
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3099

Strategic Software Development:
Productivity Comparisons of General Development

Programs
Craig Comstock, Zhizhong Jiang, and Peter Naudé

Abstract—Productivity has been one of the major concerns with

the increasingly high cost of software development. Choosing the
right development language with high productivity is one approach to
reduce development costs. Working on the large database with 4106
projects ever developed, we found the factors significant to
productivity. After the removal of the effects of other factors on
productivity, we compare the productivity differences of the ten
general development programs. The study supports the fact that
fourth-generation languages are more productive than third-
generation languages.

Keywords—Functional point, Language, Productivity, Software
Engineering.

I. INTRODUCTION
VER the past years dramatic improvements in hardware
performance, profound changes in computing

architectures, and vast increases in memory and storage
capacity have precipitated more sophisticated and complex
computer-based systems [1]. Software is the key element in
the evolution of computer-based systems and products. While
hardware costs have decreased considerably comprising less
than one fifth of total expenditure, the cost of software
remains consistently high [2]. One of the primary problems in
software development that have yet to be solved satisfactorily
is making systems cost effective. A major obstacle to solve the
problem of cost effective is the intrinsic complexity in
developing software. Improving the productivity is an
essential part of making system cost effective [3].

The problem of productivity associated with cost deserves
our serious attention. Previous studies have focused in great
part on the discovery of methods and identification of factors
for productivity improvement [4-10]. With the increasing
complexities and costs of software development, how to
improve development productivity has been an ongoing
concern for project managers.

Manuscript received June 5, 2007. This research was supported by

International Software Benchmarking Standards Group (ISBSG).
Craig Comstock was with Harvard University. He is now with University

of Oxford, Wolfson Building, Parks Road, Oxford OX1 3QD UK (e-mail:
craig.comstock@lmh.ox.ac.uk).

Zhizhong Jiang was with Department of Statistics, University of Oxford.
He is now with University of Manchester, Booth Street West, Manchester,
M15 6PB, UK (phone:+44(0)8708328157; fax: +44(0)1612756596; e-mail:
zhizhong.jiang@bnc.oxon.org).

Peter Naudé is a Professor in Manchester Business School, University of
Manchester, Booth Street West, Manchester, M15 6PB, UK (e-mail:
pete.naude@mbs.ac.uk).

In retrospect of the past studies in software engineering
there have been few comparing the productivity levels of
various development programs. The main reason is the lack of
accessible and reliable large dataset [11]. Besides, many
contemporary metrics repositories have limited use due to
their obsolescence and ambiguity of documentation [12].

The data repository maintained by the International
Software Benchmarking Standards Group (ISBSG) does not
have the above deficiencies and has been widely researched
[11, 13-16]. Focusing on the statistical analysis of the latest
release of ISBSG data repository with 4106 projects, this
paper compares the productivity levels of ten common
development programs. Project coordinators can adopt the
findings of this paper by choosing the most productive
programs suitable for their development.

The paper is organized as follow. Section II gives an
overview of the development programs that are in common
use. Section III briefly introduces the main software metrics or
information involved in the analysis. Section IV and V are the
detailed procedures of model development and validation.
Section VI presents the comparisons of the ten development
programs regarding productivity. Finally, section VII is the
conclusion of this study.

II. OVERVIEW OF GENERAL DEVELOPMENT PROGRAMS

In the past, over a thousand different programming
languages have been designed by various groups and
international committees [17]. Whereas a large number of
programs were superseded, there are still many remained in
current use. In the ISBSG data repository, the common
development programs that were frequently used are C, C++,
COBOL, Java, PL/1, SQL, Visual Basic, PowerBuilder,
Oracle and Access. Although some other programming
languages (e.g., Delphi, C#) have also been broadly used in
practice, they were not included in our analysis due to their
lack of popularity in the data repository. We now briefly
introduce the ten development programs.

1) C

Originated as a systems programming language, C
combines the advantages of a high-level language with the
facilities and efficiency of an assembly language [17]. As a
typical procedural language, C has spread its use in diverse
areas and is regarded as a general-purpose language.

O

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3100

2) C++

As an extension of C, C++ was designed to be an efficient
and practical language. It is one of the primary object-oriented
language and remains extremely popular for non-web
applications [18].

3) COBOL

As the dominant programming language for business
application, COBOL (Common Business-Oriented Language)
has been widely applied in the past. Its main deficiency is that
complex algorithms are extremely difficult to program in
COBOL [18].

4) Java

As a common object-oriented language, Java has the real
virtues of being relatively simple, cleanly designed and easily
portable. It is currently being used not only for Internet and
network applications, but also for general applications [18].

5) PL/1

Though it is unpopular today, PL/1 is of significant
historical importance for its contribution to the programming
language design and development methods [19]. It was
designed with the objective of combining all the best features
of FORTRAN and COBOL [18].

6) SQL

SQL (Structured Query Language) is a query language that
enables database programmers to retrieve or modify data in
most relational databases. Literally hundreds of database
products now support SQL which stands today as the standard
computer database language [20].

7) Visual Basic

Visual Basic is an event-driven programming language and
has its object-oriented features [19]. It allows programmers to
easily create simple GUI applications, and also has the
flexibility to develop fairly complex applications.

8) PowerBuilder

PowerBuilder has the object-oriented power of 3GL along
with the GUI feature. It distinguishes from other languages for
its ability to handle large-scale projects and its open systems
approach [21]. With its own scripting language PowerScript, it
is used primarily for building business applications.

9) Oracle

Oracle is a relational database management system. Its
family of database products includes several powerful
applications development and generation tools. These tools
can efficiently conduct the work of database management,
data access and manipulation, programming, and connectivity
[22].

10) Access

Access is a powerful database package and development
tool that has established itself as a standard for database
management [23]. Its main strengths are the speed and facility
to develop database related applications.

III. DATA DESCRIPTION

The data repository has one parameter Primary
Programming Language which describes the development
program used for the specific project. Although this parameter
was recorded with nominal scale, we cannot use simple
parametric or other nonparametric tests to compare the
differences of productivity for the development programs. The
reason is before comparing group differences we have to
remove or control the influences of other factors [24]. That is,
before making comparisons of different development
programs, the effects of other factors on productivity have to
be considered. Based on the attributes of all the underlying
factors significant to productivity, we applied multiple
regression analysis. We now introduce the software metrics or
descriptive pieces of information recorded in the data
repository which are related to our study.

(1) Normalized Productivity Delivery Rate (PDR)

PDR is the parameter which directly measures the level of
productivity. It is calculated from Normalized Work Effort
divided by Adjusted Function Points. Normalized Work Effort
represents the effort in total hours for the development, and
Adjusted Function Points is the measure of project size.
Clearly, PDR is an inverse measure of productivity in that the
larger PDR, the smaller is the productivity.

(2) Average Team Size

It is the average number of people that worked on the
project through the entire development process. Past studies
suggest that productivity and team size are negatively
associated [10, 25-27].

(3) Primary Programming Language

It specifies which programming language was used for the
development (e.g., C++, Java).

(4) Development Type

It describes whether software development was a new
development, enhancement or re-development. It has been
suggested that development with enhancement may consume
much of the total resources of programming groups, and
therefore does not necessary improve productivity [28].

(5) Development Platform

It defines the primary platform for the development. The
project was developed for one of the platforms of Mid-range
platform, Mainframe, Multi or personal computer (PC).
Subramanian et al. [29] found platform has a significant effect
on software development effort. This may indicate this factor
is likely to influence development productivity.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3101

(6) Development Techniques

These are the techniques used during software development
(e.g. Waterfall, Prototyping, Data Modeling etc). A large
number of projects adopted joint uses of different techniques.
Among the various development techniques, Rapid
Application Development (RAD) was reported to significantly
accelerate development [30].

(7) Case Tool Used

It indicates whether the project used any CASE (Computer-
Aided Software Engineering) tool. While some studies
reported CASE tool had a positive effect on productivity [31-
33], many organizations responded that it has not brought
about a change in productivity [34]. Bruckhaus et al. [35]
pointed out that the introduction of CASE tool does not
necessarily improve productivity, and in certain situations it
can actually decrease the productivity as it increases effort on
specific activities.

(8) How Methodology Acquired

It describes how the development methodology was
acquired. It can be Traditional, Purchased, Developed In-
house, or a combination of Purchased and Developed. Liu and
Mintram [11] found development methodology is not
significant to effort, which is one of the determinants of
productivity.

(9) Data Quality Rating

It indicates the reliability of the data recorded. It has four
grades A, B, C, and D. While the data with quality ratings A,
B and C are assessed as being acceptable, little credibility can
be given to any data with rating D.

It is important to point out that that some scholar regarded
project duration as an important factor for productivity, and
productivity declines with project duration increasing [10].
However, we did not take this factor into account as our study
is to explore the factors that intrinsically influence
productivity. In fact, project duration is correlated with effort
which is one of the two determining elements of productivity.

IV. MODEL DEVELOPMENT

We first validate the data before model development. To
have robust results we excluded those projects with rating D
of data quality, since little credibility should be given to them.
Besides, projects with recording errors or unspecified
information were removed. For instance, two projects were
mistakenly recorded with Average Team Size 0.5 and 0.95
respectively.

Second, we examine if there exists the problem of
multicollinearity (strong correlations between predictor
variables) in the data. That is, to see whether the use of some
development method is likely to be associated with other
techniques. The correlation tests indicated that there is no
multicollinearity existent in the data.

Finally, for the metric Development Techniques there exist
over 30 different techniques in the data repository. Our
research focused on the ten primary techniques, and separated

each of the ten techniques as one single binary variable with
two levels indicating whether it was used or not (1 = used, 0 =
not used). These ten techniques are Waterfall, Data Modelling,
Process Modelling, JAD (Joint Application Development,
Prototyping, Regression Testing, Object Oriented Analysis &
Design, Business Area Modelling, RAD (Rapid Application
Development), and Event Modelling. Given that many
projects adopted various forms of joint uses of different
techniques, we did not consider the interplay of these
techniques. For all the uncommon development techniques,
they were merged into one group labelled with ‘Others’. Table
I below generalizes the variables for the analysis.

TABLE I

DESCRIPTIONS OF THE VARIABLES IN THE ANALYSIS
Variable Scale Descriptions

PDR Ratio Normalized Productivity Delivery Rate.

TeamSize Ratio Average Team Size.

Language Nominal Primary Programming Language

DevType Nominal Development Type

Platform Nominal Development Platform

CASE Nominal CASE Tool Used

Methodology Nominal How Methodology Acquired

Waterfall Nominal 1= Waterfall, 0 = Not

Data Nominal 1 = Data Modelling, 0 = Not

Process Nominal 1 = Process Modelling, 0 = Not

JAD Nominal 1 = JAD, 0 = Not

Regression Nominal 1 = Regression Testing, 0 = Not

Prototyping Nominal 1 = Prototyping, 0 = Not

Business Nominal 1 = Business Area Modelling, 0 = Not

Event Nominal 1 = Event Modelling, 0 = Not

RAD Nominal 1 = Rapid Application Development
0 = Not

OO Nominal 1 = Object Oriented Analysis & Design
0 = Not

Others Nominal 1 = uncommon development techniques
0 = Not

Table I showed that PDR and TeamSize are the only two

variables measured in ratio scale. We now examine their
distributions with histogram in Fig. 1 below. It displayed that
the data are highly skewed. Therefore, log-transformations
were applied to them (see Fig. 2).

Fig. 1 Histograms of PDR and TeamSize

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3102

 Fig. 2 Histograms of PDR and TeamSize with log-transformation

Fig. 3 below is the scatterplot of log(PDR) against
log(TeamSize). Whereas they do not have a perfect positive
linear relationship, the graph indicates that we can use linear
model to approximate their relationship. Given that all other
predictors are measured in nominal scale except TeamSize, we
can use multiple linear regression to fit a model with PDR as
the dependent variable.

log(TeamSize)

lo
g(

PD
R

)

0 1 2 3 4 5

0
2

4
6

Fig. 3 The scatter plot of log (PDR) against log(TeamSize)

For multiple regression analysis, the rule of thumb suggests
a minimum sample size of 50+8k (k is the number of
predictors) [36]. Although there exist considerable missing
values in the data, the valid sample size is 330 after data
cleaning. This is sufficient to perform regression analysis. In
statistical package S-plus, we conducted multiple linear
regression with the core data. The resultant model contains the
predicator variables that are significant to the dependent
variable based on the normal criterion of significance (p-value
<0.05). The model was fitted as:

3,2,1,0,10...,2,0

)()()log(0.3371.058

)log(

==

++×+=

ji

jPlatformIjiLanguageIiTeamSize

PDR

βα

Some interpretations are necessary to understand the model.

1) PDR is Normalized Productivity Delivery Rate; TeamSize
is Average Team Size for the development; Language i
represents one of the development languages used by the

project; Platform j represents one of the four platforms
used for the development. αi and βj are the regression
coefficients. Table II shows the summary of the
regression results.

2) log() is the natural log with base e. The indicator function
I(·) outputs only two values: value of 1 means the relevant
technique in the parentheses is used, where value of 0
indicates not (That is, I(a)=1 if and only if a is used).

TABLE II

SUMMARY OF THE REGRESSION ANALYSIS

 Terms Coefficients
 Intercept 1.058

 log(TeamSize) 0.337

i Languagei αi
0 Access 0
1 C 1.558
2 C++ 1.127
3 COBOL 1.300
4 Java 1.169
5 ORACLE 0.807
6 PL/1 0.655
7 PowerBuilder 0.908
8 SQL 1.053
9 Visual Basic 0.921
10 Other 0.827

j Platformj βj

0 Mainframe 0
1 Mid-range -0.440
2 Multi -0.592
3 PC -0.634

V. MODEL VALIDATION

The model fitted is parsimonious with the minimum number
of predictors significant to productivity. While the saturated
model contains all the predictors and has the most perfect
goodness-of-fit, our parsimonious model was reported with
multiple R2 of 0.402. This indicates the fitted model is
acceptable with 40.2% of the variance in the dependent
variable explained by the minimum number of predictors.

Furthermore, in linear model it is assumed that the residuals
are normally distributed with zero mean and homogeneity of
variance [37]. Equal scatter of residual points about the
horizontal axis indicates the residuals have homogeneity of
variance [38]. Fig. 4 below is the diagnostic plot of residuals
against fitted values. It shows that the residual points evenly
scatter along the horizontal axis without obvious patterns.
Therefore, the assumption of homogenous variance is
validated.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3103

 Fig. 4 Diagnostic plot of residuals against the fitted values

Finally, we applied Quantile-Quantile plot to check the
assumption of normality of the residuals. The approximately
straight line in Fig. 5 indicates that the residuals do not deviate
from normal distribution.

Fig. 5 Quantile-Quantile plot of the residuals

Therefore the fitted model is feasible. We now turn to the

discussions of the model and compare the productivity
differences of the ten development programs.

VI. PRODUCTIVITY DIFFERENCES OF DEVELOPMENT
PROGRAMS

The fitted model includes the predictor variables that are
significant to the dependent variable. In other words, these
predictors are the factors that influence productivity, these
being Average Team Size, Primary Programming Language,
and Development Platform.

In section III we mentioned PDR is an inverse measure of
productivity in that the smaller PDR, the higher is the
productivity. Based on the fitted model we can see that
Average Team Size and productivity are negatively
associated. Particularly the double of Average Team Size will
reduce productivity by 20% (1-exp(-0.337*ln2)). The finding
of negative effect of team size on productivity is consistent
with past studies [10, 25-27].

For the two significant factors Primary Programming
Language and Development Platform, the smaller value of the
coefficients of the function I(·) leads to smaller value of
log(PDR), indicating higher productivity of the corresponding
development approaches. Therefore, projects that were
developed for platforms Multi and PC have higher

productivity than those developed for platforms Mainframe
and Mid-range.

After controlling the effects of team size and development
platform on productivity, we can compare the differences of
productivity among the ten common development languages.
The comparisons are based on their coefficients of the
indicator function I(·) in Table II with Access acted as the
reference language. The findings are generalized as follows.

(1) Visual Basic (0.921), Power Builder (0.908), SQL
(1.053), Oracle (0.807), and Access (0) are more
productive than C (1.558), C++ (1.127), Java (1.169), and
COBOL (1.300). The first five belong to fourth-
generation languages (4GL) and the left belong to third-
generation languages (3GL). In practice 4GLs are
designed to reduce programming efforts, and they are
more productive than 3GLs [39].

(2) With the smallest coefficient of the indicator function I(·),
Access is the most productive development program. One
of its main strengths is the speed in which database-
related applications can be developed. As the leading
database management system, Oracle achieves reasonably
high productivity.

(3) The two most prevailing development languages C++ and
Java have comparable productivity (the coefficients are
1.127 and 1.169 respectively).

(4) As a traditional procedural language, C has the lowest
productivity. C has been widely criticized for its difficulty
to achieve effective operations. The effective use of C
requires more experience and effort than other
programming languages. As the mostly widely used
language in business area, COBOL has the second lowest
productivity. Although PI/1 is moderately productive, it is
considered to be outdated in software industry.

VII. CONCLUSION

This study worked on the latest release of ISBSG data
repository which is deemed as an influential database for the
study of software metrics. Multiple regression analysis was
conducted with the core data. To compare the productivity
differences of the ten common development programs, we
removed the effect of other significant factors on productivity,
these being Average Team Size and Development Platform.
The results support the fact that fourth-generation languages
are more productive than third-generation languages. By
comparing the coefficients of the regression terms, we found
Access has the highest productivity while C language has the
lowest. As the two prevailing development languages, C++
and Java have the same level of productivity. Whereas Oracle
has reasonably high productivity, the productivity of COBOL
is low.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3104

REFERENCES
[1] R. S. Pressman, Software Engineering: A Practitioner's Approach.

London: McGraw-Hill, 2005.
[2] H. V. Vliet, Software Engineering: Principles and Practice. Chichester:

Wiley, 1993.
[3] S. T. Albin, The Art of Software Architecture: Design Methods and

Techniques. New York: Wiley, 2003.
[4] J. D. Blackburn, G. D. Scudder, and L. N. V. Wassenhove, "Improving

speed and productivity of software development: a global survey of
software developers," IEEE Transactions on Software Engineering, vol.
22, pp. 875-885, 1996.

[5] B. W. Boehm and P. N. Papaccio, "Understanding and Controlling
Software Costs," IEEE Transactions on Software Engineering, vol. 14,
pp. 1462-1477, 1988.

[6] D. N. Card, F. E. McGarry, and G. T. Page, "Evaluating software
engineering technologies," IEEE Transactions on Software Engineering,
vol. SE-13, pp. 845-851, 1987.

[7] G. R. Finnie, G. E. Wittig, and D. Petkov, "Prioritizing software
development productivity factors using the analytic hierarchy process,"
Journal of Systems and Software, vol. 22, pp. 129-139, 1993.

[8] N. R. Howes, "Managing software development projects for maximum
productivity," IEEE Transactions on Software Engineering, vol. SE10,
pp. 27-35, 1984.

[9] R. E. Loesh, "Improving productivity through standard design
templates," Data Processing, vol. 27, pp. 57-59, 1985.

[10] K. Maxwell, L. V. Wassenhove, and S. Dutta, "Software development
productivity of European space, military and industrial applications,"
IEEE Transactions on Software Engineering, vol. 22, pp. 706-718, 1996.

[11] Q. Liu and R. C. Mintram, "Preliminary data analysis methods in
software estimation," Software Quality Journal, vol. 13, pp. 91-115,
2005.

[12] W. Harrison, "A flexible method for maintaining software metrics data:
a universal metrics repository," Journal of Systems and Software, vol. 72,
pp. 225-234, 2004.

[13] C. J. Lokan, "An empirical analysis of function point adjustment
factors," Information and Software Technology, vol. 42, pp. 649-660,
2000.

[14] R. Jeffery, M. Ruhe, and I. Wieczorek, "A comparative study of two
software development cost modeling techniques using multi-
organizational and company-specific data," Information and Software
Technology, vol. 42, pp. 1009-1016, 2000.

[15] J. J. Cuadrado-Gallego, M. Sicilia, M. Garre, and D. Rodríguez, "An
empirical study of process-related attributes in segmented software cost-
estimation relationships," Journal of Systems and Software, vol. 79, pp.
353-361, 2006.

[16] J. Moses, M. Farrow, N. Parrington, and P. Smith, "A productivity
benchmarking case study using Bayesian credible intervals," Software
Quality Journal, vol. 14, pp. 37-52, 2006.

[17] L. B. Wilson and R. G. Clark, Comparative Programming Languages.
Wokingham: Addison-Wesley, 1988.

[18] K. C. Louden, Programming Languages: Principles and Practice
London: Brooks/Cole, 2003.

[19] R. Cezzar, A Guide to Programming Languages: Overview and
Comparison. Boston: Artech House, 1995.

[20] J. R. Groff and P. N. Weinberg, SQL: The Complete Reference New
York McGraw-Hill, 2002.

[21] D. D. Deyhimi, D. S. Heath, and D. Mosley, Advanced PowerBuilder
4.0 Techniques. New York: Wiley, 1995.

[22] J. T. Perry, Understanding Oracle. San Francisco: Sybex, 1989.
[23] E. Jones, Developing Client/Server Applications with Microsoft Access.

London: McGraw-Hill, 1997.
[24] R. R. Newton and K. E. Rudestam, Your Statistical Consultant: Answers

to Your Data Analysis Questions. London: SAGE, 1999.
[25] F. Louis, "Team size and productivity in systems development,"

Information Systems Management, vol. 8, pp. 27-35, 1991.
[26] S. D. Conte, H. E. Dunsmore, and Y. E. Shen, Software Engineering

Metrics and Models. Redwood City, CA: Benjamin-Cummings
Publishing, 1986.

[27] E. Mendes and B. Kitchenham, "Web Productivity Measurement and
Benchmarking," in Web Engineering, E. Mendes and N. Mosley, Eds.
Berlin: Springer, 2006, pp. 75-106.

[28] B. P. Lientz, E. B. Swanson, and G. E. Tompkins, "Characteristics of
application software maintenance," Communications of the ACM, vol.
21, pp. 466-471, 1978.

[29] G. H. Subramanian, P. C. Pendharkar, and M. Wallace, "An empirical
study of the effect of complexity, platform, and program type on
software development effort of business applications," Empirical
Software Engineering, vol. 11, pp. 541-553, 2006.

[30] J. Martin, Rapid Application Development. New York: Macmillan, 1991.
[31] R. D. Banker and R. J. Kauffman, "Reuse and productivity in integrated

computer-aided software engineering: an empirical study," MIS
Quarterly, vol. 15, pp. 375-401, 1991.

[32] C. Necco, N. W. Tsai, and K. W. Holgeson, "Current usage of CASE
software," Journal of Systems Management, vol. 40, pp. 6-11, 1989.

[33] R. T. Coupe and N. M. Onodu, "An empirical evaluation of the impact
of CASE on developer productivity and software quality," Journal of
Information Technology, vol. 11, pp. 173-181, 1996.

[34] D. Flynn, J. Vagner, and O. D. Vecchio, "Is CASE technology
improving quality and productivity in software development?" Logistics
Information Management, vol. 8, pp. 8-23, 1995.

[35] T. Bruckhaus, N. H. Madhavii, I. Janssen, and J. Henshaw, "The impact
of tools on software productivity," IEEE Software, vol. 13, pp. 29-38,
1996.

[36] S. A. Green, "How many subjects does it take to do a multiple regression
analysis?" Multivariate Behavioral Research, vol. 26, pp. 499-510, 1991.

[37] A. C. Rencher, Linear Models in Statistics. New York: John Wiley &
Sons, 2000.

[38] W. J. Krzanowski, An Introduction to Statistical Modelling. London:
Arnold, 1998.

[39] R. Klepper and D. Bock, "Third and fourth generation language
productivity differences," Communications of the ACM, vol. 38, pp. 69-
79, 1995.

Craig Comstock is a PhD student at the University of Oxford. He received
his B.E. from Harvard University (Cum Laude), MSc in Software Engineering
from University of Oxford,, and MBA (with highest honors) from University
of Chicago.

Zhizhong Jiang is a PhD student at Manchester Business School, University
of Manchester, United Kingdom. He received his B.E.(first-class honors) from
Harbin Institute of Technology (China) and MSc in Applied Statistics from
University of Oxford.

Peter Naudé is a Professor of Marketing at Manchester Business School,
University of Manchester, United Kingdom. He publishes widely in business
studies and information systems.

