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Abstract—Mapping between local and global coordinates is an 

important issue in finite element method, as all calculations are 
performed in local coordinates. The concern arises when sub-
parametric are used, in which the shape functions of the field variable 
and the geometry of the element are not the same. This is particularly 
the case for *C elements in which the extra degrees of freedoms 
added to the nodes make the elements sub-parametric. In the present 
work, transformation matrix for 1*C  (an 8-noded hexahedron 
element with 12 degrees of freedom at each node) is obtained using 
equivalent 0C elements (with the same number of degrees of 
freedom). The convergence rate of 8-noded 1*C element is nearly 
equal to its equivalent 0C  element, while it consumes less CPU time 
with respect to the 0C  element. The existence of derivative degrees 
of freedom at the nodes of 1*C element along with excellent 
convergence makes it superior compared with it equivalent  0C  
element. 
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I.  MAPPING CONCEPT 
LEMENTS are divided into 3 categories in finite element 
method. These are: iso-parametric, sub-parametric and 

super-parametric elements. Iso-parametric elements are those 
in which the shape functions for both the field variable and the 
geometry of the element are the same. For two dimensional 
iso-parametric elements we have: 
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All calculations in finite element methods are usually 
carried out in local coordinates, ξ  and η . The transformation 
between derivatives of shape functions in global and local 
coordinates for two dimensional iso-parametric elements is 
performed using Jacobian matrix which is defined as follow: 
 

[ ]1 1

1 1

n n
i i i

i i i i
i i
n n

i ii
i i i i

i i

N N NN x N y
x xJ
N NN

N x N y y y

ξ ξ
ξ

η η
η

= =

= =

∂ ⎡ ⎤⎡ ⎤ ∂ ∂⎡ ⎤ ⎡ ⎤∂ ∂⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =
∂ ∂⎢ ⎥∂⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂∂ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

∑ ∑

∑ ∑
          (2) 

 
 

Manuscript received 15 December, 2006. This work is part of a MSc thesis 
conducted at Azad university, Hamadan, Iran.  

G. H. Majzoobi is a member of academic staff of Azad university in 
Takestan,  Iran. Tel: 0098-282-5226945, Fax: 0098-282-5226016, e-mail: 

gh_majzoobi@yahoo.co.uk.. 
B. Sharifi Hamadani is a member of academic staff of Hamadan Azad 

University in Hamadan, Iran. 

Equation (1) for super-parametric and sub-parametric 
elements is defined as follows [2]: 
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Fig. 1 (a) An element with global and local coordinates and  

(b) a 1*C  element 
 

II.  EXTRA DEGREES OF FREEDOM 
The addition of extra degrees of freedom to the nodes of an 

element is one of the most important subjects in finite element 
method. The extra degrees of freedom were first propounded 
by Tocher [3] and by Turner and Al [1] in 1965 by presenting 
a triangular element which was modified later by Clough [4]. 
This element could not be used in the structures which were 
subjected to rotational bending. In order to overcome this 
shortcoming, Tocher and Hartz [1] added the nodal rotations 
to the triangular nodes and presented an element with 18 
degrees of freedom in 1967. This element proved not to be 
very effective in finite element computations.  Further 
attempts to develop elements capable of handling the corner 
rotational deformations such as the work by Irons and Ahmad 
[5] were unsuccessful until 1980’s during which Allman [6] 
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and some other researchers introduced 3-noded triangular 
elements using quadratic variation for deformation instead of 
cubic equations as had employed by the previous researchers. 
One of the most recent attempts has been made by Bigdeli [1] 
who developed two dimensional elements known as 

*C elements. He introduced various order derivatives of the 
field variable to the nodes and obtained higher convergence 
and efficiency for their elements. In this work, the work 
carried out by Bigdeli [1] is extended to three dimensional 
elements. 
 

III. *C ELEMENT FAMILY 
The first element in the family of two dimensional 

*C elements is a 4-noded quadrilateral element shown in Fig. 
1(a). The element with only 2 degrees of freedom at each node 
is called 0*C element with the shape functions defined as [2]: 

( )( )1 1 1     (i=1,2,3,4)
4i i iN ξ ξ ηη= − −                    (4) 

The second element called 1*C  and shown in Fig. 1(b) is a 
4-noded quadrilateral element with 12 degrees of freedom 
including the field variable derivatives at each node. This 
element utilizes the following polynomial for the field variable 
in each direction [1]: 
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The 12 constants of the equation are obtained using the 12 
nodal degrees of freedom in each direction shown in Fig.  
1(b).  The shape functions of this type of element are given as 
follows [1]: 
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A 1*C  quadrilateral element with 12 D.O.F. at each node is 
depicted in Fig.  2.  The field variable function of this element 
is expressed as follows in each direction: 
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Fig. 2 A 1*C  element with 12 D.O.F. at each node 

 

IV.  3-D 1*C ELEMENT 
In the present work we have extended the 2-D dimensional 

*C  elements to 3-D cases. Since the field variable function of 
this element and its shape functions are too long, only the 3-D 
8-noded 1*C element is presented here. This element, as shown 
in Fig. 3, has 12 D.O.F at each node. 

The field variable function of this element is expressed as 
follows: 
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The shape functions of this element are lengthy and can be 

found in reference [7].   
 

V.  MAPPING IN 3-D 1*C ELEMENTS 
In order to achieve mapping for *C  elements we can use 

their equivalent 0C  elements. For instance, a 32-noded 0C  
hexahedron element with 3 D.O.F. at each node can be used 
for a 1*C  8-noded hexahedron element with 12 D.O.F at each 
node, as shown in Fig. 4. Therefore, both elements will have 
96 D.O.F. The relation between the displacement vectors of 
the two elements is assumed to be of the form: 
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{ } [ ]{ }u T U=                                       (8) 
Where { }u  and { }U  are the nodal degrees of freedom of 0C  
and *C  elements, respectively. The finite element 
characteristic equation is assumed to be: 

[ ]{ } { }k u f=                                       (9) 
Substituting equation (8) in relation (9) results in the following 
equation: 

[ ][ ]{ } { }k T U f=                                   (10) 
  

 
Fig. 4 (a) A 32-noded 0C  element  and (b) a hexahedron 8-noded 

1*C  element  
 

If both sides of equation (10) are multiplied by the 
transpose of the transformation matrix [T], we will obtain: 

[ ] [ ][ ]{ } [ ] { } [ ]{ } { }        T TT k T U T f K U F= ⇒ =              (11) 
[K] and {F} are stiffness matrix and fore vector of the new 
element and which are  defined as follows: 

[ ] [ ] [ ][ ] { } [ ] { },        T TK T k T F T f= =                (12) 
In order to obtain the transformation matrix [T], we can 

employ the displacement function for the two elements, 
*C and 0C . Let the displacement function for both elements is 

defined by equation (7). For 32-noded  0C  hexahedron 
element, this equation can be rewritten as follows: 

{ } [ ]{ }u X a=                                     (13) 
Where {a} is the vector of the coefficients ,ia s in equation (7) 
and {u} is the nodal displacement vector defined as: 

{ } { }1 1 1 ...... ...... Tu u v w=                    (14) 
Therefore, the vector of the coefficients ,ia s  is obtained by 

solving a linear system of equations with 32 equations. The 

matrix form of equation (7) for 8-noded hexahedron 
*C element with 12 D.O.F at each node becomes: 

{ } [ ]{ }U B a=                                       (15) 
Where {U} is the nodal displacement vector defined as: 
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Again, the vector of the coefficients ,ia s  is obtained by 
solving a linear system of quations with 32 equations: 

{ } [ ] { }1a B U−=  
By substituting this equation in relation (13) we obtain: 

{ } [ ][ ] { }1u X B U−
=                               (17) 

From the comparison between equations (8) and (17), the 
transformation matrix, [T], is obtained as follows: 

[ ][ ] 1[ ]T X B −
=                                  (18) 

Once, the transformation matrix is calculated, stiffness matrix, 
[K], and force vector, {F} can be obtained from equation (12).  
 

VI.  NUMERICAL RESULTS 
The numerical simulation of a cantilever was used to study 

the performance of *C elements with the mapping technique 
used explained in section 3. The cantilever shown in figure 5 
is subjected to shear forces applied to the end of the beam as 
depicted in the figure. An elastic analysis with 200E GPa=  
and 0.3υ = was used for the simulation.   In order to obtain a 
better understanding of the performance of *C elements, the 
results were compared with those obtained for 8-noded, 20-
noded and 32-noded 0C hexahedron elements. The 
displacement of the end of the beam and the CPU time were 
measured from the simulations for each type of element.   

 

 
Fig. 5 The finite element model for a beam under bending 

 
The results are illustrated in Figs. 6 and 7 for displacement 

and CPU time, respectively. As the results shown in Fig. 6 
suggest, 8-noded 1*C  and 32-noded 0C  elements converge 
more rapidly compared with 20-noded and 8-noded 

0C elements. The convergence rate, however, is nearly the 
same for 8-noded 1*C  and 32-noded 0C  elements. The 
variation of CPU time versus the number of elements is 
depicted in Fig. 7. The figure clearly shows lower CPU time 
for 20-noded and 8-noded 0C elements with respect to 8-
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noded 1*C  and 32-noded 0C  elements. This is obvious as the 
degrees of freedom of the two latter are less than those of the 
formers. The interesting point is that the 8-noded 1*C  element 
has consumed less CPU time than the 32-noded 0C . This is 
while; both elements have the same number of degrees of 
freedom. Moreover, 8-noded 1*C  element include first 
derivatives of displacement components which are physical 
define the various components of strain. Therefore, the use of 
8-noded 1*C not only reduces the CPU time with respect to its 
equivalent 0C  element, but also saves the time for calculation 
of strains.  
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Fig. 6 Variation of displacement versus number of elements for 

different element types 
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Fig. 7 Variation of CPU-time versus number of elements for different 

element types 
 
 

VII.  CONCLUSION 
 

From the numerical results, the following conclusions can 
be derived: 

1. Mapping of 1*C elements (with extra degrees of 
freedom) can be forced by a transformation matrix.  

2. Transformation matrix can be obtained using 
equivalent 0C elements (with the same number of 
degrees of freedom).  

3. The convergence rate of 8-noded 1*C element is nearly 
equal to its equivalent 0C  element, while it consumes 
less CPU time with respect to the 0C  element.  

4. The existence of derivative degrees of freedom at the 
nodes of 1*C element along with the privileges 
mentioned above, makes it superior compared with it 
equivalent  0C  element. 

 
ACKNOWLEDGMENT 

The authors would like to thank Mr B. Bigdeli for his 
scientific recommendations to this work. Thanks are also due 
to him for providing us with valuable materials which were 
very helpful to conduct the present work. 
 

REFERENCES   
[1] B. Bigdeli, An Investigation of *C  Convergence in the Finite Element 

Method, Ph.D Thesis, New South Wales University, Australia, 1996. 
[2] F.L. Stassa, Applied Finite Element Method, CBS International Editions, 

1985. 
[3] J.L. Tocher, Analysis of Plate Bending Using Triangular Elements, Ph.D 

Dissertation, University of California, Berkely, 1962. 
[4] R.W. Clough, Comparison of Three Dimensional Finite Elements, 

Proceeding of the symposium on Application of Finite Element Method 
in Civil Engineering, Vanderbilt University, Nashville, pp. 1-26, 1969. 

[5] S. Ahmad, B.M. Irons, and O.C. Zienkiewicz, Analysis of Thick and 
Thin Shell Structure by Curved Finite Element, International Journal 
for Numerical Methods in Engineering, 2 , 419-451, 1974. 

[6] D.J. Allman, A Compatible Triangular Element Including Vertex 
Rotation for Plain Elasticity Analysis, Computers and Structures, 19, pp. 
1-8, 1984. 

[7] B. Sharifi Hamadani, The study of the convergence of *C elements in 
3-D elasticity (in Persian), MSc Thesis, Mechnaical Enginnering 
Department, Bu-Ali Sina University, Hammadan, Iran, 2001. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


