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Second Order Admissibilities
in Multi-parameter Logistic Regression Model

Chie Obayashi, Hidekazu Tanaka, Yoshiji Takagi

Abstract—In multi-parameter family of distributions, conditions
for a modified maximum likelihood estimator to be second order
admissible are given. Applying these results to the multi-parameter
logistic regression model, it is shown that the maximum likelihood
estimator is always second order inadmissible. Also, conditions for
the Berkson estimator to be second order admissible are given.

Keywords—Berkson estimator, modified maximum likelihood es-
timator, Multi-parameter logistic regression model, second order
admissibility.

I. INTRODUCTION

LOGISTIC regression model is often used as the way
of statistical analysis of binary data. In the model, [1]

asserted that the minimum logit chi-squared estimator (MLχ2E
for short) is better than the maximum likelihood estimator
(MLE) by comparing the exact mean squared errors (MSEs)
of the two estimators. The problem which the MLE or the
MLχ2E is better, called the Berkson’s bioassay problem, is
discussed by many researchers. In this model, there exists a
completely sufficient statistic. So the MLχ2E can be improved
by the Rao-Blackwell theorem, which is called Berkson esti-
mator. [2] evaluated the Taylor expansions of the MSEs of
these estimators up to the second order and showed that the
MSE of the Berkson estimator is asymptotically smaller than
that of the MLE. [3] tried to solve the problem in terms
of asymptotic admissibility. First, they derived a necessary
and sufficient condition for a modified MLE to be second
order admissible (SOA) under the quadratic loss function in
general setup of one-parameter case. Especially, in the logistic
regression model, they showed that the MLE is always second
order inadmissible (SOI) and the Berkson estimator is SOA if
and only if the number of the doses is greater than or equal
to 4. However, in multi-parameter logistic regression model,
whether the two estimators are SOA or not is open.

Recently, [4] derived conditions for a modified MLE to
be SOA in general setup of two-parameter case. Also, they
showed that the MLE is always SOI and the Berkson estimator
is SOA if and only if the number of the doses is greater than or
equal to 6. The purpose in this article is to extend the results
in [4] to the p-parameter case where p ≥ 3.

This article is organized as follows: In Section 2, we
present notations, definition and some theorems for second
order admissibility in general setup. In Section 3, we identify
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whether the MLE and the Berkson estimator are SOA or
not in the multi-parameter logistic regression model. Some
concluding remarks are given in Section 4. Finally, we give
proofs of lemmas.

II. PRELIMINARIES

In this section, we present necessary condition and sufficient
condition for second order admissibility in general setup.
Suppose that X1, . . . , Xn are independent and identically
distributed (i.i.d.) random vectors according to a probability
distribution Pθ, where θ = (θ1, θ2, . . . , θp)

′ ∈ R
p is unknown

and p ≥ 3. Suppose that Pθ has a probability density function
f(x, θ) with respect to some σ-finite measure. Also, we
assume the regularity conditions (i) to (v) given in [5]. Then,
we consider the estimation problem of θ under the normed
quadratic loss function

l(θ, δ) := (δ − θ)′I(θ)(δ − θ) (1)

in estimating θ by δ, where I(θ) is the Fisher information
matrix per one observation. Let λmin(θ) and λmax(θ) be
the smallest and the largest eigenvalues of I(θ). Hence-
forth, tr{A} and |A| denote the trace and the determinant
of matrix A, and ||θ|| :=

√
θ′θ. Also, (d/dθ)f(θ) :=

((∂/∂θ1)f(θ), (∂/∂θ2)f(θ), . . . , (∂/∂θp)f(θ))
′, (d/dθ′)f(θ)

:= ((d/dθ)f(θ))′ for vector valued function f(θ).
[3] proposed a concept of second order admissibility.
Definition 1: Let D be a set of first order efficient estima-

tors. An estimator δ(∈ D) of θ is D-second order inadmissible
as n → ∞ if there exists an estimator δ∗(∈ D) such that
limn→∞ n2{R(θ, δ∗) − R(θ, δ)} ≤ 0 for all θ ∈ R

p, and
limn→∞ n2{R(θ0, δ

∗)−R(θ0, δ)} < 0 for some θ0 ∈ R
p. An

estimator δ(∈ D) is D-second order admissible as n → ∞ if
δ is not D-second order inadmissible as n → ∞.

Let θ̂c be the modified MLE of θ by function c, that is,
θ̂c := θ̂ML+c(θ̂ML)/n, where θ̂ML is the MLE of θ. According
to [5], first order efficient estimators can be represented as a
modified MLE up to the order op(1/n). Therefore, in this
paper, we restrict estimators to the class

D := {θ̂c : c ∈ C1(Rp)},

where C1(Rp) is the set of all continuously differentiable func-
tions over R

p. Henceforth, second order admissibility means
D-second order admissibility as n → ∞ under the normed
quadratic loss function (1). Let bc(θ) be the asymptotic bias
of θ̂c, that is, bc(θ) := limn→∞ nEθ[θ̂c− θ] = bML(θ)+ c(θ).
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Then, the risk difference between θ̂c and θ̂d(∈ D) is given by

R(θ, θ̂d)−R(θ, θ̂c)

=
1

n2
tr

{
g(θ)g′(θ)I(θ) + 2bc(θ)g

′(θ)I(θ) + 2
d

dθ′
g(θ)

}

+o

(
1

n2

)

as n → ∞, where g(θ) := d(θ)− c(θ). Therefore, a necessary
and sufficient condition for the modified MLE θ̂c to be SOA
is that if g ∈ C1(Rp) satisfies

tr

{
g(θ)g′(θ)I(θ) + 2bc(θ)g

′(θ)I(θ) + 2
d

dθ′
g(θ)

}
≤ 0 (2)

for all θ ∈ R
p, then g(θ) = 0 for all θ ∈ R

p. Here, we present
an assumption, which corresponds to a potential function.

Assumption 1: There exists a continuously differentiable
function γc0 : Rp → R+ such that

I(θ)bc0(θ) =
d

dθ
log γc0(θ)

for all θ ∈ R
p.

For the modified MLE θ̂c0 satisfying Assumption 1, (2) is
equivalent to

1

γc0(θ)
h′(θ)I(θ)h(θ) ≤ −2tr

{
d

dθ′
h(θ)

}
, (3)

where h(θ) := g(θ)γc0(θ).
Theorem 1: Suppose that the modified MLE θ̂c0 satisfies

Assumption 1 and there exists ξ ∈ Ξ such that

H(θ) :=

∫ ∞

0

[
λmax(x)

γc0(x)

]

x=θ+rωξ

dr < ∞

for all θ ∈ R
p, where

ωξ := (ωξ,1, ωξ,2, . . . , ωξ,p)
′,

ξ := (ξ1, ξ2, . . . , ξp−1)
′,

ωξ,i :=

⎧
⎨
⎩

cos ξ1 (i = 1),

cos ξi
∏i−1

j=1 sin ξj (i = 2, . . . , p− 1),∏p−1
j=1 sin ξj (i = p),

Ξ :=
{
ξ ∈ R

p−1 : ξi ∈ [0, π) (i = 1, . . . , p− 2),

ξp−1 ∈ [0, 2π)} .
Furthermore, we assume that the differential of H(θ) can be
obtained by the differential in the integral sign, that is,

∂

∂θi
H(θ) =

∫ ∞

0

∂

∂θi

[
λmax(x)

γc0(x)

]

x=θ+rωξ

dr (4)

for i = 1, . . . , p, then θ̂c0 is SOI.
The proof is omitted since it can be shown that h(θ) :=

−ωξ/H(θ) satisfies (3) by the similar way to [4].
Theorem 1 may be complicated since it may be difficult to

show the exchangeability of the differential sign and integral
one. The next result is easy to handle it.

Corollary 1: Suppose that the modified MLE θ̂c0 satisfies
Assumption 1. If

∫ ∞

0

λmax(θ)

γc0(θ)
dθ1 < ∞

for all θ2, . . . , θp, then θ̂c0 is SOI.
The proof is omitted since it can be obtained from Theorem

1.
The next lemma is used in Theorem 2. The proof is given

in Appendix.
Lemma 1: Suppose that h ∈ C1(Rp). Then,
∫

Du

tr

{
d

dθ′
h(θ)

}
dθ = up−1

∫

Ξ

ω′
ξh(uωξ)J(ξ)dξ

holds for u > 0, where Ξ is defined in Theorem 1,

Du := {θ ∈ R
p : ‖θ‖ ≤ u},

J(ξ) :=

p−2∏

i=1

sinp−i−1 ξi.

Theorem 2: Suppose that the modified MLE θ̂c0 satisfies
Assumption 1. Put

ηc0(r) :=

∫

Ξ

[
γc0(θ)

λmin(θ)

]

θ=rωξ

J(ξ)dξ,

where ωξ is given in Theorem 1. If
∫ ∞

ε

dr

rp−1ηc0(r)
= ∞

for some ε > 0, then θ̂c0 is SOA.
Taking account of Lemma 1, the proof of Theorem 2 can

be obtained by the similar way to [4].

III. ADMISSIBILITIES IN LOGISTIC REGRESSION MODEL

In this section, we consider the second order admissibilities
of MLE and the Berkson estimator in p-parameter logistic
regression model where p ≥ 3 is a given number. Suppose
that R1, . . . , Rk are independently distributed random vari-
ables according to the binomial distribution B(n, Pi(θ)) for
i = 1, . . . , k with

Pi(θ) :=
1

1 + exp(−x′
iθ)

,

where θ := (θ1, θ2, . . . , θp)
′(∈ R

p) is unknown and the
doses xi = (1, di,2, . . . , di,p)

′ is known for i = 1, . . . , k.
For convenience, we put di,1 = 1. Here the condition
|(xi1 , xi2 , . . . , xip)| 	= 0 for some i1 > · · · > ip should be
assumed. Let Yi1, . . . , Yin be i.i.d. random variables according
to the binomial distribution B(1, Pi(θ)) for i = 1, . . . , k. Put
Yj := (Y1j , . . . , Ykj)

′ for j = 1, . . . , n. Then, Y1, . . . , Yn are
i.i.d. random vectors and the Fisher information matrix is given
by

I(θ) =
k∑

i=1

Pi(θ)(1− Pi(θ))xix
′
i.

Let θ̂ML and θ̂B be the MLE and the Berkson estimator of θ,
that is,

θ̂B = θ̂ML +
1

n
(blogit(θ̂ML)− bML(θ̂ML)),
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where blogit(θ) is the asymptotic bias of the MLχ2E θ̂logit (see
(74) in [2]). Then, by the similar arguments to [4], we see that
both θ̂ML and θ̂B satisfy Assumption 1 with

γML(θ) =
1√|I(θ)| , (5)

γB(θ) =
1

|I(θ)|
k∏

i=1

{
Pi(θ) exp

(
−1

2
x′
iθ

)}
. (6)

To apply Theorems 1 and 2 to the logistic regression model,
we prepare some lemmas. The proofs are given in Appendix.

Lemma 2: The determinant of the Fisher information ma-
trix is represented as

|I(θ)| =
∑

i1>···>ip

Pi1(θ)(1− Pi1(θ)) · · ·Pip(θ)(1− Pip(θ))

×|(xi1 , xi2 , . . . , xip)|2.
Lemma 3: For all θ1 > 0, θ2, . . . , θp ∈ R, the followings

hold:

(i) tr{I(θ)} ≤ C1(θ{1})e−θ1 ,
(ii) |I(θ)| ≤ C2(θ{1})e−pθ1 ,

(iii)
k∏

i=1

{
Pi(θ) exp

(
−1

2
x′
iθ

)}
≥ C3(θ{1}) exp

(
−k

2
θ1

)

for some C1(θ{1}), C2(θ{1}) and C3(θ{1}), where θ{1} :=
(θ2, . . . , θp)

′.
Lemma 4: For li 	= lj , put

Ξl1,...,lp :=
{
ξ ∈ Ξ : |x′

l1ωξ| ≤ |x′
l2ωξ| ≤ · · ·

≤ |x′
lpωξ| ≤ |x′

iωξ| (i 	= l1, . . . , lp)
}
.

For all ξ ∈ Ξl1,l2,...,lp and r > 0, the followings hold:

(i) tr{I(rωξ)} ≤ C4 exp(−r|x′
l1ωξ|),

(ii) |I(rωξ)| ≥ C5 exp

(
−r

p∑

m=1

|x′
lmωξ|

)
,

(iii)
k∏

i=1

{
Pi(rωξ) exp

(
−r

2
x′
iωξ

)}

≤ exp

(
−r

2

k∑

i=1

|x′
lmωξ|

)
,

where C4 and C5 are constants.
Theorem 3: The MLE θ̂ML of θ is always SOI.

Proof: From (5), Lemma 3 and the fact λmax(θ) ≤
tr{I(θ)}, we have

λmax(θ)

γML(θ)
≤ C1(θ{1})

√
C2(θ{1}) exp

{
−1

2
(p+ 2)θ1

}

for all θ1 > 0, θ2, · · · , θp ∈ R. Therefore, we see that
∫ ∞

0

λmax(θ)

γML(θ)
dθ1

≤
∫ ∞

0

C1(θ{1})
√

C2(θ{1}) exp

{
−1

2
(p+ 2)θ1

}
dθ1

< ∞,

which implies the second order inadmissibility of θ̂ML by
Corollary 1.

Theorem 4: The Berkson estimator θ̂B is SOI if p ≤ k ≤
2p+ 1.

Proof: By the similar argument to the proof of Theorem
3, we have

λmax(θ)

γB(θ)
≤ C1(θ{1})C2(θ{1})

C3(θ{1})
exp

{
−1

2
(2p+ 2− k)θ1

}

for all θ1 > 0, θ2, . . . , θp ∈ R. Therefore, we see that θ̂B is
SOI if p ≤ k ≤ 2p+ 1.

Theorem 5: The Berkson estimator θ̂B is SOA if

2(p− 1)|x′
l1ωξ| − 4

p∑

m=1

|x′
lmωξ|+

k∑

m=1

|x′
lmωξ| > 0 (7)

(∀ξ ∈ Ξl1,l2,...,lp)

holds for all l1, l2, . . . , lp(li 	= lj), where Ξl1,l2,...,lp is defined
in Lemma 4. In particular, if k ≥ 4p−3, the Berkson estimator
θ̂B is SOA．

Proof: Note that ηB(r) is written by

ηB(r) =
∑

li �=lj

∫

Ξl1,l2,...,lp

γB(rωξ)

λmin(rωξ)
J(ξ)dξ.

It is easy to show that

1

λmin(θ)
≤ trp−1{I(θ)}

|I(θ)| .

So, from (6) and Lemma 4, we have

γB(rωξ)

λmin(rωξ)

≤ trp−1{I(rωξ)}
|I(rωξ)|2

k∏

i=1

{
Pi(rωξ) exp

(
−r

2
x′
iωξ

)}

≤ C6 exp

{
−r

2

(
2(p− 1)|x′

l1ωξ| − 4

p∑

m=1

|x′
lmωξ|

+

k∑

m=1

|x′
lmωξ|

)}

for all ξ ∈ Ξl1,...,lp , r > 0, where C6 is a constant. If (7)
holds, we have limr→∞ rp−1ηB(r) = 0. So, we get the first
part from Theorem 2. Next, we show the second part. From
the assumption p ≥ 3, we can show that

2(p− 1)|x′
l1ωξ| − 4

p∑

m=1

|x′
lmωξ|+

k∑

m=1

|x′
lmωξ|

= (2p− 5)|x′
l1ωξ| − 3

p∑

m=2

|x′
lmωξ|+

k∑

m=p+1

|x′
lmωξ|

≥ (2p− 5)|x′
l1ωξ|

> 0

if k ≥ 4p− 3. This completes the proof.
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IV. CONCLUDING REMARKS

In one-parameter logistic regression model, [3] showed that
the MLE is always SOI and the Berkson estimator is SOA if
only if the number of the doses is greater than or equal to
4 under the quadratic loss function. The loss function in [3]
is different from the one in [4] and this article, however the
admissibility result under the quadratic loss function coincides
with the one under the normed quadratic loss function. Table
1 summarizes the admissibility or inadmissibility of the two
estimators for p = 1, . . . , 4. The symbol — means that the
case can not be considered since the number of the doses k is
larger than the dimension of the parameter space p. The part
of ? means that the case is still open. There are some reasons
why it is open. One is that the lower bound of λmin(θ) is
not sharp enough to show the complete inadmissibility of θ̂B.
Another is that we applied Corollary 1 not but Theorem 1 to
show the inadmissibility. It seems that showing the validity of
(4) is not so easy. The authors conjecture that there exist both
cases.

TABLE I
ADMISSIBILITIES OF MLE AND BERKSON ESTIMATOR FOR p = 1, . . . , 4

p = 1 p = 2 p = 3 p = 4

[3] [4] [Th.3,4,5] [Th.3,4,5]

θ̂ML SOI SOI SOI SOI

k = 1 —
—

k = 2 SOI —

k = 3
SOI

k = 4
SOI

θ̂B k = 5

k = 6, 7 SOI

k = 8 SOA ?

k = 9 SOA

k = 10, 11, 12 SOA ?

k ≥ 13 SOA

APPENDIX A

In this section, we give the proofs of lemmas presented in
the previous Sections.

Proof of Lemma 1: Changing the variables as

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

θ1 := r cos ξ1,

θi := r cos ξi

i−1∏

j=1

sin ξj (i = 2, . . . , p− 1),

θp := r

p−1∏

j=1

sin ξj ,

where r > 0 and ξ ∈ Ξ, we see that

r = ‖θ‖, ξi = Tan−1

√∑p
j=i+1 θ

2
j

θi
(i = 1, . . . , p− 1),

and the Jacobian is rp−1J(ξ). Put H(r, ξ) := h(rωξ). Then,
by the chain rule, we have

∂

∂θl
hl(θ)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂r
H1(r, ξ) cos ξ1 − ∂

∂ξ1
H1(r, ξ)

sin ξ1
r

(l = 1),

∂

∂r
Hl(r, ξ) cos ξl

l−1∏

i=1

sin ξi

+
cos ξl
r

l−1∑

i=1

∂

∂ξi
Hl(r, ξ) cos ξi

∏l−1
j=i+1 sin ξj∏i−1
j=1 sin ξj

−1

r

∂

∂ξl
Hl(r, ξ)

sin ξl∏l−1
j=1 sin ξj

(l = 2, . . . , p− 1),

∂

∂r
Hp(r, ξ)

p−1∏

i=1

sin ξi

+
1

r

p−1∑

i=1

∂

∂ξi
Hp(r, ξ) cos ξi

∏p−1
j=i+1 sin ξj∏i−1
j=1 sin ξj

(l = p).

Using this relation and integration by parts, we have
∫

Du

∂

∂θ1
h1(θ)dθ

=

∫

Ξ

∫ u

0

{
∂

∂r
H1(r, ξ) cos ξ1 − ∂

∂ξ1
H1(r, ξ)

sin ξ1
r

}

×rp−1J(ξ)drdξ

=

∫

Ξ

cos ξ1J(ξ)

{∫ u

0

rp−1 ∂

∂r
H1(r, ξ)dr

}
dξ

−
∫ u

0

∫

Ξ{1}
rp−2

p−2∏

i=2

sinp−i−1 ξi

×
∫ π

0

sinp−1 ξ1
∂

∂ξ1
H1(r, ξ)dξ1dξ{1}dr

= up−1

∫

Ξ

J(ξ) cos ξ1H1(u, ξ)dξ,

where dξ{1} := dξ2 · · · dξp−1 and Ξ{1} := {(ξ2, . . . ξp−1) :
ξ ∈ Ξ}. Similarly, we have

∫

Du

∂

∂θl
hl(θ)dθ = up−1

∫

Ξ

J(ξ)Hl(u, ξ) cos ξl

l−1∏

j=1

sin ξjdξ

(l = 2, . . . , p− 1),
∫

Du

∂

∂θp
hp(θ)dθ = up−1

∫

Ξ

J(ξ)Hp(u, ξ)

p−1∏

j=1

sin ξjdξ.

Therefore, it follows that
∫

Du

tr

{
d

dθ
h(θ)

}
dθ = up−1

∫

Ξ

ω′
ξh(uωξ)J(ξ)dξ.

This completes the proof.
Lemma 1 may be proved by the divergence theorem, which

is easier than the proof of Lemma 1.

Proof of Lemma 2: Let Sp be the symmetric group of
degree p and let sgn(σ) be the sign of σ ∈ Sp. Since the
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(α, β)-th element of I(θ) is

Iαβ(θ) =

k∑

i=1

Pi(θ)(1− Pi(θ))di,αdi,β ,

we have

|I(θ)|

=
∑

σ∈Sp

sgn(σ)

k∑

i1=1

Pi1(θ)(1− Pi1(θ))di1,1di1,σ(1)

· · ·
k∑

ip=1

Pip(θ)(1− Pip(θ))dip,pdip,σ(p)

=
k∑

i1=1

· · ·
k∑

ip=1

Pi1(θ)(1− Pi1(θ)) · · ·Pip(θ)(1− Pip(θ))

×di1,1 · · · dip,p
∑

σ∈Sp

sgn(σ)di1,σ(1) · · · dip,σ(p)

=

k∑

i1=1

· · ·
k∑

ip=1

Pi1(θ)(1− Pi1(θ)) · · ·Pip(θ)(1− Pip(θ))

×di1,1 · · · dip,p|(xi1 , . . . , xip)|
=
∑

σ∈Sp

∑

iσ(1)>···>iσ(p)

Pi1(θ)(1− Pi1(θ))

· · ·Pip(θ)(1− Pip(θ))di1,1 · · · dip,p|(xi1 , . . . , xip)|.

Changing the variables as iσ(1) = i1, . . . , iσ(p) = ip, we get

|I(θ)|
=
∑

σ∈Sp

∑

i1>i2>···>ip

Pi1(θ)(1− Pi1(θ)) · · ·Pip(θ)(1− Pip(θ))

×diσ−1(1),1
· · · diσ−1(p),p

|(xiσ−1(1)
, . . . , xiσ−1(p)

)|
=

∑

i1>i2>···>ip

Pi1(θ)(1− Pi1(θ)) · · ·Pip(θ)(1− Pip(θ))

×
∑

σ∈Sp

diσ(1),1 · · · diσ(p),p|(xiσ(1)
, . . . , xiσ(p)

)|sgn(σ)

=
∑

i1>i2>···>ip

Pi1(θ)(1− Pi1(θ)) · · ·Pip(θ)(1− Pip(θ))

×|(xi1 , xi2 , . . . , xip)|2.

Proof of Lemma 3: It is easily obtained that

Pi(θ)(1− Pi(θ)) ≤ exp(−|x′
iθ|)

≤ exp

(
−θ1 +

p∑

m=2

|di,mθm|
)

for all θ1 > 0, θ2, . . . , θp ∈ R. According to

tr{I(θ)} =

k∑

i=1

p∑

j=1

d2i,jPi(θ)(1− Pi(θ))

and Lemma 2, we have (i) and (ii). Furthermore, it can be

shown that

Pi(θ) exp

(
−1

2
x′
iθ

)

=
1

exp(x′
iθ/2) + exp(−x′

iθ/2)

≥ 1

2
exp

(
−1

2
|x′

iθ|
)

≥ 1

2
exp

{
−1

2

(
θ1 +

p∑

m=2

|di,mθm|
)}

.

Hence, we get (iii).

Proof of Lemma 4: Since

1

4
exp(−r|x′

iωξ|) ≤ Pi(rωξ)(1− Pi(rωξ)) ≤ exp(−r|x′
iωξ|)

for all ξ ∈ Ξl1,l2,...,lp and r > 0, we get

tr{I(rωξ)} ≤
k∑

i=1

p∑

j=1

d2i,j exp(−r|x′
iωξ|)

≤ exp(−r|x′
l1ωξ|)

k∑

i=1

p∑

j=1

d2i,j .

By using the result of Lemma 2, we get

|I(rωξ)|

≥ 1

4p

∑

i1>···>ip

|(xi1 , xi2 , . . . , xip)|2 exp
(
−r

p∑

m=1

|x′
imωξ|

)

≥ 1

4p
|(xl1 , xl2 , . . . , xlp)|2 exp

(
−r

p∑

m=1

|x′
lmωξ|

)
.

Furthermore, the inequality

Pi(rωξ) exp
(
−r

2
x′
iωξ

)

=
1

exp(rx′
iωξ/2) + exp(−rx′

iωξ/2)

≤ exp
(
−r

2
|x′

iωξ|
)
≤ exp

(
−r

2
|x′

liωξ|
)

implies (iii).
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