provides
expertise in return. The main components of the expert system
are knowledge base and the inference engine. The inference
engine may infer solutions from the knowledge base, based of
the facts supplied by the user.

There are two main approaches to expert system design [3],
[4]. In the first approach, knowledge representation in a
conventional expert system is based on rules. This means that
a human expert is needed to extract regularities from his
experiences and to express them in the comprehensible,
explicit, form of rules. Even though the system has perfect
explanation abilities, due to the explicitness of the knowledge,
the building of such a consistent knowledge base is a difficult
process. The second approach is by utilizing artificial neural
network (ANN) to generate or construct the knowledge
base [5], [6]. Building such a system takes a shorter time
because there’s no need to disseminate the knowledge as
required in the previous approach. Unfortunately, there is no
general way to identify a purpose to single neurons in ANN

Rabi W. Yousif is with the School of Engineering and Science, Curtin
University of Technology Sarawak, Miri, CDT 250, 98009 Malaysia (phone:
+60 85 443964; fax: +60 85 443837; e-mail: rabi.habash@curtin.edu.my).

Mohd Asri Hj Mansor is with the Faculty of Electrical Engineering,
Universiti Teknologi Mara, Shah Alam, 40450 Malaysia.

because of the implicit knowledge representation.
In this paper, a self-learning expert system (SLES) for

mobile robot is considered. SLES is an expert system that
utilizes data collected or acquired from previous actions or
operations. This technique is designed to automatically
generate and store experiential data when it is applied. It then
generates its own knowledge base.

In order to realize its implementation a simple application
utilizing SLES is constructed. This application will take a
form of a simulated mobile robot moving through an
environment with obstacles from a specified START to
GOAL positions. The concept is similar to a human taking a
journey through an unknown terrain, like a town. The first
step is to move slowly from the initial position and map its
path in memory of the journey to its goal. Then, every time
there is an expedition from roughly the same start position to
the goal, the human or mobile robot will use this knowledge
that was acquired to make the journey quicker, safer and
easier.

The problem statement of this study is to develop a
technique that will allow the generation of knowledge base
with or without the full need of a human expert. The
application making use of this technique will be designed to
make use of experiential data. This experiential data could be
considered to be similar to the training data of ANN, and it is
accumulated during the running of the application. The
advantage of this method is that it is still able to maintain the
explanation abilities albeit not as comprehensible as
conventional expert system. The generation or construction of
the knowledge base will also be quicker as it does not need the
full knowledge and experience of the human expert.

We use simple application of a simulation of a mobile robot
navigating through an environment with obstacles to
demonstrate the SLES at work.

II. SYSTEM DESCRIPTION

A. User Interface
Visual Basic (VB) was used to program the graphical user

interface for the simulation. VB is a Rapid Application
Development (RAD) [7] programming language just as
Borland Delphi. Visual Basic was chosen due to its capability
for Windows programming. It allows easy programming of
windows-based programs with forms, buttons and the likes.
Fig. 1 shows the graphical user interface for the simulation of
the mobile robot using VB.

Design and Simulation of a New Self-Learning
Expert System for Mobile Robot

Rabi W. Yousif, and Mohd Asri Hj Mansor

E

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

349

Fig. 1 The graphical user interface for the simulation of the mobile
robot

The user clicks once on button B, ‘Add Obstacle’, to add
obstacles. The button B will be depressed, indicating that the
user can now click anywhere within the screen area A to add
obstacle within it. The obstacle will be a solid black rectangle
with its top left vertex positioned at the same point as the
mouse arrow was at the time of clicking. More than one
obstacle can be added. They can also be combined in such a
way that the resulting obstacle have a different shape rather
than the just the solid black rectangle. The obstacle can also
be deleted by first clicking on the button C, ‘Delete Obstacle’,
which will depress the button. The user can then click on the
obstacle that needs to be deleted. This will erase just that
obstacle.

Once the obstacles are set, the user can then place the
START and GOAL positions for the mobile robot. This can
be done by clicking buttons D, ‘Set Goal Point’, and E, ‘Set
Start Point’, to place the GOAL and START points,
respectively. If for any reasons, the placing of the obstacles
and the START and GOAL positions are not satisfactory, the
user can click on the button titled ‘Clear Screen’ to clear the
whole screen area.

Once everything is in place, the button B, ‘Run to Explore’,
can be clicked. This will run or execute the explorer program.
This explorer program is used to navigate its path through the
environment. While it is moving from its START point
towards the GOAL, the mobile robot, in conjunction with the
explorer program, will plot an obstacle-free path and storing
them in memory. This usually will take some time, as the
mobile robot has to check its every step. The mobile robot will
stop once it reaches its destination as shown in Fig. 2.

After a new START point has been set in the screen area A
within the same environment, the ‘Run Planner’ button G is
clicked to move the mobile robot again. Now the mobile robot
will make use of the knowledge that it acquired in its initial
move through the environment, or its experience. If the new
path takes it near the old path, then rather than going through
the checking for obstacle for every step, it will use the old
path to get nearer to the new destination. This will shorten the
time taken, as it no longer has to check for obstacle after every

step as in the initial passage.

Fig. 2 End of the trip for the mobile robot with the number of steps
shown

B. Algorithm
The program that was written for the simulation is quite

complex and long. The program has to be able to plan a path
through the environment with obstacles from its given START
point to a given GOAL location. It must also check that its
path is free from obstacles. Every steps of the correct path, i.e.
it is clear from obstacles, is stored or memorized so that it can
be reused whenever needed. A flowchart of part of the
algorithm, the explorer, is shown in Fig. 3.

It is not possible to give the standard flowchart, as VB is an
event-based programming language as opposed to a
sequential-based programming language like BASIC, C or
C++. This means that the program runs whenever an event is
activated, like clicking on a button, pressing a button on the
mouse or even moving the mouse over a certain part of the
window. Thus, the program acts in a random manner
depending on which event it needs to service.

The main programs are related to the two buttons shown in
Fig. 4: Run to Explore and Run Planner. These two programs
form the bulk of the whole program as they are responsible for
the tasks described earlier. To make the programs more
manageable, they are split into procedures. The procedures
are:
1) CloseTo() and fnZero() are procedures of type functions

for the management of data.
2) fnNew_rOrient() is a function responsible for the new

orientation of the mobile robot.
3) fnObstacle() is the part of the program that checks

whether the mobile robot has collided with an obstacle.
4) subMove() moves the mobile robot forward.
5) fnGoalInFront() checks whether the goal has been

achieved or not. This is just so that that part of the
program to explore can be stopped to await the next
command.

6) fnTurn() will turn the mobile robot towards a prescribed
direction.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

350

7) subDisplayRobot() will run the commands to print or
display the mobile robot within the screen area. The
mobile robot can be seen moving due to this program.

8) subPathExplorer() is the next program executed once
either Run to Explore or Run Planner is clicked. This part
is responsible for most of the workings of the program,
and it takes the longest time to realize and code. This
code will directly or indirectly calls almost all the
procedures described. It is shown as a flowchart in Fig. 3.

9) subProcessData() rearranges the data collected from the
exploring before saving to a file.

10) fnPosit() is similar to modulus in mathematics, which is to
turn a number into a positive value. This was written as
the author could not find an equivalent command.

11) subSaveData() will save data to a file after it has been
processed.

C. Obstacle Avoidance
When the Run to Explore button is clicked, after having set

the START and GOAL points and the obstacles, this program
will be executed. Firstly, it will check whether the goal has
been achieved. If yes, then it will stop. Otherwise, the
program will check for forward obstacle. If there is none, it
will take a step forward. If there is an obstacle, it will turn
accordingly. After the turn, it will check for forward obstacle
again. If there is none, it will proceed forward; otherwise it
will check for obstacle again. This will be repeated again until
it reaches its GOAL point. This is just a brief description of
the algorithm. As can be obviously seen from the flowchart,
the actual algorithm is a bit more elaborate than just described.

III. RESULTS AND DISCUSSION

There are two parts to the simulation. The first part will run
the mobile robot through the environment with the explorer
mode on. Moving through the workspace, the mobile robot
will attempt to avoid collision with the obstacles and mapping
this collision-free path from START to GOAL.

This path is then processed to remove any unnecessary or
irrelevant path, so that the final path is optimized. This will be
made clearer from the result of the investigations. It will then
be saved to a file. The second phase will be to assess its
success by running the mobile robot through the same
environment with either a similar or different start point to the
same goal point or near its vicinity.

Three runs of the simulation were actually done, each in a
different environment with different obstacles and start
positions. However, on this technical report only the first run
is described. Fig. 4 shows the graphical user interface of the
workspace the mobile robot had to navigate through for the
first run. The obstacle is placed as shown in the diagram, and
the start and goal points are marked as an ‘arrow’ and a
‘crossed-out G’ respectively.

START

Initialise any required
parameters

Goal achieved?

old_rOrient=rOrient

If Xr=Xg then turn Up/Down
If Yr=Yg then turn Left/Right

Obstacle in front?

NO

NO

Move a step forward

YES

YES

STOP

Goal directly in
front?

NO

Turn towards goal
Store direction of Turn

Obstacle in
front?

NO

Turn opposite direction
old_rOrient=rOrient

Move a step forward

Turn in the direction of
old_rOrient

Store direction of Turn

Obstacle in
front?

NO

YES

Move a step forward

Turn opposite direction one more time
YES

Turn back to previous direction

YES

old_rOrient=rOrient

Store Turn

Just made a Turn?

NO

YES

Make a right turn

Turn back to
previous direction

old_rOrient=rOrient

Fig. 3 A flowchart of the obstacle avoidance program

Fig. 4 A picture of the workspace with obstacles, and START and
GOAL points

Fig. 5 shows the actual path taken by the mobile robot
while navigating through the environment for the first time.
As can be seen, it follows the wall of the obstacle quite
closely once its path towards its goal is interrupted. The
direction of movement is still towards the goal, similar to what
a human being will undertake. This is to make certain that the
GOAL is never lost sight of.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

351

Fig. 5 The actual path taken by the mobile robot navigating through
the workspace

Once it reaches its GOAL position, the explorer mode
program will end. The program will state the number of steps
or actions taken to reach its goal (Fig. 6). Actions or steps
could be a move or turn. In this instance, it was 1118 steps.
The program will then process the path to optimize the final
path before being saved to a file. This final path will rid of any
unneeded path such as repeated path, near path and so on. The
final path is as shown in Fig. 7. The final path consists of 880
steps.

Fig. 6 The journey of the mobile robot ends

Fig. 7 The final optimized path of the mobile robot

Some part of the wall-following track was deleted for
optimization of paths. Only a small part of the wall-following
track was retained. This resulted in a shorter path, and thus a
quicker route. This part of SLES technique.

A human being will also perform the optimization while
navigating through the environment. As an example, while
traversing, if the human being saw a path that he or she can
cut across in order to save time and distance without getting
lost of the GOAL, he or she will do so immediately. This was
not implemented as the increased complexity in the
programming involved at the time was too much time
consuming for this work. Both the actual and optimized data
will then be saved in memory as shown in Fig. 8.

Fig. 8 The dialog box to save both the actual and optimized data

To assess the effectiveness of the algorithm, two assessment
runs were done. The first assessment run was through the
same environment, but with a different START position (Fig.
9). Even though no timing was recorded, it was obvious that
the run was a lot quicker due to 2 things; the path was now

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 500 1000 1500 2000 2500 3000 3500 4000

Start

Goal

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 500 1000 1500 2000 2500 3000 3500 4000

Start

Goal

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

352

optimized, i.e. it is a shorter route from START to GOAL; and
there were no more need for the mobile robot to do any
checking for obstacles, and thus can move through quite
quickly on some paths. The only checking was done from the
new START to the old START position.

Fig. 9 shows the path that was taken by the mobile robot.
The action taken by the mobile robot was described earlier.

For the second assessment run, an extra obstacle was added
as shown in Fig. 10. Again, the run time is a lot quicker due to
the reasons stated earlier.

Fig. 9 The path that was taken from START to GOAL

Fig. 10 The second test run after the path has been optimized with the
newly added obstacle

Fig. 11 shows the mobile robot at the old START point
after having navigated through the environment from the new
START point and avoiding collision with any obstacle, in this
instance, the newly added obstacle. Once it reaches the old
START point, it will employ the optimized path stored in
memory to move to its GOAL position much more quickly.
This path can be traversed more quickly as it is guaranteed to
be an obstacle-free path and thus no checking for obstacles
was needed.

Fig. 11 The mobile robot at the old START point after navigating
from the new START point

Fig. 12 shows the actual path that the mobile robot took in
order to complete its assigned task. As can be seen in the
diagram, the mobile robot navigated around the obstacle in
order to get to the old START point before continuing
towards its GOAL. The path taken by the mobile robot is,
from the point of a human being, is not efficient. This is
because, instead of turning left at the new START, the mobile
robot turned right. This is not due to the Self-Learning Expert
System, but rather due to the algorithm of the explorer
program. It was designed to go to the old START position
first before applying the optimized stored track. Further, the
algorithm was not designed to do ‘on-the-fly’ planning as
described earlier. Programming-wise, this can be implemented
but since the time was not available, it was decided not to give
it such a capability yet. This is in no way reflective of the
Self-Learning Expert System, but rather the way the algorithm
was planned and designed from the start.

Fig. 12 The path of the mobile robot around the newly added

IV. CONCLUSION

A knowledge-based self-learning expert system (SLES) for
mobile robot is presented. The system is designed to collect or
acquire data from actions or operations and automatically
generating, optimizing and storing that data. This effectively,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

353

is creating and storing the data as a knowledge base or
experiential data.

Even though the work focuses on SLES, the outcome of
this work also produces a simplistic mobile robot path
planner. It was shown that the path planner was successful in
navigating through the specified workspaces. It may not be an
optimized path but the path was done without any collision
with any of the obstacles.

It was also shown that the technique was successfully
applied to the mobile robot. The data gathered after the
successful path tracking through the workspaces were
optimized before being stored for later usage. This is the
experience of the mobile robot navigating through that area.
Thus if the mobile robot has to go through the same area
again, then it will access that part of the experiential data to
help it navigate through. The assessment runs that were done
proved that the technique can be applied effectively and
successfully.

This work can be further enhanced by making the path
planner more optimal. The techniques that can be applied are
genetic programming, genetic algorithm, and potential field
and others. For the mobile robot, at least, the path planner can
be integrated with the SLES. That is, the ‘on-line’ or ‘on-the-
fly’ planning using the experiential data can be incorporated
so that the assessment runs will be more optimal.

REFERENCES

[1] Cornelius T. Leondes, Knowledge-Based Systems Techniques and
Applications. San Diego, Calif.; Academic, 2000.

[2] Ovidiu S. Noran. (2003). The Evolution of Expert Systems. Available:
http://www.cit.gu.edu.au/~noran

[3] Levine Robert et al, AI and Expert Systems, McGraw-Hill, 1990.
[4] Durkin John, Expert Systems: Design and Development, Prentice-Hall

Int., 1994.
[5] Šíma Ji í & Neruda R., “Neural Expert Systems”, Proceedings of

IJCNN, Beijing, 1992.
[6] Šíma Ji í & Neruda R., Neural Networks as Expert System, Neural

Network World, 2, 775-784, 1992.
[7] Halvorson Michael, Microsoft Visual Basic 6.0 Professional Step by

Step, Microsoft Press, 2002.

