International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:4, 2007

Toward an Architecture of a Component-Based
System Supporting Separation of Non-Functional
Concerns

Jerzy Nogiec and Kelley Trombly-Freytag and Shangping Ren

Abstract—The promises of component-based technology can only
be fully realized when the system contains in its design a necessary
level of separation of concerns. The authors propose to focus on
the concerns that emerge throughout the lifecycle of the system
and use them as an architectural foundation for the design of a
component-based framework. The proposed model comprises a set
of superimposed views of the system describing its functional and
non-functional concerns. This approach is illustrated by the design
of a specific framework for data analysis and data acquisition and
supplemented with experiences from using the systems developed
with this framework at the Fermi National Accelerator Laboratory.

Keywords—Distributed system, component-based technology, sep-
aration of concerns, software development, supervisory and con-
trol,QoS

[. INTRODUCTION

Component-based technology have brought a promise of
reducing software development efforts and focusing instead on
selecting, evaluating, and integrating components [2], [5]. The
component-oriented approach to developing software can lead
to more reusable, extensible and adaptable software. However,
achieving the long-term flexibility and maintainability is con-
ditioned upon providing the necessary level of separation of
concerns in the design of the system.

Separation of concerns has been recognized as one of the
guiding principles in software engineering decades ago [8].
Decomposition is typically done along one dominant concern,
with systems consequently suffering from the “tyranny of the
dominant decomposition” [12]. In reality, no single decompo-
sition seems to be always the best, and different concerns are
important at different stages in the system’s life cycle [11]. As
a result, different aspects may play different roles at different
times. The major concern used in system decomposition is
a functional one that defines required core functionalities of
the system and consequently its core architecture. Other, non-
functional concerns, although not directly implementing core
functionality, could play a significant role in fulfilling all
requirements defined for the system. Regardless of the focus
of a concern, change in one should not affect other concerns,
especially the core functional concerns.

Since separation of concerns is necessary for successful
complex component-based systems, one should seek archi-
tectural solutions within component-based systems to sup-
port it. Separation of concerns may happen along various

Jerzy Nogiec and Kelley Trombly-Freytag are with Technical Division,
Fermi National Accelerator Laboratory, Batavia, IL 60510

Shangping Ren is with Department of Computer Science, Illinois Institute
of Technology, Chicago, IL 60616

dimensions [12], each of which may be relevant at different
stages of software lifecycle. We focus on the integration and
maintenance phases of the lifecycle and propose separation of
concerns that allow solutions to be independently built via
composition in: exception handling, self-monitoring, recon-
figuration, coordination and data processing. The separation
of these concerns allows for building and easily altering
dynamic behaviors of applications (such as reconfiguration,
self-monitoring, self-healing, adaptation solutions etc.), aids in
debugging and testing, and provides a foundation for achieving
desired quality of service.

The proposed architecture is a multi-plane model based on
component interactions. The model is rich enough to allow for
independent construction of the features outlined above.

The remainder of this paper is arranged as following. In
Section II, we discuss the requirements on components and
component-based systems at various stages of a software
design and deployment. Section III introduces a component-
based model. In the model, components are extended with
new characteristics so that their behaviors are observable,
tailorable, and composable from both functional and crucial
non-functional dimensions. In Section IV, we present an appli-
cation of the model in the Extensible Measurement Framework
(EMS) developed by the authors at Fermi National Accelerator
Laboratory. The framework implements the presented model
and offers a test bed for experimenting with coordination and
separation of data processing from control of data flow and
coordination of components. Finally, an overview of related
work and conclusions are given in Section V and Section VI,
respectively.

II. REQUIREMENTS OVER A SOFTWARE LIFECYCLE

Component based technology is a big step forward
in software industry. It provides the benefits of software
reuse, shorter development time, improved reliability, and
reduced maintenance and development efforts. In the case
of component-based software development, applications are
assembled from ready-to-use components. Let us consider
various non-functional categories of requirements occurring
in the full lifecycle of a software.

A. Maintainability

Development efforts are only part of the software product
lifecycle. It has been realized that maintenance efforts surpass
development efforts over the complete lifecycle of a software

968

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:4, 2007

system [16]. Therefore, to fully utilize the potential of compo-
nent technology, components must include features that help to
improve their maintenance. In other words, components should
allow easy identification of the system’s or the component’s
malfunction and localization of the identified malfunctionali-
ties. To achieve these goals, the behaviors of components or
the software must to be observable. Typical components do not
allow inspection of their internals and limit the developer to
only them as black-boxes. In the proposed solution, we have
instrumented components with mechanisms that allow us to
selectively monitor various aspects of the component’s inner
behaviors and reason about them independent of the main
functional concern of the system. This aids in both integration
testing and runtime behavior monitoring.

B. Testability

Elaine Weyuker [1] argues that components should be tested
not only when they are developed (unit testing), but also in
their application context to ensure that the software performs
correctly. Failure to do so may lead to serious malfunctions,
as proved, for example, by the spectacular Ariane 5 disaster.
Typically, the lack of source code leaves the integrator with
only specification-based (black-box) testing techniques. In our
opinion, instrumenting components with selectable control-
lable debug streams pertaining to selected design concerns
of the component can significantly improve integration and
system testing. To further aid performance testing, a set of
quality of service measures can be introduced and components
can self-evaluate these measures (see Section II-D).

C. Exception Handling

One of the important issues in the design of systems with
high level of availability requirement (e.g., control systems,
banking systems) is how to handle exceptions. Solutions
range from logging exceptions, error notification techniques
(e.g., automated calls, warning messages on displays, audible
signals, emails, etc.), to correcting the problem by reprocessing
(possibly with the use of different subsystem, or reconfigura-
tion). In our opinion, components, as basic building blocks,
should not preclude any of these solutions. Rather, they shall
provide a basic standard mechanism to allow these solutions
to build upon. Therefore, a mechanism to announce detected
exceptional situations as well as allow inspection of the “health
of the component” helps to meet the requirement of handling
of exceptions. This feature is importance for real-time systems
and fault-tolerant systems, as it provides a means for real-time
detection and correction of exceptional situations.

D. Supprot for Dynamicity

The required speed of adaptation to changing requirements
does not always have to be rapid, but often the speed at
which an application can be altered to handle enhancements
is critical. Depending on the application, acceptable solutions
to changing requirements may range from manual reconfigura-
tion of the system to runtime reconfiguration. The architecture
of a component system should allow for constructing various

solutions when building dynamic systems, including tailoring
of component attributes, selecting different algorithms used
by a component, replacing a component and modifying the
flow of data between components. The component’s design
should not preclude any of these solutions. Instead, it should
support both offline and online reconfiguration and allow the
decisions on reconfiguration to be autonomic or as a result
from the user’s intervention.

E. Quality of Service

Some applications are required to either optimize or ad-
here to given limits of various measurable parameters. These
non-functional factors are typically referred to as Quality
of Service (QoS). The QoS is, as defined by ISO [7], a
set of qualities related to the collective behavior of one or
more objects. For online and real-time systems it is the
time-related characteristics category of QoS (according to
OMG?’s classification [6]) that is of particular interest. By
applying compositional reasoning about QoS, one can infer
system wide timing properties based on the QoS assured
by individual components [5]. Although components can be
evaluated and even certified at development time to fulfill
some QoS criterion such as maximum processing time, the
capability to re-evaluate them in a concrete environment and
dynamically react to the changing QoS requirements is of high
value. Therefore, the capability for runtime evaluation of QoS
measures of components, in addition to using design time QoS
information, is essential for some class of applications, such
as real-time applications.

III. MODEL

A model of a system represents the system’s attributes that
are significant from the point of view of modeling. In our case,
the focus of modeling is on components and their interactions
when they form a complete working system. In this section,
we present an component-based model that facilitates behavior
monitoring, feature extension for accommodating new QoS
requirements and system reconfiguration.

A. Component Model

There are many definitions available for components [2],
[3], but all seem to agree on that a component is a unit of com-
position and component-based development are the process
of integrating components. Furthermore, one can state that a
component provides its functionality via its interfaces. In other
words, a component representing a source will implement a
producer interface and a component representing a sink will
implement a consumer interface.

Unlike traditional components that exchange unspecified
typed data, in the model presented here, components exchange
five distinctive types of events: data, property, control, ex-
ception, and debug. Each component can be either or both
a producer and consumer of any type of event. Moreover, to
simplify the connectivity, components receive and send events
on input and output ports. Consequently, depending on the
interfaces implemented, a component can be a data source,

969

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:4, 2007

data sink, exception handler, property monitor, coordination
agent, etc. A typical functional (data processing) compo-
nent implements a data consumer, data producer, exception
producer, debug producer, and control consumer interfaces.
Figure 1(a) gives a visual representation of a typical functional
component.

control control
exception —jm] —-

properties & properties cortol

data —fe! slate — data debug —fm! state

error state etror state |—jie Property

property —jm
exception debug exception debug
(a) Typical finctional component (b) Complex funetional (supervisory) D

Fig. 1. Visual representation of components

Components implementing the exception consumer inter-
face allow for the building of exception handling solutions
based on the exception event streams originated in other com-
ponents, including filtering exceptions, multi-stage decision
systems, logging, reconfiguration etc.. Similarly, components
accepting debugging events may be used to construct solutions
in observing the behavior of the system, helping debug it, and
reason about the state of the system, which can then be used
for various coordination decisions.

Following the separation of concerns principle, an applica-
tion will consist of some supervisory or coordinating com-
ponents in addition to the component fulfilling the functional
aspects of the system. These components will not be engaged
in processing data but rather in sending or receiving control
or/and property events. Figure 1(b) depicts a supervisory
component. Detailed discussion on the supervisory compo-
nents is given in Section IV-A2. Events exchanged between
components are collections of named items, and therefore to
some extent self-describing. This, plus a reflection mechanism,
allows for implementation of general-purpose supervisory
components to persist, examine, present and visualize any
event in the system. It also enables functional components
to retrieve and process only data items of interest to particular
component and easily implement variations of such patterns
as chain of command or decorator. It also allows for changing
parts of exchanged data for one concern without impacting the
implementation and processing of other concerns or features.

Each component has a set of attributes called properties.
These properties can be defined as externally modifiable or
only readable. In addition, each component also defines a
special subset of properties representing its runtime QoS
measures. They can be runtime monitored and hence provide
a handle for runtime detection of bottlenecks and runtime
measurement of the throughput or reaction time of the system.

Martin Griss [4] argues that system complex dramatically
increases when components have compile time or runtime cus-
tomizable property parameters, and especially when properties
of several components have to be manipulated in conjunction.
To cope with this difficulty, we have developed a mechanism

that is based on group property and atomic initialization of
components. In this solution, a subset or all of properties are
specified as “remote” properties. These ‘remote’ properties are
atomically initialized from an external source — a compo-
nent implementing a producer interface and connected to the
components that have the 'remote’ properties to be initialized.
This mechanism separates all details necessary for tailoring
or configuring a component to its new role from the control
details that guide the component toward capable of performing
a specific algorithm best suited to its current quality of service
criteria.

B. System Model

A system is a network of connected components, where
each connection or route links together an output port of one
component with an input port of another. Though components
are capable of accepting any types of events, but they only
react to interested data. Connections for a component are
separately defined for each type of events and can be visualized
as five independent directed graphs, each of them describing
a separate concern, and all having the same set of nodes
representing components. Not all nodes have to be participate
in each concern.

Figure 2 depicts an example of a component system and
the communication among components. In the figure, nodes
on each vertical line represents a component involved in a
concern and arrowed lines shows the role each component
plays in different concerns.

Data Flow L]

: Functional Concern

Control Flow
¢ : | Coordination Concern
@

(]
! Tailoring/Configuration
: Concern

. Exception Handling
;. Concem

Monitoring/Debugging
Concemn

Fig. 2. Visual representation of inter-component communication

This approach separates the processing for different types
of events and therefore provides the separation of various
concerns, including the main functional concern connected
with data processing. Special components allow for translation

970

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:4, 2007

of non-data events to data events and therefore allow for
the use of the data processing capabilities of components
to process other than data events. Modification of the these
graphs allows the system to adapt to new requirements, which
can be also augmented with blocking data flow in some of the
routes in order to divert the data flow.

In next section, we apply the model in the development of
Extensible Measurement System (EMS) that is used in Fermi
National Accelerator Laboratory for performing superconduct
tests.

IV. EMS FRAMEWORK

The Extensible Measurement System (EMS) framework is
developed in response to a need to build a system for research
and development environment characterized by high adaptabil-
ity to changing requirements, rapid development/modification
time, and flexibility in building families of related systems. It
is built based on the model described above and is targeted at
data acquisition, processing and analysis. The following lists
the main features that the framework possesses:

« Component technology to allow for reuse

« Architecture that supports extensibility

« Configurable applications

« Tailoring of applications at run-time

« Scripting to rapidly develop or modify applications

« Integrated application monitoring, debugging, and excep-

tion handling Highly-configurable components

« Universal components that accept various collections of

data items

The complete EMS system consists of components, an
execution environment, and various tools supporting devel-
opment. Figure 3 depicts an application development under
the framework. Our focus of this paper is on the components.
The following subsection discuss the components, execution
environment and tools in detail.

L) | Update
L § -
= SR T T T
7 Assemble ™ " FinalSystem
Assem i e
Problem Domain —>| . :)—»(I EETs Configuration |
AR y XML
- 1/ - s _
e T T
= el 7 Develop New
C! * } = < or Modify
d OI. Kxisting
o o . Compenents
P g "

Fig. 3. Application Development under EMS

A. Components

The EMS defines a set of interfaces and abstract implemen-
tations that form the basis for implementing the types of com-
ponents that are need to comprise EMS applications. Compo-
nents are independently released software module suitable for
composition (together with other components) into multiple

applications. Components have properties and state. Typical
components input, process, and output data. Their behavior
depends on their state and property values. Components can
be forced to perform certain actions by sending control events
to them. They also output debug and exception information.
In particular, in EMS, we have the types of components:

o Core components
— Application monitoring
— Scripting
— Event processing

« Data Presentation

— Graphing components
— Display components
« Control and Input
¢ Data Processing
« Data Input/Output

— File I/0
— Database access
— URL access

« DAQ

EMS provides for independent “wiring” of components for
property, data, exception, control, and debug events. Figure 4
depicts an example of an application built through wiring
components.

1) Model Implementation and Expansion: EMS expands on
the model presented in Section III by defining a hierarchy of
interfaces that classify the components into various categories
such as data processing component, visualization component,
supervisory component, management component, etc. A hi-
erarchy of abstract implementations of these categories has
been created in parallel to the interface hierarchy. A set of both
universal and specialized components have been developed for
particular vertical domains.

Components, depending on their category, have common
sets of properties. Two important mandatory properties of each
component that can be externally inspected but not manipu-
lated are state and error status. Each component is always in
one of its permitted states. The state of the component changes
in response to the receipt of a specific control event or as a
result of processing an input event. If, during processing, an
exceptional situation arises, the component changes its error
state to reflect this. This feature allows for easy monitoring
or self-monitoring of an application and the implementation
of various self-healing strategies, all of which depend on the
capability to detect incorrect behaviors of components.

All components have a basic set of state definitions with
corresponding control signals. These vary with components’
category. They also contain the definition of standard debug
categories and functionality to create and communicate debug
events of varying granularity. In addition, standardized cate-
gories of information severity have been defined, which can
be placed into events and directed to monitoring components.

All components in the data processing category are instru-
mented to evaluate data processing timing, crucial from the
point of view of on-line application processing time. This
feature enables detection of bottlenecks and estimation of the

971

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:4, 2007

M=

fi Visual Configurgtor 1.9

Help

ale [Ka

v[?]

—> data

EdiNumdisp

—F property 13
tral
—~ orieB o] oriec

— exception
Entpruperly ﬁemMun|
EehugJ —
ﬁmgf Comments ’;
Error '
Propery Yalue
ﬁeas(:untml algotithmDehugEnabled [false
5ataSaver

exceptionPrintingEnabled [true

debugPrintingEnabled false

eventiiriterDebugEnahled [false

haseFileMame

ExceptionLogi0327_sim

baseFileLocation

concatinateMode

frue

ovenariteMode frue
= iconxPosition 610.0
PlotterFux iconvPosition 7200
5 FluﬂerBuck
»; FFT
s L EuurdTransfurms
IMutiunMerger‘ TuxDC ﬁarumcess
BigBuck
MotiunFiIter| k:urrentPIot| [‘ElewFFT ﬁagHarm| purt‘
A PlotoTim ﬂ enterOffset
ﬁuﬂun(ﬁumruller‘ h
— |otterFFT
v HarmHumdisp
ﬁmiunpanel iexlDispIay
Yo

|\I:\EMS~?!UAVA~D$1emslcurehﬂsualldaq.xml

38 nodes 43 edges [

Fig. 4. Wiring components through visual configuration tool

throughput or reaction time of the system, and performing
reconfiguration decisions.

2) Types of Components: EMS comes with a variety of
components for data visualization, persistence, manipulation
of data streams, translation between events types, synchroniza-
tion between data streams and buffering, as well as monitoring
of the components state, manual manipulation of a component
attributes, etc.

All components in the framework can be placed either into
a supervisory and or a functional category, following the idea
of separation of concerns (Figure 5). Supervisory components
do not participate directly in processing data but rather are
involved in monitoring of other components, reconfiguration

of the routing, tailoring of other components, and various
coordination functions. A special example of a supervisory
component is a multi-language script executor.

Scripting is used as a mechanism of choice for rapid
development of new procedures or control sequences in EMS.
It is used as a pure control mechanism that does not manipulate
data directly, but only triggers and coordinates actions of vari-
ous components. It can also contain reconfiguration sequences.

EMS supports several mechanisms allowing for dynamic
adaptation of an application. One supervisory component
that provides manual property changes and examination at
runtime is the Property Controller component. This component
provides a list of all of the current values of all components

972

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:4, 2007

Supervisory layer

\2:5 ﬁ' .
‘ / Functional Layer

—> Data Path —> Property Path
— Control Path —> Exception Path
— Debug Path

Fig. 5. Separation of concern between supervisory and functional layers of
components

in the system and allows the user to change these properties
while the system is functioning. In addition, it allows for
sending of the control signals to a component that has been
designed to use. This helps in tailoring and adjustment of a
working application, and in integration testing and debugging
of a component.

B. Environment

The EMS framework also includes an environment nec-
essary to describe and initiate the system and a runtime
support for inter-component communication. The environment
supports the communication of various types of events. It also
allows for the collaboration of several systems of components
distributed between different nodes.

1) Software multi-bus: The major portion of the framework
consists of the software bus that supports communication using
the various event types as shown in Figure 6. Each of the
different type of events (data, properties, etc.) is independently
routed between the components in a system. Data events
also allow for further specification of their contents by using
predefined ports that describes the type of data being moved.
The multi-bus supports unicast, multicast and broadcast com-
munication patterns as well as source addressing.

2) Configuration: EMS systems are configured using an
XML dialect which also supports the inclusion of sub-
definition files and is therefore hierarchical.

Each component is detailed along with its properties. The
routing of the various event types between the components
is described in the configuration file. The initial state of a
component is controlled by defining control signals to be sent
to the component. A simple configuration may look as follows:

<!DOCTYPE configuration SYSTEM "ems.dtd">
<configuration version="0.1"
title="Display Test XML">

WW 1q ﬂm 1Mq

Adapter Adapter Adapter Adapter
! A 1 1
[P e - L X - m—
— p I |
— - - - 7
IR + i 11 1]

Adapter d h Adapter \J Adapter J h Adapter \J
- Data
| -~ | o

Fig. 6. Communication over a software multi-bus

<!-— Component definitions -->
<component id="Generator"
class="ems.core.cmpnnts.dsp.DataGnrtr">
<property name="delay"
value="10000"/>
</component>
<component id="Display"
class="ems.core.cmpnnts.SmplDataDsply">
<property name="title"
value="Display Component"/>
<property name="XPosition"
value="0"/>
<property name="YPosition"
value="500"/>
<property name="wrapLines"
value="true"/>
<property name="width"
value="400"/>
<property name="height"
value="250"/>
</component>

<!-- Routing information -->

<route type="Data"
origin="Generator"
destination="Display"/>

<!-- Control signals ——>

<control signal="init"
destination="!"/>

<control signal="start"
destination="1"/>

Besides the initial sequence of control signals in the XML
configuration, the system basically works similarly to a work-

973

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:4, 2007

flow system with components being purely data driven. The
necessary control on components states, or data flow pattern,
or the activation or deactivation of components is done by
supervisory components.

C. Tools

EMS contains a variety of tools designed to aid component
developers, integrators, and users of the system. A component
introspection tool is used by developers for component ver-
ification, allowing verification of the components adherence
to architectural requirements. The visual configuration tool
provides a graphical view of a set of components, with the
routing information displayed as arrows.The component names
and different event flow information are displayed in color,
and all property values for each component are available
for viewing. The graphical display can be manipulated to
rearrange the component boxes, and the final combination can
be stored with the configuration itself for later use with the
tool. Figure 3 is one of the UI interface of the tool. It is
a valuable aid for integrators in assembling components into
applications.

Another category of tools is focused on preparing and using
component documentation. An on-line component configura-
tion and selection tool is available on the web as a standalone
application. The documentation categorizes each component
and gives specific information on the states the component
can achieve and the attributes available to tailor it.

V. RELATED WORK

Separation of concerns has been a topic of interest and
research for quite some time, with Parnas’ article on decom-
posing systems [8] being its cornerstone. Recently, it has been
an area of intensive research that resulted in, among others,
the introduction of Aspect Oriented Programming (AOP) [13].
Inadequate separation of concerns is recognized as one of
bigger problems in contemporary software. Harrison and Tarr
[11] name it as a major barrier to portable and morphogenic
software. The component-based domain does not stay immune
to these trends, and the importance of the idea of separation
of concerns in combination with component-based technology
is an area of active research.

The OMG’s Corba Component Model (CCM) [17] intro-
duces a notion of a component container. The container is
an intermediary between the component, the Corba ORB and
Corba services. A container can be selected from several con-
tainer types depending on the component’s characteristics and
it provides non-functional services. The selection cannot be
changed at runtime, which limits the dynamic reconfigurability
based on non-functional properties.

Duclos and others [18] focus on non-functional aspects
in component-based applications and propose a solution that
merges a container-based approach to separation of concerns
with AOP’s approach. They distinguish between aspect de-
signer and aspect users and allow aspect designers to define
new aspects and aspect users to apply them to components.

The COMQUAD component model [19] extends the con-
cepts of Enterprise Java-Beans and CCM. Non-functional

aspects are “woven” into the running application by the
component container. At runtime, the component container
is responsible for selecting component implementations to be
instantiated based on non-functional requirements including
such QoS properties as timeliness, accuracy, precision, and
quality of video stream. The focus of the COMQUAD model
seems to be on the negotiation of required properties and
selection of appropriate implementations.

Sora and others [14] focus on self-customizable systems,
that is systems equipped with mechanisms to automatically
adapt themselves to a set of user requirements or to their
environment. Similar to the EMS framework, they address the
adaptability or reconfiguration problems through component
composition, but they propose to hierarchically decomposed
component systems, which differs from the approaches based
on separation of concerns as in EMS.

Nunn and Deugo [15] propose a system in which XML code
instructions tell a composition engine how to connect various
components to produce a running application. The approach
of using an XML-driven configuration is also presented in the
EMS framework.

VI. SUMMARY AND CONCLUSIONS

It is our belief that the concerns emerging throughout the
lifecycle of the system should be used as an architectural
basis for the design of a component-based framework. The
proposed model and framework based focus on separation
of concerns in the non-functional areas of testing, exception
handling, coordination, and reconfiguration. The emphasis of
this model is on the observability of the components and
their composability. The result is a framework that is suitable
for rapid application development and enhancement,is highly
adaptable and easily maintainable.

The framework described has been successfully used to
build several applications, some of them have been in use
for a while and have shown the advantages in adapting and
maintaining the applications. In particular, of special value,
especially in R&D environments, is the framework’s capability
to reconfigure and to easily adapt to changing requirements
and the capability to selectively debug and monitor com-
ponents at runtime. Under this framework, we are able to
examine, filter, persist and visualize data originated from any
output port of any component at any time, without impacting
core functionality of the system. This proved to be a very
valuable asset in our Technical Division for R&D purposes.

The EMS is still a very much active project, with its future
directed toward dynamic reconfiguration and adaptation for
on-line data acquisition and measurements.

ACKNOWLEDGEMENTS

The authors are grateful to all contributors to the EMS
project for their efforts in implementing and shaping the
framework. Special thanks go to Dana Walbridge, Sergey
Kotelnikov, and Gene Desavouret from the Technical Division
at Fermi National Accelerator Laboratory.

974

[10]

[11]

[12]

[13

[14]

[15]

[16]

(17
[18

[19]

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:4, 2007

REFERENCES

Weyuker E.J.: Testing component-based software: A cautionary tale.
IEEE Software, vol. 15, no. 5 (1998) 5459

P. Brereton and D. Budgen, Component-based systems: A classification
of issues. IEEE Computer, vol. 33, no. 11 (2000) 5462.

Clemens Szyperski, Component software: Beyond object-oriented pro-
gramming. ACM Press/Addison-Wesley, New York, NY, 1998

Griss M.: Implementing Product-Line Features By Composing Com-
ponent Aspects. First International Software Product Line Conference,
Denver, Colorado (2000)

Sun C.: Empirical Reasoning about Quality of Service of Component-
Based Distributed Systems. ACMSE’04, Huntsville, Alabama (2004)
Object Management Group. UML Profile for Modeling Quality of
Service and Fau;t Tolerance Characteristics and Mechanisms. Request
for Proposal, OMG document ad/02-01-07, Framington, MA (2002)
ITU-T Recommendation X.641 (1994), ISO IEC TR 13236, Information
technology Quality of Service Framework.

Parnas D.: On the Criteria to be used in decomposing systems into
modules. Communications of the ACM , vol. 15, no. 12 (1972)
Nogiec J., Sim J., Trombly-Freytag K., Walbridge D.: EMS: A Frame-
work for Data Acquisition and Analysis. ACAT2000, Batavia, Illinois
(2000)

Nogiec J., Desavouret E., Kotelnikov S., Trombly-Freytag K., and Wal-
bridge D.: Configuring Systems from Components: The EMS Approach.
ACAT’03, Tsukuba, Japan (2003)

Harrison W., Ossher H., Tarr P.: Software Engineering Tools and Envi-
ronments: A Roadmap 2000. Future of Software Engineering, Limerick,
Ireland (2000) 263-277

Tarr P., Harrison W., Ossher H., Finkelstein A., Nuseibeh B., Perry
D.: Workshop on multi-dimensional Separation of Concerns in Software
Engineering. Software Engineering Notes, vol. 26, no. 1 (2001)
Kiczales G. et al.: Aspect-Oriented Programming. Proceedings of the
European Conference on Object-Oriented Programming (ECOOP), Fin-
land, Springer-Verlag LNCS 1241 (1997)

Sora L., Verbaeten P., Berbers Y.: Using Component Composition for
Self-customizable Systems, Proceedings - Workshop On Component-
Based Software Engineering: Composing Systems from Components at
ECBS (Crnkovic, I. and Stafford, J. and Larsson, S., eds.), Lund, Sweden
(2002) 23-26

Nunn I, Deugo D.: Automated Assembly of Software Components
Based on XML-Coded Instructions, SAC 2002, Madrid, Spain ACM
(2002)

Guimaraes T.: Managing application program, maintenance expendi-
tures. Communications of the ACM, vol.26, no. 10 (1983)

Object Management Group. CORBA Components (2001)

Duclos F., Estublier J., Morat P.: Describing and Using Non Functional
Aspects in Component Based Applications. AOSD 2002, Enshede, The
Netherlands (2002)

Goebel S., Pohl C., Roettger S., Zschaler S.: The COMQUAD Com-
ponent Model, Enabling Dynamic Selection of Implementations by
Weaving Non-Functional Aspects. AOSD 2004, Lancaster, UK (2004)

975

