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Adaptive functional projective lag synchronization
of Lorenz system

Tae H. Lee, J.H. Park, S.M. Lee and H.Y. Jung

Abstract—This paper addresses functional projective lag synchro-
nization of Lorenz system with four unknown parameters, where the
output of the master system lags behind the output of the slave system
proportionally. For this purpose, an adaptive control law is proposed
to make the states of two identical Lorenz systems asymptotically
synchronize up. Based on Lyapunov stability theory, a novel criterion
is given for asymptotical stability of the null solution of an error
dynamics. Finally, some numerical examples are provided to show
the effectiveness of our results.
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I. INTRODUCTION

Chaos synchronization is very hot topic of nonlinear so-
ciety, which has attracted much interest from scientists and
engineers since Pecora and Carroll [1] introduced the concept
of synchronization. Up to date, chaos synchronization has been
developed extensively due to its various applications [2]-[24].
Originally, chaos synchronization refers to the state in which
the master (or drive) and the slave (or response) systems have
precisely identical trajectories for time to infinity. We usually
regard such a synchronization as complete synchronization or
identical synchronization.
Over the last decade, various methods for chaos synchroniza-
tion have been proposed, which include complete synchro-
nization [12]-[13], phase synchronization [14] , lag synchro-
nization [15], intermittent lag synchronization [16], time scale
synchronization [17], intermittent generalized synchronization
[18], projective synchronization (PS) [19], generalized syn-
chronization [20], and adaptive modified projective synchro-
nization [21]-[22]. Amongst all kinds of chaos synchroniza-
tion, FPS is the state of the art subject of synchronization
study. Recently, FPS has been reported by Chen et al. [23]
and Runzi [24], that is the generalization of PS. As compared
with PS, FPS means that the master and slave systems could
be synchronized up to a scaling function, but not a constant.
In real-world situation, time delay is ubiquitous between
communication channels. and its existence is frequently a
source of instability and poor performance in systems. Thus

Tae H. Lee, J.H. Park are with Department of Electrical Engineering,
Yeungnam University, 214-1 Dae-Dong, Kyongsan 712-749, Republic of
Korea. Email: jessie@ynu.ac.kr

S.M. Lee is with Department of Electronic Engineering, Daegu University,
Gyungsan 712-714, Republic of Korea. Email: moony@daegu.ac.kr

H.Y. Jung is with Department of Information and Communication Engi-
neering, Yeungnam University, Republic of Korea. Email: hoyoul@yu.ac.kr

This work was supported by the Korea Research Foundation Grant founded
by the Korea Government (MOEHRD, Basic Research Promotion Fund)
(KRF-2008-521-D00134).

Manuscript received October 12, 2009; revised November 24, 2009.

it is natural to consider time delay when we deal with syn-
chronization problem among chaotic systems. In this regard,
the synchronization concept is called functional projective lag
synchronization (FPLS). In addition, if we consider parametric
uncertainties of the systems, then we have more general
scheme of synchronization. This scheme calls adaptive func-
tional projective lag synchronization (AFPLS). In this paper,
we investigate AFPLS for chaotic systems for the first time.

II. SYNCHRONIZATION OF LORENZ SYSTEM

Consider the following master (drive) and slave (response)
chaotic systems

ẋ(t) = f(t, x), (1)
ẏ(t) = g(t, y) + u(t, x, y), (2)

where x(t) = (x1, x2, . . . , xn)
T ∈ R

n and
y(t) = (y1, y2, . . . , yn)

T ∈ R
n are drive and

response state vectors respectively, f : R
n → R

n and
g : Rn → R

n are continuous nonlinear vector functions and
u(t, x, y) = (u1, u2, . . . , un)

T ∈ R
n is the control input for

synchronization between master (1) and slave (2).

Definition 1. It is said that AFPLS occurs between master
system (1) and response system (2) if there exist scaling
functions αi(t) such that limt→∞ ‖αi(t)yi(t)−xi(t−τ)‖ = 0
for given positive scalar τ .

For convenience’s sake to illustrate the scheme of AFPLS,
we consider the following Lorenz master and slave systems:

Master sys. : ẋ1(t) = a(x2(t)− x1(t))
ẋ2(t) = bx1(t)− x1(t)x3(t)− cx2(t)
ẋ3(t) = x1(t)x2(t)− dx3(t),

Slave sys. : ẏ1(t) = a1(y2(t)− y1(t)) + u1
ẏ2(t) = b1y1(t)− y1y3 − c1y2 + u2
ẏ3(t) = y1(t)y2(t)− d1y3(t) + u3, (3)

where a, b, c, d are unknown parameters of master system and
a1, b1, c1, d1 are parameters of slave system which need to be
estimated.
In order to see chaotic motion of the system (3), let us take
initial condition x(0) = {0, 1, 1}T and the parameters a =
10, b = 28, c = 1, d = 8/3. Actually, Fig. 1 shows chaotic
motion of Lorenz system.

Now, for AFPLS, let us define error signals in the sense of
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Definition 1 as

e1(t) = α1(t)y1(t)− x1(t− τ)
e2(t) = α2(t)y2(t)− x2(t− τ)
e3(t) = α3(t)y3(t)− x3(t− τ). (4)

The time derivative of error signal (4) is

ė1(t) = α̇1(t)y1(t) + α1(t)ẏ1(t)− ẋ1(t− τ)
ė2(t) = α̇2(t)y2(t) + α2(t)ẏ2(t)− ẋ2(t− τ)
ė3(t) = α̇3(t)y3(t) + α3(t)ẏ3(t)− ẋ3(t− τ). (5)

By substituting (3) into (5), we have the following error
dynamics

ė1(t) = α̇1(t)y1 + α1(t)
(
a1(y2 − y1) + u1

)

−a(x2(t− τ)− x1(t− τ)
)

ė2(t) = α̇2(t)y2 + α2(t)
(
b1y1 − y1y3 − c1y2 + u2

)

−(
bx1(t− τ)− x1(t− τ)x3(t− τ)− cx2(t− τ)

)

ė3(t) = α̇3(t)y3 + α3(t)
(
y1y2 − d1y3 + u3

)

−(
x1(t− τ)x2(t− τ)− dx3(t− τ)

)
. (6)

Here, our goal is to achieve synchronization between two
Lorenz systems with different initial conditions. For this end,
the following control laws are designed:

u1(t) =
1

α1(t)

(
−α̇1(t)y1 − α1(t)a1(y2 − y1)

+a1(x2(t− τ)− x1(t− τ))− k1e1
)

u2(t) =
1

α2(t)

(
−α̇2(t)y2 − α2(t)(b1y1 − y1y3 − c1y2)

+b1x1(t− τ)− x1(t− τ)x3(t− τ)
−c1x2(t− τ)− k2e2(t)

)

u3(t) =
1

α3(t)

(
−α̇3(t)y3 − α3(t)(y1y2 − d1y3)

+x1(t− τ)x2(t− τ)− d1x3(t− τ)− k3e3
)
,(7)

where ki > 0 and αi(t) �= 0 for all t(i = 1, 2, 3).
Substituting the control input (7) into Eq. (6) gives that

ė1(t) = (a1 − a)(x2(t− τ)− x1(t− τ))− k1e1,
ė2(t) = (b1 − b)x1(t− τ)− (c1 − c)x2(t− τ)− k2e2,
ė3(t) = −(d1 − d)x3(t− τ)− k3e3. (8)

Then, we have the following theorem.
Theorem 1. For given scaling functions αi(t)(i = 1, 2, 3) and
time delay τ , the AFPLS between master and slave systems
given in Eq. (3) will occur by the control law (7) and the
update rule for four unknown parameters a1, b1, c1, d1:

ȧ1 = −(x2(t− τ)− x1(t− τ))e1(t)
ḃ1 = −x1(t− τ)e2(t)
ċ1 = x2(t− τ)e2(t)
ḋ1 = x3(t− τ)e3(t). (9)

This implies that the error signals satisfy limt→∞ ‖ei(t)‖ =
0(i = 1, 2, 3). Furthermore, the uncertain parameters are well

estimated as limt→∞ ‖a1 − a‖ = 0, limt→∞ ‖b1 − b‖ = 0,
limt→∞ ‖c1 − c‖ = 0, and limt→∞ ‖d1 − d‖ = 0.

Proof. Let us define the following Lyapunov function
candidate

V =
1

2
(e21 + e

2
2 + e

2
3 + e

2
a + e

2
b + e

2
c + e

2
d), (10)

where ea = a1− a, eb = b1− b, ec = c1− c and ed = d1− d.
By differentiating Eq. (10) and using (7) and (9) we obtain

V̇ = e1ė1 + e2ė2 + e3ė3 + eaėa + ebėb + ecėc + edėd

= −
⎡

⎣
e1
e2
e3

⎤

⎦
T ⎡

⎣
k1 0 0
0 k2 0
0 0 k3

⎤

⎦

⎡

⎣
e1
e2
e3

⎤

⎦

≡ −eTPe. (11)

Since V̇ is negative semidefinite, we cannot immediately
obtain that the origin of error system (5) is asymptotically
stable. In fact, as V̇ ≤ 0, then e1, e2, e3, ea, eb, ec, ed ∈ L∞.
From the error system (4), we have ė1, ė2, ė3 ∈ L∞. Since
V̇ = −eTPe and P is a positive-definite matrix, then we
have

∫ t

0

λmin(P )‖e‖2dt ≤
∫ t

0

eTPe dt ≤
∫ t

0

−V̇ dt
= V (0)− V (t) ≤ V (0),

where λmin(P ) is the minimum eigenvalue of positive-definite
matrix P . Thus e1, e2, e3 ∈ L2. According to the Barbalat’s
lemma, we have e1(t), e2(t), e3(t) → 0 as t→ ∞. Therefore,
the slave system synchronize the master system in the sense
of AFPLS (4). This completes the proof. �

III. NUMERICAL SIMULATION

In order to demonstrate the validity of proposed ideas, some
numerical simulations are presented. Fourth-order Runge-
Kutta method with sampling time 0.0001[sec] is used to solve
the system of differential equations (3).
The system parameters are used by a = 10, b = 28, c =
1, d = 8/3 in numerical simulation. The initial conditions
for master and slave system are given by x(0) = (0, 1, 1)T

and y(0) = (−2.5,−1.5,−1.65)T , respectively. The scaling
functions for functional synchronization are taken for a choice
as

α1(t) = 1.1 + sin 2t

α2(t) = 1.1 + cos
π

2
t

α3(t) = e
−0.07t + 4. (12)

Fig 2. displays the scaling functions. Also, τ = 1 and control
gain ki = 1(i = 1, 2, 3) are chosen.

Case 1. First, we consider the problem of FPLS without
uncertain parameters. From data given above, the control input
is applied at 30[sec] to show the effect of synchronization.
Fig 3. shows that error signals of FPLS go to zero
asymptotically. It means FPLS occurs between lag state of x
and current state of y.
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Case 2. Second, we revisit the Case 1 to show
AFPLS with uncertain four parameters a, b, c, d.
The initial guess of parameters are chosen as
a1(0) = 0, b1(0) = 0, c1(0) = 0, d1(0) = 0. Fig 4. displays
error signals for this case, in which ‖ei(t)‖(i = 1, 2, 3)
go to zero just as we intended. Finally, Fig 5. displays
parameters go to the values of master parameters:
limt→∞ a1(t) = 10, limt→∞ b1(t) = 28, limt→∞ c1(t) =
1, limt→∞ d1(t) = 8/3.

IV. CONCLUSION

In this paper, we have investigated the synchronization prob-
lem of two Lorenz systems with four unknown parameters.
An adaptive control scheme is presented for functional lag
synchronization. Numerical simulations show that our novel
idea is effective for AFPLS of Lorenz systems. The final
remark is that the proposed method is applicable to any chaotic
systems.
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Fig. 1. Chaotic motion of Lorenz system
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Fig. 2. Scaling functions
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Fig. 3. Error signals: Case 1
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Fig. 4. Error signals: Case 2
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Fig. 5. Estimated values for unknown parameters


