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Abstract—A cognitive collaborative reinforcement learning 

algorithm (CCRL) that incorporates an advisor into the learning 
process is developed to improve supervised learning. An autonomous 
learner is enabled with a self awareness cognitive skill to decide 
when to solicit instructions from the advisor. The learner can also 
assess the value of advice, and accept or reject it. The method is 
evaluated for robotic motion planning using simulation. Tests are 
conducted for advisors with skill levels from expert to novice. The 
CCRL algorithm and a combined method integrating its logic with 
Clouse’s Introspection Approach, outperformed a base-line fully 
autonomous learner, and demonstrated robust performance when 
dealing with various advisor skill levels, learning to accept advice 
received from an expert, while rejecting that of less skilled 
collaborators. Although the CCRL algorithm is based on RL, it fits 
other machine learning methods, since advisor’s actions are only 
added to the outer layer. 
 

Keywords—Robot learning, human-robot collaboration, motion 
planning, reinforcement learning. 

I. INTRODUCTION 
O introduce robotic applications into real-world 
environments, robots must be constructed for a large 

variety of tasks and be able to adapt continuously to new and 
changing working conditions. Since it is impossible to model 
all environments and task conditions, the adaptation to new 
tasks cannot be achieved by regular end-user programming. 
Rather, the robot must be delivered with advanced capabilities 
to learn new tasks and new working conditions both 
autonomously and from its user.  

A common learning approach in robotics is reinforcement 
learning (RL) [1], [2]. In RL the robot (agent) acts 
autonomously in a process guided by reinforcements from the 
environment, indicating how well it is performing the required 
task. RL is an attractive alternative for programming 
autonomous systems, as it allows the agent to learn behaviors 
on the basis of sparse, delayed reward signals [3]. 
Furthermore, RL does not require a detailed model of the 
environment or training examples, as it creates its own model 
and examples during the learning process. 

Previous research has indicated that human-robot 
collaboration is essential to improve the learning and reduce 
the amount of time it takes a robot to accomplish a learning 
task (e.g., [4] – [7]). When introducing a human advisor into 
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the RL learning process, the learning agent has access to 
supervised instructions, instead of relying solely on 
reinforcements provided by the environment. A human may 
aid the robot by showing it how to solve new tasks and how to 
improve or expand already learned behaviors.  

Nevertheless, [8] indicates that past work tends to maintain 
a constant level of human involvement. Several methods are 
highly dependent on guidance, learning nothing without 
human interaction, while other approaches are almost entirely 
exploration based, using limited input from a teacher. 
Furthermore, many of the previous work assumes that human 
assistance is available at all times. Indeed, human intervention 
can improve the learning process and accelerate the robot’s 
learning, but if it is required too frequently, the autonomous 
sense of the learning will be lost along with the initial purpose 
of a robot replacing the human. Hence, a central issue in 
human-robot collaboration, addressed in this research, is the 
determination of whether and when human intervention is 
required. The main challenge is to design a mechanism for 
deciding whether and when the learner should ask for advice. 
The goal here is to maximize the impact of the advisor’s 
instruction, so that the learner develops its decision policy 
quickly and correctly, with as little training as possible [9]. 

Another deficiency in prior works is the assumption that the 
human advisor is an expert providing only optimal advice. 
This might not be the case when the instructor is tired for 
example, or when the human is a novice or unfamiliar with the 
case  (e.g., if it is a child instructing a service robot 
performing daily household chores). Hence, the assumption of 
an expert advisor is relaxed in this research, so that non-expert 
instructors are also considered. 

This paper presents a Cognitive Collaborative 
Reinforcement Learning algorithm (CCRL) that addresses the 
questions of whether and when the robot should solicit advice 
by endowing the robot with human-like cognitive abilities. 
The robot applies a result-oriented approach, seeking aid 
when it comes to the understanding that its performance is not 
sufficient. Furthermore, the robot is able  to judge the worth of 
the advice it receives. This self-awareness is achieved by 
performing self tests designed to evaluate its learning 
performance according to acceptable performance thresholds. 
Compared to the concept of adjustable autonomy [10], our 
system provides "shared learning" with only two modes of 
operation:  supervised and autonomous.  

The CCRL algorithm uses the basic model of a RL learner 
incorporating on-line advisor-suggested actions or guidance. 
Upon receipt of an action from the advisor, the robot executes 
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the action as if it had chosen the action with its own policy 
[9]. Thus, the basic RL algorithm used does not need to be 
modified to handle the advisors actions. The adjustable 
autonomy method includes two learning modes, supervised 
and autonomous, following the model introduced in [6]. 

CCRL is evaluated using a simulated 3D environment for a 
mobile robot motion planning task. In this task we focused on 
thorough statistical assessment of the performance and 
compared the CCRL algorithm to autonomous learning, to the 
Introspection Approach (IA) [9] and to a combined method 
that integrates CCRL and IA. A simulated adviser with 
various skill levels is used in the evaluations.  

The paper is organized as follows: Section II presents the 
new CCRL algorithm. Section III describes the 3D motion 
planning task and introduces the representation of advisor skill 
levels and the IA method (used for comparison). Conclusions 
are provided in section IV.  

II. THE CCRL ALGORITHM 
In the CCRL model the robot is endowed with two 

cognitive abilities to assess: (a) its performance and request 
advice when it is not sufficient, and (b) the value of the 
offered advice and decide whether to continue asking for it or 
stop the requests and revert to fully autonomous learning.  

A. Collaborative Learning 
Consider a collaborative learning model in which the 

system can be in one of two modes: (a) autonomous 
(unsupervised learning) and (b) guided (supervised by an 
outside intelligent agent). In the autonomous mode the robot 
decides which actions to take according to feedback from the 
environment (reinforcements), using a certain action selection 
method. The collaborative feature is added in this mode so 
that the learner can switch into the guided supervised mode 
and back. In the guided supervised mode an agent such as a 
human advisor suggests actions. This knowledge is 
incorporated into the learning function if it is deemed worthy. 
The learning itself can be done using any RL algorithm (e.g., 
SARSA, Q-learning). The advice from an outside guidance 
agent is unnecessary as long as the robot learns policies and 
adapts to new states while showing improvement. Only when 
the robot senses its performance is not improving at the 
desired rate, is the advisor solicited to intervene and suggest 
actions. The robot then performs the suggested action, and 
updates its Q values according to the action taken as though it 
had chosen the action itself. 

The robot is endowed with two cognitive capabilities that 
allow it to decide whether and when to switch between the 
autonomous and guided modes. These decisions are triggered 
when two performance thresholds are exceeded:  Λ, used to 
determine when to ask for advice, and Ω, used to determine 
whether the advice is acceptable or not. These self tests are 
based on the ability of the robot to assess its own learning 
performance. 

B. Self-Performance Assessment Capability 
The robot must determine whether its performance is 

sufficient in order to decide when to switch between the two 
learning modes. Since the optimal solution is unknown a 
priori, the threshold for triggering a request for advice cannot 
be set as a constant measure, above which advisor assistance 
will be desired. The robot can sense it is not learning fast 
enough by comparing its current performance with past 
performance. The robot wishes to achieve a certain 
improvement rate during the learning session. When it does 
not achieve that rate, a request for advice is triggered. The 
improvement rate is defined as a ratio between moving 
averages of the number of steps of previous episodes, as 
shown in (1).  
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Here the performance of an episode i, denoted as Ti, is the 
number of steps to reach a goal state in a problem in which the 
objective is to minimize the number of steps. n is the current 
episode and IR is the actual performance improvement rate, 
comparing the previous average number of steps Tp (average 
over previous K episodes, n-2K to n-K+1) and the current 
average Tc (average over the most recent K episodes, n-K to n-
1). If the current average is smaller than the previous one (less 
steps required to reach the goal – better performance) IR will 
be positive.  

C. Advise Request Test  
The CCRL advice request self-test compares IR with the 

threshold Λ, as shown in (2). 

If  IR <  Λ , then request advice 
 

Else learn autonomously 
(2)

Here Λ is a predefined collaboration threshold, representing 
the desired improvement in performance. Before each learning 
episode begins, the actual improvement rate is compared to 
the threshold. If IR is greater than Λ, the robot will continue to 
learn autonomously and will not solicit advice (this implies 
that the actual rate is better than the desired). If IR  is less than 
Λ, the improvement rate is not sufficient, and advisor 
assistance will be requested. When requested, the advisor will 
assist during the entire episode. 

When the robot converges to the optimum, obviously there 
will be no improvement in the performance, and advisor 
assistance will be asked recurrently without need. This 
problem is solved by applying the following definition and 
rule for convergence: If after 2K episodes the robot produces 
the same result, it assumes it has reached the optimum and 
stops asking for aid. Even if the optimum found was a local 
one, if 2K episodes using human assistance did not help the 
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robot escape it, then there is no sense in continuing the 
requests. 

D. Advice Assessment Capability 
Until here the assumption was that the advisor provides 

good instructions, but what happens if the advice is bad? 
Wrong advice will not promote learning, and might even 
cause deterioration in performance. By endowing the robot 
with the capability to assess the value of the advice, such 
situations may be avoided. The robot judges the advisor’s 
suggestions by comparing its performance when using the 
advisor’s aid with past performance. If assistance does not 
improve performance, the robot learns to stop asking for it. 
The number of steps achieved at episodes performed with 
advisor assistance is compared to the average number of steps 
over the K episodes previous to the assisted episodes. In the 
assisted episodes, when the number of steps to reach the goal, 
Ta, is higher (worse) than the average this implies that advisor 
instructions are worthless and possibly even misleading. The 
number of times in which the episode with advisor assistance 
produced worse results than the average is denoted as ML, and 
updated as shown in (3). 

If  Ta(n) >  

1
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n

i
i n

T

K

−

= −

∑
, then ML = ML + 1 (3)

E. Advice Rejection Test 
When ML exceeds a predefined threshold (which occurs 

when the human misleads the robot too many times), the robot 
refuses the advice, and switches to a fully autonomous 
learning mode until the end of the session. The advice 
rejection test is elaborated in (4). 

If  ML > Ω, then refuse advice 
 

Else continue requesting advice when IR < Λ 
(4)

Here ML is the number of occasions in which the human 
misled the robot causing the episode with advisor assistance to 
achieve worse results than the average results of the K 
previous episodes, and Ω is a predefined threshold for such 
occasions, above which collaboration is stopped. 

When the human has poor expertise, the episodes 
performed with his assistance will result in decreased 
performance, ML will rapidly rise and exceed Ω, and the robot 
will stop asking for advisor aid, as it should. In this final 
structure of the algorithm, collaboration is defined by the two 
threshold parameters, Λ and Ω, determining the desired 
improvement rate and the acceptable number of human 
misleads, respectively. 

III. SIMULATED MOTION PLANNING TASK 
The CCRL algorithm is evaluated by applying it to a 

simulated three-dimensional mobile robot motion planning 
task. The following cases are compared: (i) fully autonomous 
learning (a base-line used for comparison), (ii) learning using 
the Introspection Approach (IA), and (iii) learning with a 

combined CCRL and IA method. A simulated adviser with 
various skill levels is used in the evaluations. Advisor skill 
levels are represented by softmax temperature values varying 
the suggested actions from optimal to random. 

A. Introspection Approach (IA) 
The Introspection Approach (IA) [9] is a method by which 

the learning agent determines when it requires aid, and is used 
here as a benchmark for comparison. In IA the agent asks for 
instruction when it is confused or unable to decide upon a 
course of action. Guidance received via IA is shown to be 
more informative than random guidance, thus making better 
use of the training agent [9]. 

IA is implemented using a test developed to determine 
whether the learner is unsure of its choices, indicating the 
need for help in novel situations. When discussing an 
automated learner, it is fairly easy to specify exactly when 
they are unsure: one has access to the decision policy and the 
evaluations on which the decision is based. The test examines 
the two extreme values of the value function Q(s,a). If these 
values sufficiently close to each other it implies that the 
learner has not experienced this state often enough to produce 
a clear choice. In this case the test succeeds and the learner 
asks for aid. Sufficiency is determined by comparing the 
difference between the minimum and maximum Q values to a 
width parameter Ψ - if the difference is smaller than the width 
parameter the test succeeds. With a small width parameter, the 
learner rarely asks for assistance, while with a large width 
parameter, the learner asks for aid quite frequently. The IA 
advice request self test is shown in (5). 

If  Maxi Q(s,ai) – Mini Q(s,ai) < Ψ 
 

Then request advice for current state s 
Else choose action autonomously 

(5)

Where Q(s,ai) is the value of taking action ai when at state s, 
and Ψ is the width parameter. 

B. Representation of Advisor Skill Levels 
Since we assume that perfect guidance cannot always be 

provided, we analyze the effect of various skill levels of the 
human advisor, by considering a continuum from novice to 
expert. When asked to give advice, the advisor examines the 
current state of the learner and provides the action that it 
considers best. In case of an expert advisor, this action is 
optimal. Lesser skilled advisors may provide either optimal or 
suboptimal actions. By adjusting the frequency by which the 
advisor responds with suboptimal actions, a wide range of 
problem-solving expertise can be simulated, from an expert 
advisor with perfect knowledge and skills to a novice with 
poor skills. 

The skill level of the advisor is represented by the softmax 
action selection rule [2], based on an optimal Q table. The 
optimal Q table is assumed to be known for the advisor 
simulation, but is of course unknown to the learning agent. In 
softmax the action probabilities are varied as a graded function 
of the estimated value. The greedy action is given the highest 
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selection probability, but all the others are ranked and 
weighted according to their value estimates. The softmax 
method uses a Boltzmann distribution, choosing action a on 
the t-th step with the probability shown in (6).  
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Where Qt(i) is the value of taking an action i from the 
current (t-th step) state, and τ is a positive parameter referred 
to as the temperature. High temperatures cause the actions to 
be all (nearly) equiprobable. Low temperatures cause a greater 
difference in selection probability for actions that differ in 
their value estimates. In the limit as 0τ → , softmax action 
selection becomes the same as greedy action selection.  

Human skill level is adjusted using τ, the temperature 
parameter. The advisor’s action selection is performed on the 
basis of an optimal Q table. Using very small temperature 
values implies choosing actions greedily resulting in 
suggesting optimal actions at each state. Using higher 
temperature values will result in more random action 
suggestions. Therefore, a human with perfect skills can be 
represented by using a very low temperature while a human 
with poor skills will be represented using a relatively high 
temperature. Fig. 1 presents an example for the performance 
of advisors with various skill levels, represented using a range 
of temperatures, τ = 0.01 - 1  
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Fig. 1 Human advisor representation 

 
The most skillful advisor, represented using τ = 0.01, 

chooses actions that result in reaching the goal in the optimal 
number of steps (13 steps in this example) in 100% of the 
cases, while less skilled advisors achieve optimal solutions 
with lower percentages and a higher average number of steps. 
The poorest skilled advisor (a novice) is represented by level 
0.9. A temperature value of 1 represents a random selection of 
actions. Here we assume that the most inexperienced human 
will not select actions randomly; and hence a temperature 
value of 1 is an unrealistic representation of a human skill. 
Nevertheless, this value was included to provide a boundary 
point for the analysis and as shown in the graph such random 

action selections do not achieve the optimal solution at all and 
requires an average of 178 steps to reach the goal state. It is 
important to understand that here there is no learning process 
of the advisor, but only a use of the optimal Q values to 
simulate the human suggestions to the robot. 

C. Fully Autonomous Learning (Base-Line) 
The base-line robotic learner employs Q-learning to 

develop its policy. A value Q, associated with a state-action 
pair, (st,at), represents how “good” it is to perform a specific 
action at when at state st. A learning episode is defined as a 
finite sequence of time steps, during which the agent traverses 
from the starting state to the goal state. A learning session is a 
series of learning episodes (each of length N). Action 
selection uses the softmax equation (6) with an adaptive 
temperature value, T, (Boltzman exploration with decreasing 
temperature parameter). The temperature T is varied as a 
function of the learning episode according to (7). 
                                               

      ,1
βn

T =                                                                   (7) 

Where n is the number of episodes already performed during 
the current learning session, and β is a positive decay 
parameter specifying how fast T will exponentially decrease 
towards zero (a larger β value increases the chances of earlier 
exploitation). In the beginning of the session, when the agent 
has not gathered much information, a relatively high 
temperature encourages exploration of the state-space by 
allowing more non-greedy actions. As the learning session 
progresses, the temperature decreases, reducing the number of 
random actions, and allowing the agent to exploit the 
information already gathered and select actions that perform 
better.  

D. Task Definition 
Evaluation is conducted for a mobile robot motion planning 

problem in a three-dimensional grid-world of size 10×10×10 
(1000 states). Two grid-world instances are considered, world 
I with a relatively low obstacle density (60 obstacle states), 
and world II with a higher density (100 obstacle states).  

Fig. 2 shows one of the two grid-worlds. The starting and 
goal states are the light-gray cubes. The obstacles are shown 
as dark-gray cubes. The optimal (shortest) path from the 
starting state to the goal state includes 13 and 16 steps for 
worlds I and II, respectively. 

 

 
 

Fig. 2 Grid-world I 
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Also, cases of limited and full viewability are evaluated. 
The limited view case may arise in systems employing 
teleoperated guidance, when the human operator is located 
remotely, receiving visual feedback from the robot’s operation 
area through a camera with limited area coverage. 

In the limited case, the human can supply advice only when 
the robot is within the field of view. This field of view is 
defined for each of the grid-worlds.  

The objective of the robot is to traverse from a starting state 
to a goal state through the shortest path, while avoiding 
obstacles. At each state (st), the robot can choose one of six 
actions (at) - up, down, left, right, forward, or backward. 
When the robot collides with an obstacle, reaches the goal or 
exceeds a maximum number of steps, the learning episode is 
stopped, and the robot is returned to the starting point. 
Reinforcements (rt) are set as follows: the robot receives a 
positive reward of +1.5 units for reaching the goal, a negative 
reward of -1.0 units for colliding with an obstacle and a 
negative reward of -0.1 units for each step performed. The 
state of the system is the position of the robot defined by its 
three coordinate values. 

E. Evaluation 
Four different learning methods were employed and 

compared in simulations implemented in MATLAB: (i) fully-
autonomous learning using a standard Q-learning algorithm 
(serving as base-line for the comparison), (ii) the CCRL 
algorithm, (iii) the IA method, and (iv) a combined method 
integrating the advice request rules of both CCRL and IA. All 
methods were evaluated using four environments – worlds I 
and II, each with full and limited views. 

All of the learning sessions included 200 learning episodes, 
with a maximum of 200 steps allowed at each episode. For the 
collaborative algorithms, human skills, represented by τ, were 
varied from an expert advisor (τ = 0.01) to a novice (τ = 1).  

The first simulation examined the base-line fully 
autonomous learning performance. Determination of the best 
decay factor β for the adaptive softmax temperature  T was 
determined by a series of runs.  

A second simulation is conducted to evaluate the 
performance of the CCRL algorithm, in which the same best 
value of β is used for the learner. The advisor’s collaboration 
threshold Λ is varied from 0.01 (demanding small 
improvement in performance) to 0.9 (demanding significant 
improvement during the session). The threshold Ω, defining 
the number of occasions in which the results of learning with 
an advisor’s aid are allowed to be worse than the results of the 
previous episodes, is varied from 1 to 7. For each combination 
of τ (the advisor’s skill  level), Λ and Ω, five simulation 
replications of 100 learning sessions each were performed. In 
all of the experiments the parameter K used for various 
calculations was set to 5.  

In a third simulation, IA was implemented to solve the 
navigation problem under consistent assumptions. The width 
parameter Ψ is varied from 0.1 (representing a learner which 
is rarely uncertain) to 1.5 (representing a learner that asks for 

aid quite frequently). Each value of Ψ is evaluated by 
performing five simulation replications, each containing 100 
learning sessions. 

A fourth simulation evaluated the performance of a 
combined method, in a combined algorithm integrating both 
CCRL and IA. In this algorithm, advice is solicited only when 
both advice request tests (2) and (5) are passed, meaning the 
learner’s rate of improvement is unsatisfactory and the learner 
is unsure of its choices in its current state. Again, for each 
combination of τ, Λ, Ω and Ψ  five replications of 100 
sessions were performed. 

Performance was evaluated with the following measures: (i) 
AR (advice requests) - average number of requests for advice 
during the learning session (used only for CCRL, in which 
advice is requested for a whole episode), (ii) HS (helped steps) 
– average number of steps performed using advice during the 
learning session (used for the IA method in which advice is 
requested per step, and for the comparison), (iii) SP (success 
percentage) – average percentage of learning sessions 
reaching the optimal solution (minimal path length) and (iv) 
Score – weighted normalized scoring based on the HS and SP 
measures (described in a following section). 

F. Results and Discussion 
Autonomous learning performance was examined for 

various values (0.5 to 1.1) of the Boltzman temperature decay 
parameter β. The β values that achieved the best results were 
1.3 and 0.7, for worlds I and II, respectively. The fully 
autonomous learning achieved SP values (average percent of 
sessions converging to optimum) of 63 and 37 percent for 
worlds I and II, respectively. The reason for the lower success 
percentage in world II lies in the fact that it has a higher 
obstacle density, and hence it is harder to reach the goal. 
When applying CCRL the same optimal  β values were used 
for the robot learner. With an expert advisor (τ = 0.01), the 
results improve drastically as expected. The learning achieves 
99 and 96 percent SP for worlds I and II ( for th4e full view 
case), respectively. This translates to an improvement  of 36 
and 59 percent  from the autonomous learning results.  

When setting low values of Λ, the robot is expected to 
achieve less improvement in each episode, hence requests less 
advice. As Λ rises, high improvement is required and the 
robot asks for help more frequently. Figures 3 and 4 show the 
results for the limited view case of world I, with and without 
advice assessment capabilities, respectively. The collaboration 
threshold is Λ = 0.05 and advisors of various skill levels are 
represented by τ. 
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Fig. 3 CCRL: Collaborative learning without advice assessment 
 
On the one hand, the learning agent, sensing its 

performance is not sufficient, asks for human aid. On the other 
hand, when the human is not an expert, the advice may not 
bring the desired improvement in performance, and even 
cause deterioration. The learning agent keeps asking for help 
because it does not improve, and the help deteriorates its 
performance. The situation enters a “vicious cycle” from 
which there is no escape, resulting in very low performance. 
As expected, when human skill level is low, the agent requests 
more help, and the performance deteriorates rapidly. This is 
especially seen when advice is random.  
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Fig. 4  CCRL: Collaborative learning with advice assessment 

 
Fig. 4 shows results for the same environment (world I, 

limited view) with a collaboration threshold Λ = 0.05 and an 
advice assessment capability threshold Ω = 1, again using the 
aid of advisors with various skill levels. The introduction of 
advice assessment capabilities helps break this “vicious cycle” 
and improves performance. This is true with the exception of 
the case of the expert where results are slightly worse in 
comparison to those achieved without the advice assessment 

capability (72% vs. 82%). The reason is that the agent 
sometimes misjudges the advice and rejects it. Even though 
the advisor is considered an expert, with low probability some 
actions are non optimal. In these cases the actions chosen 
autonomously by the agent (who reverted to fully autonomous 
learning) are worse than those suggested by the advisor, 
leading to worse performance.  The increase of the SP on the 
right of the graph in Fig. 4 deserves explanation. This is the 
case when random actions are proposed, which are quickly 
detected by the robot, who then stops asking for advice early 
in the session. The result is a 53 percent success rate slightly 
below the autonomous value of 63 percent. The worse 
performance appears when the advisor's expertise is midway 
(τ = 0.3), not very good and not very bad, so it takes time for 
the robot learner to notice that the advice is not good enough 
and to stop asking for it. 

When setting Ω there is a trade-off: when Ω is low, poor 
skilled advisors would be quickly recognized and discarded, 
but experts might be misjudged and unjustly discarded as 
well. When Ω is high there is a smaller chance of discarding 
an expert, but it also takes longer time for the robot to identify 
worse skilled advisors, and the prolonged use of their advices 
obstructs the learning. Hence, when the advisor is skilled a use 
of high values of Ω achieves the best performance, while 
when the advisor has limited or no skills lower values of Ω 
result in better learning. 

When employing IA, the width parameter influences the 
learning as previously described - with a small width, the 
learner is rarely uncertain, asking little advice, while with a 
large width, the learner asks for aid quite frequently. When 
introducing less competent advisors, IA suffers from the same 
problem described for CCRL – bad advice leaves the robot 
uncertain, leading it to ask for more advice, making it even 
more uncertain, and so on. The difference from CCRL is that 
IA does not endow the robot with the advice assessment 
capability that enables the robot to cope with such advisors. 

G. Comparative Analysis 
When comparing the methods it is important to notice that 

unlike CCRL, in IA assistance is triggered per step and not for 
the entire episode. Therefore, the performance measure used 
for comparison is HS, the number of steps in the entire session 
performed using advisor assistance.  

The comparison is problematic since we have a multi-
objective problem with two performance measures, SP 
(success percentage) and HS (helped steps). The preferable 
case, higher performance with the cost of many interruptions 
to the advisor, or less interruption with inferior performance, 
depends on the specific application. A way to address this 
difficulty is to base the comparison on a weighted normalized 
scoring. The two performance measures receive a weight 
corresponding to their relative importance. The results of a 
specific combination of collaboration parameters (Λ, Ω and 
Ψ) are normalized and combined to provide standard score for 
comparable analysis. The combined score is calculated 
according to (8).  
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Where W1 and W2 are the weights assigned to SP and HS, 
respectively. SPi is the average percentage achieved using the 
i-th combination of collaboration parameters and HSi is the 
average number of helping steps used with that combination. 
The calculation is designed in a way that will result in the 
highest score of 1 when the evaluated combination achieves 
the highest SP, using the lowest HS. Lower SPi or higher HSi 
will reduce the score. 

When comparing, one can seek the combination receiving 
the highest score for a specific advisor skill level, or the 
combination that shows the most robust performance, dealing 
well with all levels of human expertise (here the final score for 
a specific combination is an average of the scores received for 
the various human skill levels).  

Tables I and II show the best scores achieved by each of the 
three methods (CCRL, IA and combined), for the full and 
limited view cases of world I.  

 
TABLE I 

SCORES FOR FULL VIEW CASE 
Advisor (τ) Method Parameters SP HS Score 

CRL Λ=0.05, Ω=1 99% 292.2 0.96 
IA Ψ=0.7 98% 268.6 0.96 Expert (0.01) 
Combined Λ=0.3, Ω=1, Ψ=1 100% 96.8 1.00 
CRL Λ=0.3, Ω=1 67% 825.2 0.72 
IA Ψ=1 99% 200.5 0.98 Moderately 

expert (0. 1) 
Combined Λ=0.3, Ω=1, Ψ=1 98% 156.2 0.98 
CRL Λ=0.9, Ω=1 11% 593.6 0.47 
IA Ψ=1.3 96% 747.9 0.87 Limited 

skills (0.3) 
Combined Λ=0.05,Ω=1, Ψ=1 80% 623.7 0.81 
CRL Λ=0.9, Ω=1 55% 271.4 0.74 
IA Ψ=0.1 62% 915.1 0.68 

Random 
(1.0) 

Combined Λ=0.05,Ω=1, Ψ=0.3 61% 308.8 0.77 
CRL Λ=0.3, Ω=1 55% 595.4 0.69 
IA Ψ=0.7 84% 988.9 0.77 All levels 

(average) 
Combined Λ=0.05,Ω=1, Ψ=1 82% 290.9 0.88 

 
TABLE II 

SCORES FOR LIMITED VIEW CASE 
Advisor (τ) Method Parameters SP HS Score 

CRL Λ=0.05, Ω=7 80% 135.3 0.85 
IA Ψ=1.3 82% 153.9 0.86 Expert (0.01) 
Combined Λ=0.05,Ω=7,Ψ=0.3 73% 51.5 0.84 
CRL Λ=0.2, Ω=1 66% 25.5 0.78 
IA Ψ=1.3 80% 171.9 0.82 

Moderately 
expert (0. 1) 

Combined Λ=0.05,Ω=1,Ψ=0.3 67% 15.9 0.8 
CRL Λ=0.05, Ω=1 59% 39.9 0.69 
IA Ψ=0.1 60% 136.2 0.62 Limited 

skills (0.3) 
Combined Λ=0.5,Ω=1,Ψ=0.3 60% 19.2 0.72 
CRL Λ=0.01, Ω=1 63% 28.8 0.74 
IA Ψ=0.1 63% 149.6 0.63 Random 

(1.0) 
Combined Λ=0.5,Ω=1,Ψ=0.3 61% 18.9 0.73 
CRL Λ=0.3, Ω=1 62% 27.9 0.73 
IA Ψ=0.1 63% 121.4 0.66 

All levels 
(average) 

Combined Λ=0.05,Ω=1,Ψ=0.3 63% 17.4 0.74 

 
Equal weights are assigned to each performance measure 

(W1 = W2 = 0.5). The scores are compared and ranked using 
one-way ANOVA (F-test) and Tukey’s HSD test, demanding 

95% confidence level. Significant best scores are marked in 
gray. When two scores are marked it means they are 
significantly better than the third, but there is no significance 
between them. When none is marked it means there is no 
significant difference. 

Overall, the combined method achieves the best results for 
both worlds and both view cases. It does so for most of the 
advisor skill levels separately, and for the average case, 
demonstrating robustness in dealing with various levels of 
advisors. These results are achieved since the robot asks for 
aid only when it really requires it, under conditions of 
uncertainty and deficiency in performance, and stops asking 
for it when it is not beneficial. 

When considering CCRL and IA, IA performs better when 
assisted by skillful advisors (τ = 0.01, 0.1) and in average in 
the full view cases, while CCRL achieves better results 
(equivalent to those of the combined method) with lesser 
skilled advisors (τ = 0.3, 1) and in average in the limited 
cases. This can be attributed to the advice assessment 
capability employed in CCRL, allowing it to deal better with 
less competent advisors. 

IV. CONCLUSION 
A cognitive collaborative reinforcement learning algorithm 

(CCRL) that incorporates an advisor into the learning process 
is developed to improve supervised learning. The CCRL 
algorithm allows a RL learner to intelligently decide whether 
and when to solicit advice from an advisor, by endowing it 
with the capabilities to evaluate its performance and to assess 
the value of the advice. When assisted by highly skilled 
advisors the agent learns to use them frequently to improve its 
performance. When dealing with less skilled advisors it 
learns to discard bad advice and switch to autonomous 
learning. Tests were made on several instances of a mobile 
robotic motion planning problem. The CCRL algorithm and 
especially the combined method (CCRL with IA) achieved 
better results than the base-line fully autonomous learner and 
the learner employing IA in many learning scenarios, proving 
the expediency of the endowed cognitive capabilities. 
Furthermore, this paper also suggests a new method for 
representing various advisor skill levels, allowing the 
evaluation of collaboration algorithms under realistic 
conditions of imperfect guidance. Although there are other 
robotic machine learning algorithms, we selected RL as a 
convenient platform to demonstrate the advantages of using 
outside advice to speed the learning process. The 
incorporation of the CCRL algorithm into other machine 
learning methods is left for future work. In addition for tasks 
outside of the grid-world, the optimal solution can be defined 
by any objective or reward measure in lieu of the number of 
steps taken. 
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