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Abstract—The mechanical behavior of porous media is governed
by the interaction between its solid skeleton and the fluid existing
inside its pores. The interaction occurs through the interface of grains
and fluid. The traditional analysis methods of porous media, based on
the effective stress and Darcy’s law, are unable to account for these
interactions. For an accurate analysis, the porous media is
represented in a fluid-filled porous solid on the basis of the Biot
theory of wave propagation in poroelastic media. In Biot
formulation, the equations of motion of the soil mixture are coupled
with the global mass balance equations to describe the realistic
behavior of porous media. Because of irregular geometry, the domain
is generally treated as an assemblage of finite elements. In this
investigation, the numerical formulation for the field equations
governing the dynamic response of fluid-saturated porous media is
analyzed and employed for the study of transient wave motion. A
finite element model is developed and implemented into a computer
code called DYNAPM for dynamic analysis of porous media. The
weighted residual method with 8-node elements is used for
developing of a finite element model and the analysis is carried out in
the time domain considering the dynamic excitation and gravity
loading. Newmark time integration scheme is developed to solve the
time-discretized equations which are an unconditionally stable
implicit method. Finally, some numerical examples are presented to
show the accuracy and capability of developed model for a wide
variety of behaviors of porous media.

Keywords— Dynamic analysis, Interaction, Porous media, time
domain

I. INTRODUCTION

he dynamic response of fluid-saturated porous media during

earthquakes has been extensively studied in recent years. The
investigation of wave motion in fluid-saturated porous media is
attracting more attention because of its significance in a great number
of practical engineering problems. A porous medium is an
assemblage of the solid particles forming a skeleton whose voids are
filled with fluid. The analysis of porous media requires a rigorous
procedure that can properly characterize the interactions. The first
continuum theory of porous media was developed by Biot and used
to describe the behavior of porous media saturated by a fluid [1].
This theory was later generalized to determine the finite
deformations of saturated porous media [2]. At a later stage the
mixture theory restricted by the volume fraction concept
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provided a new basis for such coupled phenomena. A survey
of the historical development of the porous media theory and a
discussion of inconsistencies implicit in the mixture theory
has recently been given by de Boer [6]. His work ends with an
introduction of the model developed by de Boer [7].

Most of the problems of the two-phase behavior of a fluid-
saturated porous medium can only be predicted quantitatively
by elaborate numerical computation, which is possible today
due to the development of powerful computers.

Only a few analytical solutions are available, for example
de Boer ef al. [8]. These analytical solutions have been used to
verify the numerical results based on the same theory in a
former investigation. For practical work with arbitrary
boundary condition we must use the finite element method.

In this paper, the governing equations of motion of the soil
mixture are coupled with the global mass balance equations
and necessary assumptions are made to obtain the equivalent
Biot’s equations from the general balance equations. The
u,—P-u, formulation is used in the finite element spatial

discretization, where u_, P and u fdenote solid skeleton

displacement, pore water pressure and fluid displacement,
respectively. Obtained results show the capabilities of the
proposed formulation on pore water pressure generation and
strength loss occurred in loose granular soil deposits under
seismic loading. The computed results show good agreement
in comparison with the experimental data. It is concluded that
the developed Biot formulation and computational procedure
are an effective means to assess the dynamic deformation and
induced hydrodynamic pressure of saturated sediment under
dynamic loading. The presentation may also be used to make a
critical comparison between various numerical and analytical
results, as well as to provide an alternative understanding of
the mechanism of wave propagation in fluid-saturated porous
materials.

II. FIELD EQUATION FOR SATURATED SOILS

The governing equations for sediment domain are defined
as following:
Mass conservation for the mixture:

ﬁaij+(1—n)(v.V;,)+n(v.Vf):0 (1)

B ot

Balance of linear momentum in the solid phase:

401



International Journal of Architectural, Civil and Construction Sciences
ISSN: 2415-1734
Vol:3, No:10, 2009

ov,
(I1-n)p, o +(=nm)pV NV, =(1=n)pb, )

+F -V1.+(1-nVP=0

Balance of linear momentum in the fluid phase:

oV
np‘,‘a—tf+np/Vf.VVf —np,b, +F, +nVP =0 (3)

A linear constitutive relation for the interacting forces can
be used for the soil. This constitutive relation can be selected
as Darcy’s law of flow. The balance of linear momentum for
the solid and fluid phase can be written as:

A-n)p,ii, +(1-n)p, (u,Vu)—(1-n)pb, +

n’ 4)
P18 (i, —ii,) =Vl +(1-mVP =0

k,

np iy +np i, Vi —np b, —

n? (5)
P18 i, —ii ) +nVP =0
k,

In the above equations, n is the soil porosity, p; and
p,are the density of soil and water, F, and F , are the
interaction forces, b and b , are the global forces related to

the body forces exerted on the solid and fluid phases,
respectively, £ is the bulk modulus of the fluid, & s is the
coefficient of permeability, P is the pore pressure magnitude,

i and i, are the soil and water accelerations, #_ and %
s f s f

are the soil and water velocities, #_  and u sare the

s
displacements of soil and water phases and 7! is the effective

stress.

II. FEM FORMULATION OF GOVERNING EQUATIONS

The governing equations of motion for the solid and fluid
phases and the mass balance of the mixture can be expressed
on the matrix form, which is convenient for finite element
coding. The velocities and accelerations are expressed as the
first and second derivatives of displacements, respectively.

By combining the equations (1), (4) and (5), a system of
discretized governing equations in the following form will be
obtained:

[M]{a} +[CHv} + [K]{d} = {F} (6)

Where [M] is the generalized mass matrix, [C] is the
generalized damping matrix, [K] is the generalized stiffness
matrix, {F} is the force vector and {a}, {v}and {d} are the

generalized acceleration, velocity and displacement vectors,

respectively. Here, the term displacement vector is used for
{d} even though it contains displacements and pressures.

’:S uS
In the recent equation, {a} = ]3 > {v) = ]3 ,
i, i,
2 Fy+F,~F,
{d} =41 P and (F) = 0
ﬁf' F / _F./P
Generalized matrices are defined as follows:
M, 0 0
[M]=] 0 O 0 @)
0O 0 M 7
R . +C, O -Cy
[C]= Sp, O S Pr ®
- Cfs 0 R st C 7
Kss - SSP 0
[K]=] O 0 0 O]
0o -5 » 0

In the above equations, the components of matrixes are
defined as follows:

nes

Fy=Y [N (1-n)p,bidQ; (10)
e=1 Q¢

F, = HZE ijTr;endS_f 11
el st

Fp = Z foT(l—n)PEde (12)
e=1 S:
nef o7 . .

Fp =2, [N} np,bid; (13)
e= Qc;
”ef ET e e

Fp= Z}“ ij nP°ds’ (14)
e= S‘;

M, = Z ijT(l—n)pijiidej (15)
e=1 R,
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nef

M= [Ny np, NidQ; (16)
e= IQ/
=y .[Nf (1=n)p,[(Ni) VN 1dQ (17)
e= lR
c, =y v png “d0’ (18)
e=l o¢ kf
nes zp g
Cy = [N =N (19)
e=l ¢ kf
neP
S, jN@ (1-n)(V.N)d, (20)
e= IQP
neP T n )
0,=Y jN; ZNLAQ, @21
e=1 o¢, ﬂ
neP
Sy=> jN@ n(V.N%)dQ, 22)
e= lQ<
o P/g
Co=> [Ny NEdQY, (23)
e= IQL
nef’ R
Ry =Y [Ny np [(Nyis) VN;1dQ 4)
e= IQE
ne/
> v p /8 SN (25)
e= 1Qe » »
K, =3 jB‘ D¢B!dQ (26)
e=1 Q¢
Sy = (VNI A =nm)N;dO; 27)
e=1 Q¢
j(v.N;.T)nN;;dQ; (28)

f

The numerical solutions can be obtained by putting the
selected constitutive model in equation (6) and integrating the
equations in the time domain as well as the space domain.

IV. NUMERICAL EXAMPLES

The finite element discretization and numerical time
integration procedures developed in previous section have
been implemented into a FORTRAN finite element code
called DYNAMP, which is created by author. In this code, the
fluid displacement, the solid displacement and the fluid
pressure are used as nodal unknown variables. The 8-node
quadrilateral elements are employed for both displacement
and pressure. It was shown that this kind of elements is more
efficient and gives accurate results than the other elements.
The code allows for static and dynamic 2-D analysis of
saturated porous media.

A. Centrifuge modeling of soil liquefaction

This model has been set in the base of Bao’s experimental
study in 2005. This test is a centrifuge modeling of a saturated
soil with 16 meter length and 10 meter height which contains
sand and water. The initial void ratio of the soil was measured
as 0.776 and input acceleration was in the form of sinusoidal
wave with 0.2g amplitude, 1 Hz frequency and 10 second time
duration. The cross-section of developed model with the
layout of instrumentation is shown in Fig. 1 [10].

— — l ~
o 2m
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) 2m
= O
= 2m
Loose _/ 2m  Absorbing
iquefiable sand = ~ T16m boundary

—» LVDT
©  Pore water pressure transducer
+— Accelerometer

Fig. 1 The cross-section of the model and its instrumentation layout

Fig. 2 shows the results for excess pore water pressure
distribution in 9.6 m depth. This figure also shows clearly that
the induced progressive pore water pressure is accompanied
by a cycle-by-cycle pore water pressure variation.
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Fig. 2 The excess pore water pressure time history at depth= 9.6 m
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B. Reservoir simulation

The effect of constant load on dynamic response of porous
media has been investigated in this example which was
performed by Zheng et al. (2005). Consider a two-dimensional
porous sample shown in Fig. 3, whose dimensions are 2 meter
length and 3 meter height, under a gravity loading. The
horizontal motions of its left and right boundaries are
restricted and the vertical displacement at its bottom is also
constrained to zero [9].

[CHONG)

im

[OHONONONE,

[OHG]

) C C C

2m

Fig. 3 A porous sample under gravity load

After analyzing the finite element model for this case, the
pore pressure distribution and vertical displacement of the
model is obtained. Numerical results of the pore pressure and
vertical displacement are shown in Fig. 4 and 5, along with
the Zheng’s model results. Comparison of the finite element
model results with Zheng’s model results shows very good
agreement. According to obtained results, it can be concluded
that the pore pressure inside the porous sample shows a linear
relation with the height, while the vertical displacement of the
solid phase is a quadratic function of the height under gravity
load.
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Fig. 4 The pore pressure inside the model under gravity load
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Fig. 5 The vertical displacement of the sample under gravity load

C. Elastic response of saturated soil column subjected to

loading

Usually, the governing equations described should be
solved by numerical methods. However, for one-dimensional
small strain case, the analytical solution is available, in which
the small variation of the volume fraction is approximately
neglected.

In this section, an illustrative example of a soil column
subjected to surface loading is investigated. A number of
results obtained from the numerical solution of water-
saturated soil column is presented and compared with the
analytical solution. The loading function at the surface

isa(0,¢) = f(¢), where f(¢) is chosen to be a sinusoidal

function. The physical and mechanical properties of the soil

are assumed as shown in Table 1.
TABLEI
MATERIAL PROPERTIES

p. = 24001‘—%
m

kg
pf = 1000;

A, =5.5833MN / m’

i, =8.3750MN / m’
n=033, v=0.2

Where A, and 4 are the lame’s constants of soil skeleton

and V is the poison factor.

The problem is defined in Fig. 6. A one-dimensional
infinite soil column is separated from a half space consisting
of soil deposit saturated by water. On the surface, the soil
column is subjected to a load f(¢). It is assumed that the

surface is a drained boundary. Analytical solution of the
problem has been presented by de Boer et al. [7]. This
example is introduced to demonstrate the capability of the
code in capturing the different boundary conditions and to
check the efficiency of the model.

In order to model the infinite soil column by using the finite
element method, a soil column with a length of 10 m is
considered.

a5 = F(t) P(0,5)=0
Y ¥ ¥ v v ¥ [V ¥ v v ¥ ¥

Fig. 6 Geometry of the investigated problem
In the case of sinusoidal loading, the responses of the solid

and liquid displacements versus time and depth measured
from the free surface are shown in Fig. 7 tol1.
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The numerical displacements and pore water pressure at
various depths and times are reported and compared with
analytical solutions in fig. 7 to10, respectively.
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:z’ 0.025 —— Analytical results
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Fig. 7 Comparison of numerical and analytical response
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Fig. 8 Comparison of numerical and analytical response
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Fig. 9 Comparison of numerical and analytical response of solid
displacement vs. time at depth 0.0 m
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Fig. 10 Comparison of numerical and analytical response of fluid
displacement vs. time at depth 0.0 m

Fig. 11 presents the time variation of displacements and
pore water pressure for different depths. In all the
comparisons, the numerical results agree favorably with the

analytical solutions.
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Fig. 11 Comparison of numerical and analytical response of pore
pressure vs. time at depth 1.0 m

V. CONCLUSION

A perfect numerical model for a transient analysis of a
liquid-saturated elastic porous skeleton was presented in this
paper. For numerical modeling, the finite element formulation
for wave propagation in poroelastic solids has been reviewed
to include a standard Galerkin weighted residual formulation
more general and concise than those existing in the literature.
The technique is an enhanced represented as a two-phase
poroelastic region with all features of wave motion in which
the dynamic behavior is described by Biot’s equations.

Various examples were considered to describe and validate
the accuracy of numerical procedures for transient problems in
such media. All comparisons in the model testing show that
the obtained results from this model give excellent
agreements. This work can provide the further understanding
of the characteristics of wave propagation in porous materials
and may be taken for a quantitative comparison to various
numerical solutions.
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