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Abstract—In this paper the problem of estimating the time delay 

between two spatially separated noisy sinusoidal signals by system 
identification modeling is addressed. The system is assumed to be 
perturbed by both input and output additive white Gaussian noise. The 
presence of input noise introduces bias in the time delay estimates. 
Normally the solution requires a priori knowledge of the input-output 
noise variance ratio. We utilize the cascade of a self-tuned filter with 
the time delay estimator, thus making the delay estimates robust to 
input noise. Simulation results are presented to confirm the superiority 
of the proposed approach at low input signal-to-noise ratios. 
 

Keywords—LMS algorithm, Self-tuned filter, System 
identification, Time delay estimation,.  

I. INTRODUCTION 
IME delay estimation (TDE) between noise-corrupted 
signals incident on two spatially separated sensors is 
important in various fields such as radar, sonar and 

geophysics [1]. The LMS algorithm is popularly used for TDE 
due to its simplicity [2], [3]. However, the LMS algorithm 
gives biased time delay estimates. Alternatively, the estimation 
of time delay can be modeled as a system identification 
problem but the presence of additive input noise brings further 
complications. In many practical situations the additive noise is 
unavoidable because of imperfections in the signal acquisition 
process [4]. Under the abovementioned circumstances, one 
way of making it possible to track time delays is by assumming  
a priori knowledge of the input to output noise variance ratio 
and then proceed to use this information to modify the error 
function in the LMS algorithm[5]. However, the a priori 
knowledge of noise variances could be unavailable. 

In this paper, we propose an alternative LMS-based TDE 
approach that relaxes the assumptions about input and output 
noise for sinusoidal input signals. The proposed method uses a 
cascade of a self-tuned filter (STF) with the time delay 
estimator and this structure is hereinafter referred to as the 
STFTDE for brevity. It is assumed that the increased robustness 
of the resulting system outweighs the moderate increase in 
computational complexity associated with the introduction of 
the STF. Some expolaratory results related to this work have 
been presented in [6]. 

The paper is organized as follows. Section II describes 
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the proposed method beginning with the preliminaries, 
followed by the effect of input noise, then MSE and bias 
analysis, ending the section with delay convergence properties 
of the SFTDE. A simulation example is given in Section III. 
Finally, Section IV concludes this paper. 

II. PROPOSED METHOD 

A. Preliminaries 
The TDE considers two discrete-time signals incident on two 

sensors, which are sampled at time skTt = , where sT  is the 
sampling period (assumed to be unity in this paper for 
simplicity) and expressed as  

   
),()(=)( kvkAskx +  (1) 
),()()( knDkAsky +−=   (2) 

where )(ks  corresponds to the noise-free source signal, 
)( Dks −  is its delayed one, and A  is their constant 

amplitudes. Where not explicitly stated, and without of loss of 
generality, the value of A  will be assumed to be unity in the 
sequel. The )(kn  and )(kv  are the uncorrelated zero-mean 

white Gaussian noise of variance 2
nσ  and 2

vσ , respectively. 

The variable D  represents the unknown time delay to be 
estimated, which is approximated to an integer closest to the 
true delay in the discrete-time model. Subsample delays can be 
obtained by interpolation, where necessary [8].   
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Fig. 1 Modeling time delay estimation as system identification. 
  

Figure 1 depicts the configuration of the proposed method 
for TDE. The sequences }{ ih  and }{ ig  are the system 
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impulse response and the system identifier (time delay 
estimator filter) coefficients, respectively.  The LMS algorithm 
is used to update all the filter coefficients. The output )(kz  of 
the STF when excited by input )(kx  is given by  

 

 ),()(=)( 1

1

0=
Dikxkwkz i

M

i
−−∑

−

 

 
where M  is the length of the STF, 1D  is a delay 
appropriately chosen to decorrelate the input noise, and the 

)(kwi 's are STF coefficients at time k . The error term for 
adjusting the coefficients of the STF becomes  
 

 ).()(=)( kzkxk −ξ  
 

The desired sequence is given by  
 

 ),()()(=)(
1

0=

knikskhky i

M

i

+−∑
−

 

 
where )](,),([ 10 khkh M −K  is the system impulse response 

vector. The output of the time delay estimator, )(ˆ ky , can be 
expressed as  
 

 ),()(=)(ˆ
1

0=
ikzkgky i

M

i
−∑

−

 

 
where )](,),([ 10 kgkg M −K  is an estimate of the system 

impulse response vector and is denoted by )(kg . The time 
delay estimator output error is given by  

 
 ).(ˆ)(=)( kykyke −  (2) 

The time delay estimate at the k th iteration, )(ˆ kD , is 
obtained as  
 

 [ ]i
i

kgkD )(maxarg=)(ˆ , 

where i)][(⋅  denotes the i th element. 

B. Effect of Input Noise 
The bias in the time delay estimates when the time delay 

estimator is directly excited by )(kx  can be obtained as 
follows. Both sides of ((2)) are first squared, expanded, the 
expected value taken, differentiated with respect to the 

)(kgi 's, and finally the result is equated to zero. The process 
yields  

 

 ),()(=)(
1

0=

1

0=
khkkg i

M

i
i

M

i
∑∑

−−

β  (3) 

where  

1)(
)(=
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=)( 22
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s
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 and 
)(

=)( 2

2

k
kSNR

v

s
i σ

σ
. A similar result has also been 

obtained in [5]. It is clearly seen that the input noise variance 
introduces the bias in the estimated coefficients through the 
parameter )(kβ . Since there is a one-to-one correspondence 
between the system response and the time delay estimator 
response, we get the relationship  
 

 ).()(=)( khkkg ii β  
 

By defining the coefficient bias )(kBh  as 

)()]([=)( khkgEkB iii − , we can write  
 

 ).(1])([=)( khkkB ii −β  
 

For high input SNR, that is 1)( >>kSNRi , the 1)( ≈kβ  

and 0)( ≈kBi . This means that for all k , )(=)( khkg ii . In 
that case, the delay can ideally be obtained in one iteration since 
only the index corresponding to the maximum of )(kg  is 
required. However, this is not practically possible since the 
time delay estimator coefficients are determined by the 
transient behavior of the filter. For very low input SNR, that is  

1)( <<kSNRi , we can deduce that )()( kSNRk i≈β , 

which gives )()( khkB ii −≈ . This means that during the 
initial adaptation period, the delay estimator coefficients could 
be very small and indistinguishable. It is, therefore, possible to 
get a delay estimate that is close to the maximum length of the 
filter since there could be fluctuations in the estimated 
coefficient values due to round-off errors and the )(⋅max  
operator simply picks the biggest coefficient. 

In the LMSTDE method, the desired output is 
)(=)( DkAskd − , so that we can write )(ky  as  

 
 ).()(=)( knkdky +  
 

The input to the delay estimator is )(kx  and the output error at 
time k  becomes  
 

 ).(ˆ)(=)( kykyke −  (4) 
 

In ((4)), )(ˆ ky  can be written as  
 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:4, 2008

608

 

 

 

),()(ˆ=

)()()()(=

)()(=)(ˆ

1

0=

1

0=

1

0=

kvkd

ikvkgikskg

ikxkgky

o

i

M

i
i

M

i

i

M

i

+

−+−

−

∑∑

∑
−−

−

 

 (5) 

where )()(=)(ˆ 1

0=
ikskgkd i

M

i
−∑ −

 denotes the estimate of 

the desired response, )(kd , to the input signal, and 

)()(=)( 1

0=
ikvkgkv i

M

io −∑ −
 denotes the filtered input 

noise. From ((4)), we can write )(ke  as  
 

 

)()(=
)]()([)](ˆ)([=

)()(ˆ)()(=)(

keke
kvknkdkd

kvkdknkdke

nvd

o

o

+
−+−
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 (6) 
where )(ˆ)(=)( kdkdked −  is the component of the output 

error )(ke  due the difference between the delay estimate 

)(ˆ kD  and the true delay D , while )()(= kvkne onv −  the 
component due to the presence of noise. Although the 
steady-state values of the filter coefficients are only affected by 
the input noise as previously shown, the transient values of the 
coefficients are affected by both the input and the output noise. 
We also note that the error component )(ked  cannot be 

controlled by the adaptive filter. This is because )(ked  is a 
determined by filter length. If the filter is of infinite length, then 
the maximum coefficient can exactly coincide with the true 
delay, making 0=)(ked . However, infinite-length filters are 

practically unrealizable. It is, therefore, most likely that )(ked  

would be nonzero for all k . One way to get around the 
problem would be to incorporate a separate interpolation 
algorithm into the adaptation process. This obviously increases 
the overall computational complexity of the delay estimation 
process. On the other hand, )(kenv  can easily be controlled by 
some form of noise compensation. This can be done either 
explicitly or implicitly. Explicitly the input noise can be 
controlled from the input side, while implicitly the input noise 
can be controlled by modifying the error )(ke  at the output of 
the delay estimator. In the next subsection, we discuss the MSE 
and bias of the STFTDE with respect to the input noise. 

C. MSE and Bias of the STFTDE 
The output )(kz  of the STF when excited by the delayed 

input )(kx  is given by  

 ).()(=)( 1

1

0=

Dikxkwkz i

M

i

−−∑
−

 (7) 

The desired output sequence is  
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1
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M
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 (8) 

The output of the time delay estimator, )(ˆ ky , is  
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 where we substituted for  

)()(=)( 1
1

0=
Dijkxjkwjkz i

M

i
−−−−− ∑ −

.  

By substituting for )( 1Dijkx −−−  in )(ˆ ky , we have  
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 and the output error becomes  
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 Squaring ((11)) above results in  
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 By taking expectation of the squared error, we can 
approximates the MSE to  

 

).()()(2

)()()()(

)()()()]([

1

0=

1

0=

1

0=

2

22
1

0=

1

0=

22

22
1

0=

1

0=

22
1

0=

22

jkwkgkh

jkwkgkk

jkwkgkhkeE

ijm

M

i

M

j

M

m
s

ij

M

i

M

j
vn

ij

M

i

M

j
sm

M

m
s

−−

−++

−+≈

∑∑∑

∑∑

∑∑∑

−−−

−−

−−−

σ

σσ

σσ

 (13) 
 

The minimum MSE can be obtained by differentiating 
)]([ 2 keE  with respect to the )(kg j 's and equating to zero to 

give  
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 which is similar to ((4)). However, by using the Wiener 
filter solution of the STF for sinusoidal input signals [9], we 
can approximate the expected value of )(kz  as  
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where 
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iα  and )(kv f  is the 

STF output noise with variance 1))((2 −Mkvμσ . It is 
evident from ((16)) that the STF can greatly reduces input noise 
effect for 1μ . Substituting for )(kz  by its expected value in 

)(ke  we can simplify the output error function to  
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 Squaring both sides of ((17)) and taking expectations gives the 
MSE as  
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Differentiating )]([ 2 keE  wrt the )(kgi 's and equating to 
zero to obtain the minimum MSE reduces the output error 
function to  
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 If )(kα  is taken to be constant and equal to cα  we can write 
((19)) as  
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When cα  is approaches 1, the effect of input noise is less 
severe and could give less biased coefficient estimates when 
the step-size is appropriately chosen to be small. 

D. Delay Convergence Properties 
The time delay estimates converge to their optimum values 

much earlier in the adaptation process compared to adaptive 
time constant. This can be explained as follows. From the 
transient analysis of the LMS algorithm, it is known [10] that 
the adaptive time constant nτ  lies in the range  

 

 ,
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1
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max μλ
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μλ −
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where μ  is the step-size parameter, and maxλ  and minλ  are 
the maximum and minimum eigenvalues of input 
autocorrelation matrix )]()([=)( mkxkxEmxx +R , 
respectively. However, for the TDE problem, we are mainly 
interested in the maximum filter coefficient value among 

)()( 10 kgkg M −K . Therefore, only the lower bound of 
adaptive time constant is of interest. The time delay adaptive 
time constant, denoted by dτ , becomes  
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For a real sinusoidal input signal corrupted by white noise as 
given by ((1)), the maximum eigenvalue maxλ  is 22

0 /2 vA σ+ , 
and substituting it in ((22)) gives  
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which could be much less than the adaptive constant nτ  as 
observed in [3]. Furthermore, we can see that the effect of input 
noise is to slow the convergence to the true delay by a factor η  
equal to  
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In order to speed-up the convergence of the delay, we propose 
to employ the STF and the time delay estimator in cascade. 
Since the expected value of )(kz  is )(ks , it is possible to 
minimize the effect of input noise on the delay estimates. If we 
have 22 =]))()([( ξε kvkE − , then we can approximate η  

by  

 .
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Thus, the STF could improve convergence and also reduce bias 
in the time delay estimates. Moreover, a small residual error 
will always exist between )(kε  and the input noise. Thus, the 
stability of the time delay estimator is guaranteed. 

One desirable characteristic for the STF is that only the 
Wiener filter solution is required for good performance [9]. The 
optimal Wiener filter coefficients for a narrowband sinusoidal 
signal of amplitude 0A , center radian-frequency 0ω , and 

phase angle θ , corrupted by broadband white Gaussian noise, 
have the form  
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The expected value of )(kz  is given by  
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By substituting oiw  in )]([ kzE  and assuming that M0ω  is 
not close to zero or π , we get 
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Thus, it is verified that )]([ kzE  becomes independent of 1D . 

III. SIMULATION EXAMPLE 
Computer simulation was carried out to evaluate the 

performance of the proposed method. The source signal )(ks  
consisted of a single sinusoid and the input signal )(kx  was 
corrupted by white Gaussian noise )(kv  as given by  

 ),()(2cos=)( 00 kvkfAkx +π  

where the frequency of the input signal 0f  was set to 120  Hz 

per sample and the amplitude 0A  was set to unity. The signal 

was sampled at 1 kHz. The corresponding output signal )(ky  
was generated according to the relationship ((2)). In the 
simulation, the ratio of the input to output noise variance was 
assumed to be 1 for the So method [5] while no assumptions 
were made for both the proposed method and the LMSTDE 
method [3]. For all methods, a fixed step-size of 0.001  was 
used and 100  independent runs were averaged. The filter 
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lengths for the proposed method were set to 16=M , and 1D  
was set to 1. 
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Fig. 2 Comparison of the proposed method with So method (SOLMS) 
and LMSTDE for a time delay of sT×3  at SNR of 0dB.   
 

  Figure 2 shows the delay convergence properties of the 
simulated methods. The effectiveness of the proposed method 
can clearly be seen where the proposed method converges to 
the true delay of sT×3  much faster than the other two methods. 
To see the effect of sudden changes in delay, the time delay was 
changed at the 200 th iteration from sT×3  to sT×4 . Figure 
3 shows the performance of the proposed method compared 
with the two other methods. The results show that the proposed 
method performs much better for sudden changes in delay by 
adapting to the new delay faster than the other methods. We 
also conducted an investigation into the tracking ability of the 
algorithm when the noise variance suddenly changed from 
10dB to 0dB at the 500th iteration. The results show superior 
tracking ability of the proposed method as depicted in Fig. 4.   
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Fig. 3  Comparison of the proposed method with So method (SOLMS) 
and LMSTDE for step time-variant delay changing from sT×3  to 

sT×4  at the 200 th iteration at a SNR of 10dB. 
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Fig. 4  Comparison of the proposed method with So method (SOLMS) 
and LMSTDE for sudden change of noise variance from 10dB to 0dB 
at the 500th iteration with the delay held at sT×3 .   

IV. CONCLUSION 
We have proposed a novel TDE method based on noisy 

input-output system identification modeling. The attractiveness 
is rapid convergence and noise robustness when compared to 
the other competing methods. An analysis of MSE and bias 
properties of the proposed method has be given. We have also 
shown that only the maximum eigenvalue of the input 
correlation matrix is important in speeding-up the convergence 
to true time delays. Simulation results show that the proposed 
method performs better than existing methods in its tracking 
ability for both step time-variant delays and input noise. 
Nevertheless, further improvements with respect to 
convergence speed and fractional delay adaptation are possible. 
These have been deferred to our future work. 
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