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Abstract—The identification and elimination of bad 

measurements is one of the basic functions of a robust state estimator 
as bad data have the effect of corrupting the results of state 
estimation according to the popular weighted least squares  method. 
However this is a difficult problem to handle especially when dealing 
with multiple errors from the interactive conforming type. In this 
paper, a self adaptive genetic based algorithm is proposed. The 
algorithm utilizes the results of the classical linearized normal 
residuals approach to tune the genetic operators thus instead of 
making a randomized search throughout the whole search space it is 
more likely to be a directed search thus the optimum solution is 
obtained at very early stages(maximum of 5 generations). The 
algorithm utilizes the accumulating databases of already computed 
cases to reduce the computational burden to minimum. Tests are 
conducted with reference to the standard IEEE test systems. Test 
results are very promising. 
 

Keywords—Bad Data, Genetic Algorithms, Linearized Normal 
residuals, Observability, Power System State Estimation. 

I. INTRODUCTION 
OWER system state estimation is the process of 
calculating a reliable estimate of the power system state 

vector composed of bus voltages angles and magnitudes from 
telemetered measurements on the system. This estimate of the 
state vector provides the description of the system necessary 
for the operation and security monitoring. However those 
telemetered measurements may have errors and those errors 
may affect the accuracy of the estimated values, thus many 
efforts were devoted for the issue of bad data identification 
and elimination. The most common approach is the use of the 
Linearized Normal Residuals (LNRs) in accordance with a 
statistical criterion (chi square test) however it showed many 
drawbacks as the identification procedure often can not 
pinpoint a single bad measurement but instead identifies a 
group of measurements some of which is bad. In such cases 
the group must be eliminated to eliminate the bad 
measurement. Moreover successive elimination of a group of 
measurements with the highest LNR may turn the network 
unobservable. Also, successive suppression of measurements 
with the highest LNRs may leads to suppression of the correct 
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measurements instead of the bad ones as shown in the famous 
case study  described in [1]. 

Bad measurements may also be identified by using a non-
quadratic state estimator in solving the state estimation 
problem such as the weighted absolute sum of residuals [2] 
owing to the automatic bad data rejection property of these 
estimators [3]. However it is subject to convergence problems 
and constitutes a huge computational burden. 

Reference [4] formulated the bad data identification 
problem as a combinatorial problem and solved it by the 
branch-and-bound method. However Branch-and-bound 
method may be replaced by faster non deterministic methods. 

Reference [5] used artificial neural networks to solve the 
bad data identification combinatorial problem. Tabu search 
was also proposed in [1]. 

Genetic algorithms were introduced in [6] to solve the bad 
data identification combinatorial problem. The authors tried 3 
different versions of genetic algorithms; the basic genetic 
algorithm, the micro-genetic algorithm and the single 
individual genetic algorithm. The number of state re-
estimations was reduced by using a database of already 
computed cases and a filtering mechanism was applied to skip 
non promising solutions; however the computational burden 
was still too high as it requires 100 generations to reach the 
optimum solution which makes it unsuitable to be used online . 

In this paper a new objective function for handling the bad 
data identification problem is proposed, methods to optimize it 
were implemented using a self adaptive genetic based 
algorithm. The algorithm utilizes the results of the classical 
linearized normal residuals approach to self tune the genetic 
operators thus instead of making a randomized search 
throughout the whole search space it is more likely to be a 
directed search thus the optimum solution is obtained at very 
early generations (maximum of 5 generation).  

The concept of the accumulating databases introduced in [6] 
is also adopted here to reduce the number of state re-
estimations to minimum . 

 Finally tests were conducted on standard IEEE test systems 
to test the robustness of the proposed algorithm and the results 
showed its high efficiency in identifying multiple errors from 
different types at very low computational cost.  

II. PROBLEM FORMULATION 
According to [4] the bad data identification problem is an 

optimization problem with a combinatorial nature. 
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For a system with m measurements the suspect 
measurement set is represented by an m-dimensional decision 
vector, b, in which: 

                        bi = 1     if the ith measurement is a bad data. 
                        bi = 0     if the ith measurement is good. 

 
Thus creating 2m possible decision vectors where each 

decision vector will represent a possible combination of good 
and bad measurements.  After each decision vector set (b) is 
formed, the state estimation problem is solved using only the 
unexcluded measurements and the decision vector is assumed 
valid if the updated resulting sum of residuals J[xnew (b)]  is 
less than the updated chi square threshold tJ (b)  keeping into 
consideration that set (b)  is sufficient to maintain the system 
observable. Those valid decision vectors are evaluated and the 
one with highest fitness is considered the optimum solution 
for the problem . 

According to [5] the occurrence of bad data is rather 
unlikely, the valid decision vector that includes least number 
of bad data is the one with the highest fitness. The problem of 
identification of bad data was formulated as follows: 

 

Minimize F(b) =
1

m

i
i

b
=

∑                                 (1) 

 
Subject to:               Set (b) is observable 
                                J [xnew (b)] < tJ(b)] 

 
However this is contradicted by the fact that in the case of 

multiple bad data, it is not necessary to eliminate all the bad 
data present among the measurements set for the resulting 
decision vector to pass the chi square test, moreover as shown 
in the test case presented in [1] upon the insertion of two 
interacting bad data from the conforming type in the 
measurements set, the LNR approach identified a good 
measurement instead of the two bad ones and eliminated it, 
however the updated decision vector (with two bad data 
present and without the excluded good datum) passed the chi 
test. 

Also considering that the lowest sum of residuals [J(x)] is 
obtained when the measurements set is free from bad data the 
authors proposed a modified objective function as follows: 

Minimize                

            21( ) [ ( )]m new
iiF b b A J x== + ×∑                 

                                                                                       (2) 
 Subject to:                                                                                                                
                               Set (d) is observable 
                               J [xnew (d)] < tJ (d) 
 
In our proposed form we aim not only to minimize the 

number of identified bad measurements among a certain 
measurements set that has to be excluded to pass the chi 
square statistical criterion, but we also aim to minimize the 
sum of residuals obtained by solving the state estimation 
problem using the rest of the unexcluded measurements 
keeping in mind not to exclude measurements that will render 
the system unobservable .A2 is the quality fitness weight; it 

assigns the weight given to the minimization of the 
measurement residuals on the expense of increasing the 
number of detected bad measurements. A small value for A2 
like 0.1 was found to give satisfactory results for both IEEE 6 
bus bars and 14 bus bars test systems. i.e. if we have 2 
possible decision vectors, set1 (b) has 6 detected bad 
measurements and set2 (b) has 5 detected bad measurements, 
both sets satisfied the specified constraints, set2 (b) is always 
favored to set1 (b) except if set1 (b) results in reducing a 
measurements residual less than that introduced by set2 (b) by 

at least  
2

1
A

. However for other test systems the optimum 

value of A2 could change and can be found by trial. 

III. IMPLEMENTATION 

A. Fitness Evaluation 
The fitness function used in this paper is  

  
                        Fmax -F(x)         , if F(x) < Fmax                                     

                                                              
Fit (x) =                                                                                  (3)                   

                        1                       , otherwise               
Where           
F(x) is the raw fitness function = -F(b)                      
Fmax   is the largest value of F(x) in the current population . 

The fitness function Fit (x) =
1
( )F b

     was adopted in [6] and 

was tested but it showed lower computational efficiency than 
the chosen form. 

B. Representation of Variables  
Since each gene in the decision vector has only 2 states, 

either (bi = 1     if the ith measurement is in gross error or bi = 
0     if the ith measurement is an accurate one) so the most 
appropriate representation of variables is the binary encoding. 

C. Using the Results of the Classical Approach to 
Generate the Probabilistic Linearized Normal Residuals 
(PLNRs) 

It is clear that as the LNR for a certain measurement 
increases its probability to be a bad measurement also 
increases, thus we introduced the concept of the Probabilistic 
Linearized Normal Residual (PLNR) as follows: 

 

PLNRi=

∑
=

=

mNj

j
j

i

LNR

LNR

1

                                   (4) 

 

The PLNR for a certain measurement is in the range between 
0 and 1 and it shows how probable a certain measurement is 
bad with respect to all other measurements.PLNRs will be 
used in the next sections to tune the genetic operators as well 
as generating the initial population.  



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:9, 2008

1913

 

D. Generating the Initial Population 
Initial population is generated in a deterministic manner 

associated with a random part.  Each chromosome 
(representing a decision vector) has number of genes equals to 
the number of measurements where each gene has 2 possible 
as stated before. 

We developed the following formula for the generation of 
initial population: 

 
           1 if PLNRi>mean(PLNRs)+[std(PLNRs)*A1*rand (1)] 

bi=                                                                                           (5)  

             0, otherwise   

Where mean(PLNRs) is the mean value for all the PLNRs 
in the decision vector, std(PLNR) is their standard deviation, 
rand(1) is a random number between 0 and 1 to guarantee the 
diversity required for the genetic operation. 

A1 is the window factor; it determines the range of suspect 
of the presence of bad measurements. At the beginning the 
window factor is set to a high value (15 for example) thus we 
suspect only measurements whose PLNRs are greater than the 
mean value of all PLNRs by 15 times the standard deviation to 
be bad. After the generation of the first chromosome 
(representing a possible decision vector) we check the validity 
of such chromosome (whether it satisfies the constraints or 
not); if not we generate another chromosome and check its 
validity. After 10 unsuccessful trials to generate a valid 
chromosome at the initial window ratio specified (A1=15) it is 
revealant that we have a good reason to suspect the presence 
of more bad measurements than the ones included in such 
window so we have to increase our window of search 
(decrease A1 to 14) and so on. This guarantees that we narrow 
the search space as much as possible to obtain the solution in 
early generations. 

E. Handling Constraints 
Since genetic algorithms (GAs) are directly applicable only 

to unconstrained optimization, it is necessary to use some 
additional methods that will keep solutions in the feasible 
region. During the past few years, several methods were 
proposed for handling constraints by GAs. Most of these 
methods are problem-dependent (i.e. specific algorithm has to 
be designed for each particular problem). The most popular 
approaches in GA community to handle constraints are the 
following techniques 

• Penalty technique 
• Rejection Technique 
• Repairing technique 

The technique adopted for each constraint introduced in Eq 
2 depends on the constraint itself: 

Observability constraint: two techniques are adopted here; 
if the system is unobservable due to the removal of 1 critical 
measurement only, the resulting decision vector can be 
repaired by finding out the critical measurement identified as a 
bad one and assigning it to be valid measurement again i.e. 
changing bi =1 into bi= 0 (repairing technique). This is 
because critical measurements can be identified easily as they 
are the ones with zero measurement residuals. 

 However if the system is unobservable due to insufficiency 
of measurement devices or simultaneous removal of a critical 
pair or critical k-tuple measurements , repairing techniques 
involves finding out the unobservable islands and the 
locations measurement devices are to be placed  to restore 
observability. This can be carried out by numerical 
observability methods but it will introduce great 
computational burden, so instead the simple observability 
algorithm based on the topological observability concept 
described in [7] will be adopted here to check whether the 
system is observable for a certain decision vector or not and if 
the resulted decision vector was found to be insufficient to 
make the system fully observable it will be rejected and a new 
one is generated which will save a huge computational 
burden. 
Chi test constraint: the resulted decision vector is checked to 
find out whether it passes the chi test i.e. the updated sum of 
residuals after solving the state estimation problem using only 
the good measurements J [xnew (b)] is less than the updated chi 
square threshold tJ (b), if not it will be rejected and another 
decision vector will be generated instead. This insures that all 
chromosomes existing in different populations are valid ones, 
which resulted in reducing the computational burden 
significantly and the optimum solution is obtained at very 
early generations. 

F. Genetic Operators 
i. i) Population size: The use of the rejection technique for 

decision vectors that violate the problem constraints 
allowed us to use a reduced population size. The 
population size adopted here is equal to the square root of 
the number of measurements. 
ii) Maximum generations: One of the greatest advantages 
of the proposed algorithm is that the solution is obtained 
at early generations, so a maximum number of 
generations equals to 5 is enough to guarantee obtaining 
optimum solution even for large power systems. In many 
of the test cases the optimum solution was obtained 
before the 5th generation as will be shown. 
iii) Crossover probability: Since we used reduced 
population size, it is recommended to increase the 
crossover probability to favor exchanging genetic 
properties between different chromosomes in the same 
generation, that's why a fixed crossover probability of 
unity was used. 
iv) Selection: Roulette wheel selection is adopted here. 
v) Mutation probability: Mutation is responsible of 
producing random changes to the values of different 
genes in a chromosome. 
A variable mutation probability is proposed as follows: 
       
       1     , if    bi = 0 & rand (1) < PLNRi 

bi=                                                                                          (6)                  
       0     , if    bi = 1 & rand (1) > PLNRi 
 

This ensures that each gene is more probably to go mutation 
(its value is more probable to change from 0 to 1) as its PLNR 
increases (as it is more probable to be a bad measurement) and 
vice versa .The use of the variable mutation probability 
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introduced above caused great improvement in the 
performance of the suggested algorithm. 

G. Computational Burden Reduction Techniques 
It is clear that running the state estimation subroutine for a 

certain decision vector constitutes a major load of the 
computational burden, so the concept of accumulating 
database was used in this algorithm to reduce the 
computational burden. 

Two databases are created, one that includes all the 
evaluated decision vectors that satisfies all the system 
constraints and the other includes the invalid ones. Before 
running the state estimation subroutine for a newly generated 
decision vector it is compared first with those stored in the 2 
databases; if found there is no need to re-estimate the system 
states, if not found in any of them  it will be evaluated and 
added to the appropriate database. 

Also using the rejection technique for decision vectors that 
violate the observability constraint saves the time and 
computational load that would have been consumed in 
determining the unobservable islands and finding the 
necessary measurements among the assumed bad ones that 
have to be added to restore observability. 

IV. TESTS AND RESULTS 
The algorithm was implemented in a software package 

using the MATLAB Programming language. It was tested on 
some standard IEEE test systems. All tests were carried out on 
a 3.6 GHz Pentium IV, 2 Giga Bytes Ram PC. 

 
A.   Tests on Standard IEEE 6 Bus Bars Test System 

 
TABLE I 

TESTS 1 & 2 ON THE STANDARD IEEE 6 BUS BARS TEST SYSTEM 
Test Number Test 1 Test 2 

True P1= 1.079 
Q1= 0.16 

P2=0.5 
P21=-0.278 

Inserted P1= -1.131 
Q1= -0.202 

P2=1.3 
P21=-0.75 

 
 

Bad 
Measurements 

Estimated P1=  1.1043  
Q1=0.1698 

P2=0.474 
P21=-0.286 

No. of detected bad data 2 2 
Valid 52 58 Evaluated 

points Invalid 17 89 
Valid 76 128 Data Hits 

Invalid 28 513 
Execution time(seconds) 3.562 3.66 
Gen. at which optimum 

solution is obtained 
1 1 

 
Type of bad data inserted  

Multiple 
interacting  

non 
conforming 

Multiple 
interacting  

non 
conforming 

Updated sum of residuals 
J(xnew) 

40.6470 39.6416 

 
 
 

TABLE II 
TESTS 3 & 4 ON THE STANDARD IEEE 6 BUS BARS TEST SYSTEM 

Test Number Test 3 Test 4 
True P14= 0.436 

Q14= 0.201 
P25= 0.155 
Q25= 0.154 
P36= 0.438 
Q36= 0.607 
P53= -0.18 

Q53= -0.261 

P2=0.5 
P24=0.331 
Q2=0.744 
Q24=0.461 

Inserted P14= -0.389 
Q14= -0.212 
P25= -0.174 
Q25= -0.22 
P36= -0.433 
Q36= -0.583 
P53= 0.251 
Q53= 0.299 

P2=0.968 
P24=0.656 
Q2=1.44 

Q24=0.766 

 
 

Bad 
Measurements 

Estimated P14=0.4523 
Q14=0.2588 
P25=0.1524 
Q25=0.1873 
P36=0.4317 
Q36=0.6078 
P53=-0.1773 
Q53=-0.2066 

P2=0.4607 
P24=0.3189 
Q2=0.7088 

Q24=0.4860 

No. of detected bad data 8 4 
Valid 70 63 Evaluated 

points Invalid 294 192 
Valid 205 37 Data Hits 

Invalid 176 300 
Execution time(seconds) 4.05 3.78 
Gen. at which optimum 

solution is obtained 
3 5 

 
Type of bad data 

inserted 

Multiple 
interacting 

non 
conforming 

Multiple 
interacting 
conforming 

Updated sum of residuals 
J(xnew) 

33.2812 38.5147 

 

  
Fig. 1 IEEE 6 Bus bars system test 
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B.  Tests on Standard IEEE 14  Bus Bars Test System 
 

TABLE III 
TESTS 1 & 2 ON THE STANDARD IEEE 14 BUS BARS TEST SYSTEM 

Test Number Test 1 Test 2 
True P1=  2.3227  

Q1=-0.225 
P42=-0.5448 
P45=-0.6108 

V2=1.045 
V3=1.01 

V4=1.019 

Inserted P1=0.2 
Q1=-2 

P42=-1.2 
P45=-2.3 

V2=0.5 
V3=1.4 
V4=0.8 

 
 

Bad 
Measurements 

Estimated P1=2.259 
Q1=-0.2343 
P42=-0.539 

P45=-0.6025 

V2=1.0469 
V3=1.0114 
V4=1.0209 

No. of detected bad data 4 3 
Valid 97 87 Evaluated 

points Invalid 461 16 
Valid 44 149 Data Hits 

Invalid 709 80 
Execution time(seconds) 51.0875 11 
Gen. at which optimum 

solution is obtained 
1 2 

 
Type of bad data inserted 

Multiple 
interacting 

non 
conforming 

Multiple non 
interacting 

Updated sum of residuals 
J(xnew) 

3.0877 3.2682 

 
TABLE IV 

TESTS 3 & 4 ON THE STANDARD IEEE 14 BUS BARS TEST SYSTEM 
Test Number Test 3 Test 4 

True P2=0.1847 
P24=0.5616 
P25=0.4153 

P2=0.1847 
P21=-1.5242 

Inserted P2=2 
P24=1.8 
P25=1.5 

P2=1.2 
P21=-3.5 

 
 

Bad 
Measurements 

Estimated P2=  0.2706  
P24=0.567 
P25=0.423 

P2=  0.2692  
P21= -1.4617 

No. of detected bad data 3 2 
Valid 90 88 Evaluated 

points Invalid 346 48 
Valid 142 260 Data Hits 

Invalid 699 66 
Execution time(seconds) 46.469 13.563 
Gen. at which optimum 

solution is obtained 
1 1 

 
Type of bad data inserted 

Multiple 
interacting 
conforming 

Multiple 
interacting 
conforming 

Updated sum of residuals 
J(xnew) 

2.2498 2.3708 

 

TABLE V 
TESTS 5 & 6 ON THE STANDARD IEEE 14 BUS BARS TEST SYSTEM 

Test Number Test 5 Test 6 
True P15=0.7556 

Q15=0.0087 
P24=0.5616 
Q24=-0.042 
P25=0.4153 
Q25=-0.010 
P42=-0.5448 
Q42=0.0203 

 
P21=-1.5242 
P24=0.5616 
P25=0.4153 
Q21=0.2477 
Q24=-0.042 
Q25=-0.010 

 
Inserted P15=2.3 

Q15=1.9 
P24=3.7 

Q24=-2.4 
P25=1.8 

Q25=-2.2 
P42=-3.7 
Q42=2.1 

 
P21-2.9 
P24=1.7 
P25=2.2 
Q21=3.4 
Q24=-2.1 
Q25=-5.6 

 
 
 
 
 
 
 
 
 
 
 

Bad 
Measurements 

Estimated P15=  0.7335  
Q15=  0.0066  

P24=0.55 
Q24= -0.0399 
P25=  0.4066  
Q25=-0.0081 
P42=-0.5339 
Q42=  0.0164  

 
P21=-1.4776 
P24=0.5538 
P25=0.4102 
Q21=0.2410 
Q24=-0.0401 
Q25=-0.0084 

 
No. of detected bad data 8 6 

Valid 111 107 Evaluated 
points Invalid 639 438 

Valid 272 343 Data Hits 
Invalid 194 254 

Execution time(seconds) 56.281 47.328 
Gen. at which optimum 

solution is obtained 
4 4 

 
Type of bad data inserted 

Multiple 
interacting 

non 
conforming 

Multiple 
interacting 
conforming 

Updated sum of residuals 
J(xnew) 

2.5277 3.1389 

 

 
Fig. 2 IEEE 14 Bus bars test system 
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V. DISCUSSION 
The proposed algorithm showed supreme efficiency in 

identifying all the bad measurements present in a certain 
measurements set owing to the robustness of the modified 
objective function presented in equation 2 even when 
introducing eight bad measurements (as in tests  3 and 5). 

The algorithm was able to identify only the bad 
measurements and not a group of measurements some of 
which is bad which is the case in the classical approaches. 

The enhancements in the genetic operation made it possible 
to obtain the optimum solution at very early stages of the 
program, in many cases solution was obtained in the first 
generation which proves the efficiency of the proposed 
technique used to generate the initial population. 

 Moreover the use of the accumulative databases concept 
reduced the execution time of the program that it becomes 
much faster than the algorithms described in the literature. 

 We notice that the sum of residuals (J (xnew)) and 
consequently the errors in the estimated state variables 
obtained for tests applied on 14 bus bars test system are much 
less than those obtained for the 6 bus bars test system. This 
can be justified that the degree of freedom in 14 bus bars test 
system is 95 (122 available measurements are used to estimate 
27 state variables) while for the 6 bus bars test system the 
degree of freedom is 51 (62 measurements are used to 
estimate 11 state variables) and thus for the 14 bus bars test 
system we have more redundancy, similarly we conclude that 
for practical systems (  118 and 300 bus bars test systems) we 
will have more redundancy and thus even better results can be 
obtained.  

Power systems tend to be static in nature (its operating 
conditions do not change rapidly) thus the run time of the 
program (less than 1 minute) makes it possible to use our 
proposed algorithm in practical Energy Management Systems 
(EMS) in the online mode to identify bad data especially when 
using a supercomputer instead of a PC. 

VI. CONCLUSION 
A new robust algorithm for handling the bad data 

identification problem was introduced in this paper. A 
modified objective function is proposed where we aim not 
only to minimize the number of identified bad measurements 
among a certain measurements set that has to be excluded to 
pass the chi square statistical criterion, but we also aim to 
minimize the sum of residuals obtained by solving the state 
estimation problem using the rest of the unexcluded 
measurements keeping in mind not to exclude measurements 
that will render the system unobservable.  We proposed a self 
adaptive genetic based technique that uses the results obtained 
from the chi square statistical criterion to calibrate the genetic 
algorithm (GA) parameters in order to pinpoint suspected 
measurements . 

The algorithm was tested on the IEEE standard 6 bus bars 
test system and 14 bus bars test system and it showed supreme 
performance. 

The self adaptation methods and the accumulative databases 
concept introduced in the proposed algorithm resulted in a 
significant reduction in the computational time as the 

algorithm performs a directed search rather than a randomized 
search throughout the whole solution space and thus 
convergence can be attained at early generations (maximum of 
5 generations) using a small population size (square root the 
number of measurements). Moreover it showed 100% 
efficiency in eliminating all the bad data present in a certain 
measurement set. 
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