
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

79

 

 

  
Abstract— Bagging and boosting are among the most popular re-

sampling ensemble methods that generate and combine a diversity of 
regression models using the same learning algorithm as base-learner. 
Boosting algorithms are considered stronger than bagging on noise-
free data. However, there are strong empirical indications that 
bagging is much more robust than boosting in noisy settings. For this 
reason, in this work we built an ensemble using an averaging 
methodology of bagging and boosting ensembles with 10 sub-
learners in each one. We performed a comparison with simple 
bagging and boosting ensembles with 25 sub-learners on standard 
benchmark datasets and the proposed ensemble gave better accuracy. 
 

Keywords— Regressors, statistical learning.  

I. INTRODUCTION 
N this paper we consider the following regression setting. 
Data is generated from an unknown distribution P on some 

domain X and labeled according to an unknown function g. A 
learning algorithm receives a sample S = {(x1, g(x1)), . . . , 
(xm, g(xm))} and attempts to return a function f close to g on 
the domain X. Many regression problems involve an 
investigation of relationships between attributes in 
heterogeneous databases, where different prediction models 
can be more appropriate for different regions. 

Both empirical observations and specific statistical learning 
applications confirm that a given learning algorithm 
outperforms all others for a specific problem or for a specific 
subset of the input data, but it is unusual to find a single 
expert achieving the best results on the overall problem 
domain [7]. As a consequence multiple learner systems try to 
exploit the local different behavior of the base learners to 
enhance the accuracy and the reliability of the overall 
inductive learning system. There are also hopes that if some 
learner fails, the overall system can recover the error. 

Numerous methods have been suggested for the creation of 
ensemble of learners [6]. Mechanisms that are used to build 
ensemble of learners include: i) Using different subset of 
training data with a single learning method, ii) Using different 
training parameters with a single training method, iii) Using 
different learning methods. 

Two of the most popular ensemble algorithms are bagging 
[4] and boosting [8]. There are two major differences between  
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bagging and boosting. Firstly, boosting changes adaptively the 
distribution of the training set based on the performance of 
previously created learners while bagging changes the 
distribution of the training set stochastically. Secondly, 
boosting uses a function of the performance of a learner as a 
weight for averaging, while bagging uses equal weight 
averaging. Boosting algorithms are considered stronger than 
bagging on noise-free data; however, bagging is much more 
robust than boosting in noisy settings. For this reason, in this 
work, we built an ensemble combing bagging and boosting 
version of the same learning algorithm using the averaging 
methodology. We performed a comparison with simple 
bagging and boosting ensembles on standard benchmark 
datasets and we took better accuracy in most cases. For the 
experiments, representative algorithms of well known 
statistical learning techniques, such as regression trees and 
regression rules were used.  

Section II presents the most well known methods for 
building ensembles that are based on a single learning 
algorithm, while section III discusses the proposed ensemble 
method. Experiment results using a number data sets and 
comparisons of the presented combining method, using 
different base learners, with other ensembles are presented in 
section IV. We conclude in Section 5 with summary and 
further research topics.  

II.� ENSEMBLES OF LEARNERS 
Learning algorithms try to find a hypothesis in a given 

space H of hypotheses and in many cases if we have sufficient 
data they can find the optimal one for a given problem. But in 
real cases we have only limited data sets and sometimes only 
few examples are available. In these cases the learning 
algorithm can find different hypotheses that appear equally 
accurate with respect to the available training data, and 
although we can sometimes select among them the simplest or 
the one with the lowest capacity, we can avoid the problem 
combining them to get a good approximation of the unknown 
true hypothesis. 

Thus, there is a growing realization that combinations of 
learners can be more effective than single learners. Why rely 
on the best single learner, when a more reliable and accurate 
result can be obtained from a combination of several? This 
essentially is the reasoning behind the idea of multiple learner 
systems. 

This section provides a brief survey of methods for 
constructing ensembles using a single learning algorithm. This 
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set of ensemble creating techniques relies on varying the data 
in some way. Methods of varying the data include; sampling, 
use of different data sources, use of different pre-processing 
methods, distortion, and adaptive re-sampling. 

Bagging [4] is a “bootstrap” ensemble method that creates 
individual regression models by training the same learning 
algorithm on a random redistribution of the training set. Each 
regression model's training set is generated by randomly 
drawing, with replacement, N instances – where N is the size 
of the original training set. Many of the original instances may 
be repeated in the resulting training set while others may be 
left out. After the construction of several regression models, 
taking the average value of the predictions of each regression 
model gives the final prediction. A more sophisticated version 
of bagging is described in [5] 

Another method that uses different subset of training data 
with a single learning method is the boosting approach [8]. 
The boosting approach uses the base models in sequential 
collaboration, where each new model concentrates more on 
the examples where the previous models had high error. 
Although boosting for regression has not received nearly as 
much attention as boosting for classification, there is some 
work examining gradient descent boosting algorithms in the 
regression context. 

The AdaBoost.R algorithm [9] attacks the regression 
problem by reducing it to a classification problem. Friedman 
has also explored regression using the gradient descent 
approach (Additive regression model) [14]. In each iteration 
Friedman’s master algorithm constructs ˜yi -values for each 
data-point xi equal to the (negative) gradient of the loss of its 
current master hypothesis on xi. The base learner then finds a 
function in a class F minimizing the squared error on this 
constructed sample. 

One major issue in combining a set of learned models is the 
amount of correlation in the set of predictors. A high degree 
of correlation is expected because the learned models are 
attempting to perform the same prediction task. Correlation 
reflects the amount of agreement or linear dependence 
between models when making a set of predictions. The more 
the models agree, the more correlation, or redundancy, is 
present. Such a high degree of correlation in the model set can 
cause some combining schemes to produce unreliable 
estimates.  

III. PROPOSED METHODOLOGY 
Recently, several authors [4], [12] have proposed theories 

for the effectiveness of bagging and boosting based on bias 
plus variance decomposition of error. In this decomposition 
we can view the expected error of a learning algorithm on a 
particular target function and training set size as having two 
components:  
• A bias term measuring how close the average learner 

produced by the learning algorithm will be to the target 
function;  

• A variance term measuring how much each of the 

learning algorithm's guesses will vary with respect to each 
other (how often they disagree)  

 
Unlike bagging, which is largely a variance reduction 

method, boosting appears to reduce both bias and variance. 
After a base model is trained, misclassified training examples 
have their weights increased and correctly classified examples 
have their weights decreased for the purpose of training the 
next base model. Clearly, boosting attempts to correct the bias 
of the most recently constructed base model by focusing more 
attention on the examples that it misclassified. This ability to 
reduce bias enables boosting to work especially well with 
high-bias, low-variance base models. 

As mentioned in [4] the main problem with boosting seems 
to be robustness to noise. This is expected because noisy 
examples tend to be misclassified, and the weight will 
increase for these examples. They present several cases were 
the performance of boosting algorithms degraded compared to 
the original algorithms. On the contrary, they point out that 
bagging improves the accuracy in all datasets used in the 
experimental evaluation. 

Bagging uses an averaging technique which is unable to 
take into account the heterogeneity of the instance space. 
When the majority of the base learners give a wrong 
prediction for a new instance then the averaging decision will 
result in a wrong prediction. The problem may consist in 
discarding base learners (by assigning small weights) that are 
highly accurate in a restricted region of the instance space 
because this accuracy is swamped by their inaccuracy outside 
the restricted area. It may also consist in the use of learners 
that are accurate in most of the space but still unnecessarily 
confuse the whole committee in some restricted areas of the 
space. The advantage of boosting over bagging is that 
boosting acts directly to reduce error cases, whereas bagging 
works indirectly. 

For additional improvement of the prediction of a learner, 
we suggest combing bagging and boosting methodology with 
averaging (Average B&B). The proposed ensemble is 
algorithmically presented in Fig. 1 and schematically in Fig. 2, 
where hi is the produced hypothesis of each sub-ensemble, x 
the instance for classification and y* the final prediction of the 
proposed ensemble. 

 
MODEL GENERATION 
Let n be the number of instances in the training data. 
For each of t iterations (t=10 in our experiments): 
• Sample n instances with replacement from training data. 
• Built a learner from the sample 
• Store the resulting model. 
For each of t iterations (t=10 in our experiments): 
• Sample n instances concentrating more on the examples 

where previous models had high error. 
• Built a learner from the sample 
• Store the resulting model. 
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PREDICTION 
For each of the 2t models: 
  Predict the value of test instance  
Return the average value of the predicted values 

 
Fig. 1 The algorithmically description of the proposed ensemble 
 
It has been observed that for bagging and Additive 

regression, an increase in committee size (sub-learners) 
usually leads to a decrease in prediction error, but the relative 
impact of each successive addition to a committee is ever 
diminishing. Most of the effect of each technique is obtained 
by the first few committee members [2], [4], [12]. We used 10 
sub-learners for each sub-ensemble for the proposed 
algorithm. 

 

Fig. 2 The schematically description of the proposed ensemble 
 
The proposed ensemble is effective owing to 

representational reason. The hypothesis space h may not 
contain the true function f (mapping each instance to its real 
class), but several good approximations. Then, by taking 
weighted combinations of these approximations, learners that 
lie outside of h may be represented. 

It must be also mentioned that the proposed ensemble can 
be easily parallelized (one machine for each sub-ensemble). 
This parallel execution of the presented ensemble can reduce 
the training time in half. 
 

IV. COMPARISONS AND RESULTS 
We experimented with 29 datasets from the UCI repository 

[3]. These datasets cover many different types of problems 
which have discrete, continuous, and symbolic variables. 
Some datasets have missing values, and some have a mixture 
of all the above variables. The specific datasets are listed in 
Table I.  

The most well known measure for the degree of fit for a 
regression model to a dataset is the correlation coefficient. If 
the actual target values are a1, a2, … an, and the predicted 
target values are: p1, p2, … pn then the correlation coefficient 
is given by the formula:   

  
                                           (1)                                               (2) 
 
                                    
                       
 
                                           (3)                     (4) 
 
                 
where, p : the average value of pi and a : the average value 
of αi. 

TABLE I 
THE USED DATASETS 

 Instances Categorical 
features 

Numerical 
features 

auto93 93 6 16 
autoHorse 205 8 17 
autoMpg 398 3 4 
autoPrice 159 0 15 
bodyfat 252 0 14 
bolts 40 0 7 
br.Tumor 286 8 1 
cholesterol 303 7 6 
cleveland 303 7 6 
Cpu 209 1 6 
detroit 13 0 13 
elusage 55 1 1 
fishcatch 158 2 5 
gascons 27 0 4 
housing 506 1 12 
hungarian 294 7 6 
longlay 16 0 6 
lowbwt 189 7 2 
pbc 418 8 10 
pharynx 195 11 1 
pollution 60 0 15 
pwLinear 200 0 10 
quake 2178 0 3 
sensory 576 11 0 
servo 167 4 0 
sleep 62 0 7 
strike 625 1 5 
veteran 137 4 3 
vineyard 52 0 3 

 
In order to calculate the regression models’ correlation 

coefficient, the whole training set was divided into ten 
mutually exclusive and equal-sized subsets and for each 
subset the regression model was trained on the union of all of 
the other subsets.  Then, cross validation was run 10 times for 
each algorithm and the average value of the 10-cross 
validations was calculated. It must be mentioned that we used 
the free available source code for most of the algorithms by 
[13] for our experiments. 

In the following tables, we represent as “v” that the specific 
algorithm performed statistically better than the proposed 
ensemble according to t-test with p<0.05. Throughout, we 
speak of two results for a dataset as being "significant 
different" if the difference is statistical significant at the 5% 
level according to the corrected  resampled t-test [11], with 
each pair of data points consisting of the estimates obtained in 
one of the 100 folds for the two learning methods being 
compared. On the other hand, “*” indicates that proposed 
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ensemble performed statistically better than the specific 
algorithm according to t-test with p<0.05. In all the other 
cases, there is no significant statistical difference between the 
results (Draws). In the last row of the tables one can also see 
the aggregated results in the form (α/b/c). In this notation “α” 
means that the proposed ensemble is significantly less 
accurate than the compared algorithm in α out of 29 datasets, 
“c” means that the proposed algorithm is significantly more 
accurate than the compared algorithm in c out of 29 datasets, 
while in the remaining cases (b), there is no significant 
statistical difference. 

For both Bagging and Boosting, much of the reduction in 
error appears to have occurred after ten to fifteen learners. But 
Additive Regression continues to measurably improve their 
test-set error until around 25 learners [14]. For this reason, we 
used 25 sub-learners for our experiments.  

The time complexity of the proposed ensemble is less than 
both bagging and boosting with 25 sub-learners. This happens 
because we use 10 sub-learners for each sub-ensemble (totally 
20).  

In the following subsection, we present the experiment 
results for different base learners. For the experiments, 
representative algorithms of well known statistical learning 
techniques, such as regression trees and regression rules were 
used. In detail, RepTree [13], Decision stump [15] and 
ConjunctiveRule [13] were used as base learner. We have 
tried to minimize the effect of any expert bias by not 
attempting to tune any of the algorithms to the specific data 
set. Wherever possible, default values of learning parameters 
were used. This naïve approach results in lower estimates of 
the true error rate, but it is a bias that affects all the learning 
algorithms equally. 

 

A. Using RepTree as base learner 
Regression trees are binary decision trees with numerical 

values at the leaf nodes: thus they can represent any piecewise 
linear approximation to an unknown function. A regression 
tree is generated in two stages. The first builds an ordinary 
decision tree, using as splitting criterion the maximization of 
the intra-subset variation of the target value. The second 
prunes this tree back by replacing subtrees with a numerical 
value wherever this seems appropriate. 

Regression trees are very unstable in this regard as small 
perturbations in the training data set can produce large 
differences in the structure (and predictions) of a model. 
Bagging and boosting regression trees has been proved to be 
very successful for many machine-learning problems [1], [3], 
[14]. REPTree [13] is a fast regression tree learner that uses 
information variance reduction and reduced-error pruning 
(with backfitting). 

Subsequently, we compare the presented ensemble with 
bagging, boosting version of RepTree (using 25 sub-learners). 
In the last raw of the Table II one can see the concentrated 
results. 

The proposed ensemble is significantly more accurate than 

single RepTree and Additive Regression RepTree in 27 out of 
the 29 data sets, while it has significantly lower correlation 
coefficient in none data set. Furthermore, proposed ensemble 
has significantly higher correlation coefficient in 4 out of the 
29 data sets than Bagging RepTree, whereas it is significantly 
less accurate in 3 data sets. 

To sum up, the performance of the presented ensemble is 
more accurate than the other well-known ensembles that use 
only the RepTree algorithm. The proposed ensemble can 
achieve an increase in correlation coefficient about 20% 
compared to simple RepTree. 

 
TABLE II 

COMPARING THE PROPOSED ENSEMBLE WITH OTHER WELL 
KNOWN ENSEMBLES THAT USES AS BASE LEARNER THE REPTREE 

Datasets 
Average 
B&B 
RepTree 

Bagging 
RepTree 

Additive 
Regression 
RepTree 

RepTree 

auto93 0.45 0.43 * 0.26 * 0.23 * 
autoHorse 0.89 0.89  0.85 * 0.83 * 
autoMpg 0.91 0.91  0.89 * 0.88 * 
autoPrice 0.92 0.92  0.90 * 0.88 * 
bodyfat 0.98 0.98  0.98  0.98  
bolts 0.82 0.84  0.78  0.72 * 
breastTumor 0.21 0.22  0.16 * 0.15 * 
cholesterol 0.16 0.19 v 0.07 * 0.07 * 
cleveland 0.65 0.68 v 0.58 * 0.54 * 
cpu 0.95 0.96  0.90 * 0.90 * 
detroit 0.20 0.24  0.04 * 0.03 * 
elusage 0.82 0.82  0.80 * 0.80 * 
fishcatch 0.97 0.97  0.95 * 0.95 * 
gascons 0.84 0.82 * 0.71 * 0.67 * 
housing 0.90 0.91  0.86 * 0.85 * 
hungarian 0.63 0.64  0.58 * 0.58 * 
longley 0.52 0.53  0.38 * 0.39 * 
lowbwt 0.79 0.79  0.77 * 0.78  
pbc 0.53 0.55  0.46 * 0.46 * 
pharynx 0.33 0.01 * 0.3 * 0.01 * 
pollution 0.64 0.71 v 0.44 * 0.43 * 
pwLinear 0.92 0.92  0.90 * 0.89 * 
quake 0.11 0.12  0.06 * 0.07 * 
sensory 0.50 0.52  0.46 * 0.45 * 
servo 0.92 0.90 * 0.90 * 0.86 * 
sleep 0.61 0.63  0.49 * 0.49 * 
strike 0.53 0.55  0.40 * 0.40 * 
veteran 0.39 0.41  0.24 * 0.23 * 
vineyard 0.74 0.74  0.63 * 0.64 * 

W-D-L  3/23/3 0/2/27 0/2/27 
Average 
correlation 
coefficient 

0.65 0.64 0.58 0.56 

 

B. Using Decision Stump as base learner 
Secondly, we used decision stump (DS) as base learner in 

the ensemble. Decision stump (DS) are one level regression 
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trees that classify instances by sorting them based on feature 
values [10]. Each node in a decision stump represents a 
feature in an instance to be classified, and each branch 
represents a value that the node can take. Instances are 
classified starting at the root node and sorting them based on 
their feature values. At worst a decision stump will reproduce 
the most common sense baseline, and may do better if the 
selected feature is particularly informative. We compare the 
presented methodology with bagging and boosting version of 
DS (using 25 sub-learners). 

In the last raw of the Table III one can see the aggregated 
results. The proposed ensemble is significantly more accurate 
than single DS in 27 out of the 29 data sets, while it has 
significantly lower correlation coefficient in none data set. In 
addition, the proposed ensemble is significantly more accurate 
than Bagging DS in 23 out of the 29 data sets, whilst it has 
significantly lower correlation coefficient in one data set. 
Furthermore, the proposed ensemble has significantly higher 
correlation coefficient in 10 out of the 29 data sets than 
Boosting DS, whereas it significantly less accurate in 9 data 
sets.  

 
TABLE III 

COMPARING THE PROPOSED ENSEMBLE WITH OTHER WELL 
KNOWN ENSEMBLES THAT USES AS BASE LEARNER THE DS 

Datasets Average 
B&B DS 

Bagging 
DS 

Additive 
Regression 
DS 

DS 

auto93 0.79 0.74 * 0.79  0.59 * 
autoHorse 0.86 0.80 * 0.90 v 0.72 * 
autoMpg 0.86 0.78 * 0.90 v 0.74 * 
autoPrice 0.89 0.82 * 0.91 v 0.81 * 
bodyfat 0.93 0.84 * 0.97 v 0.82 * 
bolts 0.83 0.71 * 0.81  0.69 * 
breastTumor 0.28 0.23 * 0.29  0.22 * 
cholesterol 0.15 0.12 * 0.14  0.04 * 
cleveland 0.65 0.61 * 0.63 * 0.40 * 
cpu 0.95 0.87 * 0.97 v 0.31 * 
detroit 0.18 0.23  0.12 * 0.07 * 
elusage 0.85 0.84  0.83 * 0.74 * 
fishcatch 0.93 0.85 * 0.97 v 0.83 * 
gascons 0.90 0.72 * 0.79 * 0.65 * 
housing 0.84 0.74 * 0.88 v 0.60 * 
hungarian 0.66 0.60 * 0.67  0.56 * 
longley 0.45 0.49  0.44  0.33 * 
lowbwt 0.79 0.78  0.77 * 0.78  
pbc 0.53 0.46 * 0.53  0.43 * 
pharynx 0.70 0.67 * 0.66 * 0.67 * 
pollution 0.60 0.60  0.54 * 0.37 * 
pwLinear 0.81 0.68 * 0.85 v 0.68 * 
quake 0.11 0.09 * 0.08 * 0.09 * 
sensory 0.38 0.29 * 0.38  0.29 * 
servo 0.84 0.79 * 0.85  0.79 * 
sleep 0.53 0.58 v 0.42 * 0.52  
strike 0.44 0.36 * 0.46 v 0.18 * 
veteran 0.39 0.33 * 0.39  0.15 * 

vineyard 0.70 0.63 * 0.67 * 0.31 * 

W-D-L  1/5/23 9/10/10 0/2/27 
Average  
correlation  
coefficient 

0.65 0.59 0.64 0.5 

 
To sum up, the performance of the presented ensemble is 

more accurate than the other well-known ensembles that use 
only the DS algorithm.  The proposed ensemble can achieve 
an increase in correlation coefficient about 30% compared to 
simple DS. 

C. Using ConjunctiveRule as base learner 
Thirdly, we used a rule-based algorithm as base learner in 

the ensemble. ConjunctiveRule algorithm [13] implements a 
single conjunctive rule learner that can predict numeric class 
values. A rule consists of antecedents "AND"ed together and 
the consequent (class value) for the regression.  In this 
algorithm, the consequent is the mean value in the dataset. If 
the test instance is not covered by this rule, then it's predicted 
using the default mean value of the data. This learner selects 
an antecedent by computing the Information of each 
antecendent and prunes the generated rule using Reduced 
Error Prunning (REP) or simple pre-pruning based on the 
number of antecedents. The Information is the weighted 
average of the mean-squared errors of both the data covered 
and not covered by the rule. In pruning, the weighted average 
of the mean-squared errors on the pruning data is used. 

 
TABLE IV 

COMPARING THE PROPOSED ENSEMBLE WITH OTHER WELL 
KNOWN ENSEMBLES THAT USES AS BASE LEARNER THE 

CONJUNCTIVERULE 

Datasets 

Average  
B&B 
Conjunctive-
Rule 

Bagging 
Conjunctive-
Rule 

Additive 
Regression 
Conjunctive-
Rule 

Conjunctive-
Rule 

auto93 0.75 0.76  0.61 * 0.49 * 
autoHorse 0.86 0.83 * 0.84 * 0.72 * 
autoMpg 0.84 0.78 * 0.85 v 0.74 * 
autoPrice 0.88 0.84 * 0.87 * 0.80 * 
bodyfat 0.94 0.85 * 0.96 v 0.82 * 
bolts 0.78 0.76  0.73 * 0.64 * 
breastTumor 0.21 0.23  0.12 * 0.10 * 
cholesterol 0.09 0.12 v 0.03 * 0.01 * 
cleveland 0.63 0.64  0.56 * 0.42 * 
cpu 0.91 0.89 * 0.86 * 0.36 * 
detroit 0.18 0.19  0.07 * 0.06 * 
elusage 0.84 0.85 v 0.77 * 0.69 * 
fishcatch 0.91 0.86 * 0.91  0.82 * 
gascons 0.83 0.75 * 0.79 * 0.66 * 
housing 0.85 0.77 * 0.84  0.65 * 
hungarian 0.62 0.62  0.60 * 0.55 * 
longley 0.49 0.50  0.41 * 0.31 * 
lowbwt 0.78 0.78  0.77 * 0.78  
pbc 0.49 0.49  0.44 * 0.39 * 
pharynx 0.69 0.67 * 0.69  0.67 * 
pollution 0.57 0.63 v 0.38 * 0.26 * 
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pwLinear 0.82 0.72 * 0.81  0.68 * 
quake 0.08 0.09 v 0.05 * 0.06 * 
sensory 0.31 0.29 * 0.30 * 0.28 * 
servo 0.81 0.79 * 0.81  0.79 * 
sleep 0.53 0.58 v 0.39 * 0.37 * 
strike 0.45 0.42 * 0.34 * 0.18 * 
veteran 0.35 0.35  0.18 * 0.12 * 
vineyard 0.68 0.68  0.46 * 0.28 * 

W-D-L  5/11/13 2/5/22 0/1/28 
Average  
correlation  
coefficient 

0.63 0.61 0.57 0.47 

 
We compare the presented methodology with bagging, and 

boosting version of ConjunctiveRule (using 25 sub-learners). 
In the last raw of the Table IV one can see the aggregated 
results. 

The presented ensemble is significantly more accurate than 
single ConjunctiveRule in 28 out of the 29 data sets, while it 
has significantly lower correlation coefficient in none data set. 
In addition, the presented ensemble is significantly more 
accurate than Bagging ConjunctiveRule in 13 out of the 29 
data sets, whilst it has significantly lower correlation 
coefficient in 5 data sets. Furthermore, the proposed ensemble 
has significantly higher correlation coefficient in 22 out of the 
29 data sets than Boost ConjunctiveRule, whereas it is 
significantly less accurate in 2 data sets.  

To sum up, the performance of the presented ensemble is 
more accurate than the other well-known ensembles that use 
only the ConjunctiveRule algorithm. The proposed ensemble 
can achieve an increase in correlation coefficient about 34% 
compared to simple ConjunctiveRule. 

In general for all tested base learners the proposed 
ensemble achieved higher correlation coefficient than either 
boosting and bagging combining methods when applied to a 
base learning algorithm and learning tasks for which there is 
sufficient scope for both bias and variance reduction. 

V. CONCLUSION 
An ensemble of learners is a set of learners whose 

individual decisions are combined in some way (typically by 
weighted or unweighted averaging method) to predict the 
values of new examples. One of the most active areas of 
research in supervised learning has been to study methods for 
constructing good ensembles of learners. The main discovery 
is that ensembles are often much more accurate than the 
individual learners that make them up. The main reason is that 
many learning algorithms apply local optimization techniques, 
which may get stuck in local optima. For instance, regression 
trees employ a greedy local optimization approach, and neural 
networks apply gradient descent techniques to minimize an 
error function over the training data. As a consequence even if 
the learning algorithm can in principle find the best 
hypothesis, we actually may not be able to find it. Building an 
ensemble may achieve a better approximation, even if no 
assurance of this is given. 

Boosting algorithms are considered stronger than bagging 
on noise-free data, however, bagging is much more robust 
than boosting in noisy settings. In this work we built an 
ensemble using an averaging methodology of bagging and 
boosting ensembles. It was proved after a number of 
comparisons with other ensembles, that the proposed 
methodology gives better accuracy in most cases. The 
proposed ensemble has been demonstrated to (in general) 
achieve higher correlation coefficient than either boosting or 
bagging when applied to a base learning algorithm and 
learning tasks for which there is sufficient scope for both bias 
and variance reduction. The proposed ensemble can achieve 
an increase in accuracy of the order of 2% to 34% compared 
to the tested base learners. 

Our approach answers to some extent such questions as 
generating uncorrelated learners and control the number of 
learners needed to improve accuracy in the ensemble of 
learners. While ensembles provide very accurate regression 
models, too many learners in an ensemble may limit their 
practical application. To be feasible and competitive, it is 
important that the learning algorithms run in reasonable time. 
In our method, we limit the number of sub-learners to 10 in 
each sub-ensemble.  

Finally, there are some open problems in ensemble of 
learners, such as how to understand and interpret the decision 
made by an ensemble of learners because an ensemble 
provides little insight into how it makes its decision. For 
learning tasks such as data mining applications where 
comprehensibility is crucial, averaging methods normally 
result in incomprehensible learner that cannot be easily 
understood by end-users. These are the research topics we are 
currently working on and hope to report our findings in the 
near future.  
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