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EMD-Based Signal Noise Reduction
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Abstract—This paper introduces a new signal denoising based on

the Empirical mode decomposition (EMD) framework. The method 

is a fully data driven approach. Noisy signal is decomposed

adaptively into oscillatory components called Intrinsic mode

functions (IMFs) by means of a process called sifting. The EMD

denoising involves filtering or thresholding each IMF and 

reconstructs the estimated signal using the processed IMFs. The 

EMD can be combined with a filtering approach or with nonlinear 

transformation. In this work the Savitzky-Golay filter and shoft-

thresholding are investigated. For thresholding, IMF samples are 

shrinked or scaled below a threshold value. The standard deviation of 

the noise is estimated for every IMF. The threshold is derived for the 

Gaussian white noise. The method is tested on simulated and real

data and compared with averaging, median and wavelet approaches.

Keywords—Empirical mode decomposition, Signal denoising 

nonstationary process. 

I. INTRODUCTION 

Estimating a signal of interest degraded by additive random

noise is a classical problem in signal processing. In many

applications, signal denoising is used to produce estimates of

the original signal from noisy observations. The recovered 

signal should be as close as possible to the original one while

retaining most of its important properties (e.g. smoothness).

Traditional denoising schemes are based on linear methods,

where the most common choice is the Wiener filtering [1].

Linear methods are frequently used because they are easy to 

implement and design. However, linear filtering methods are

not so effective when signals contain sharp edges and

impulses of short duration. Furthermore, linear methods are 

not so effective when transient nonstationary wide-band

components are involved since they have similar spectrum to

the noise. In order to overcome these shortcomings nonlinear

methods have been proposed and especially those based on 

wavelets thresholding [2]-[3]. The wavelet schemes rely on 

the basic idea that the energy of a signal will often be

concentrated in a few coefficients in wavelet domain while the

energy of noise is spread among all coefficients in wavelet

domain. Donoho and Johnstone [2] proposed hard and soft

thresholding methods for denoising, where the former leaves

the magnitudes of coefficients unchanged if they are larger

than a given threshold,  while the latter just shrinks them to

zero by the threshold value.  A main drawback of the wavelet

approach is that the basis functions are fixed, and do not

necessarily match varying nature of signals.
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Recently, Huang et al. [4] have introduced the Empirical

mode decomposition (EMD) method for analyzing data from

nonstationary and nonlinear processes. The major advantage

of the EMD is that the basis functions are derived from the

signal itself. Hence, the analysis is adaptive, in contrast to the

wavelet method where the basis functions are fixed. In this

paper, a denoising  method based on the EMD approach is

proposed. The EMD is based on the sequential extraction of

energy associated with various intrinsic time scales of the

signal starting from finer temporal scales (high frequency

modes) to coarser ones (low frequency modes). The total sum

of the IMFs matches the signal very well and therefore

ensures completeness. The proposed method relies on the

basic idea, as in wavelet analysis, that the first IMFs (finest

modes) are dominated by noise than the last ones (corset

modes). Thus, the recovered signal can be reconstructed

using, filtered or thresholded IMFs.

II. EMD ALGORITHM

The EMD involves the decomposition of a given signal x t

into a series of IMFs, through the sifting process, each with 

distinct time scale [4]. The major advantage of the EMD is

that the basis functions are derived from x t  itself. The 

decomposition is based on the local time scale of the signal

and yields adaptive basis functions. The EMD can be seen as a 

type wavelet decomposition whose subbands are built up as

needed to separate the different components of x t . Each 

IMF replaces then the detail signals of  at a certain scale

or frequency band [5]. The EMD picks out the highest

frequency oscillation that remains in . An IMF must

fulfil two requirements: (R1) the number of extrema and the

number of zero crossings are either equal or differ at most by

one; (R2) at any point, the mean value of the envelope defined

by the local maxima and the envelope defined by the local

minima is zero. Thus, locally, each IMF contains lower 

frequency oscillations than the one just extracted before. The

EMD does not use any pre-determined filter or wavelet

function and it is fully data driven method [4]. To be

successfully decomposed in IMFs, must has at least two 

extrema, one minimum and one maximum. The sifting process 

involves the following steps:

x t

x t

x t
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Step 4)  Update residual:
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Step 5)  Repeat Step 3 with until the number of

extrema in r t
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< 2
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"

j
 is 

Where is the affectation operator and  is the time

duration. The sifting is repeated several times  in order to

get to be a true IMF that fulfils the requirements (R1) and 

(R2). The result of the sifting procedure is that

" T

i

h

x t  will be

decomposed into IMFs, and residual
j

tIM , j=1,...,N
N

r t .

N

j N
j=1

x t = IM (t)+r t

The sifting process has two effects: (a) to eliminate riding

waves and (b) to smooth uneven amplitudes. To guarantee that

the IMF components retain enough physical sense of both

amplitude and frequency modulations, we have to determine a

criterion for the sifting process to stop. This accomplished by

limiting the size of the standard deviation SD, set to ,

computed from the two consecutive sifting results. Usually,

SD is set between 0.2 to 0.3 [4]. Note that the number of 

IMFs, N , is determined automatically during the sifting

process.

III. EMD DENOISING

Let be a clean deterministic IMF with the finite length

and  the corrupted IMF with additive noise

j
C t

j
IML

j
b t  with

variance :t
2

j

j j j
IM t =C t +b t

Let
j

Ĉ t  be an estimation of  based on the noisy

observation

j
C t

j
IM t . The estimation is given by

j
Ĉ t

j jj
= IM ,Ĉ t

where j jIM , denotes a thresholding function or filtering

method, defined by parameters , applied to signal . The 

denoised signal

j j
IM

tx̂ is given by

N

j N
j=1

ˆx̂ t = C (t)+r t

For noise reduction, the EMD can be combined with a 

filtering method such as Savitzky-Golay smoothing [6] or 

nonlinear transformation such as the soft-thresholding [3].

A. EMD-Soft 

A smooth version of the input data can be obtained by

thresholding the IMFs before signal reconstruction. If 

j., is a thresholding function, then is the threshold

value and this can be determined in many ways [7]. Donoho

and Johnstone [8] proposed an universal threshold for

removing added Gaussian noise  given by

j

j

jj

jj

ˆ= 2log L

ˆ MAD 0.6745

where is the noise level of the j
j

th
 IMF. represents

the absolute median deviation of the j

j
MAD

th
 IMF and is defined by

j jj
IM t -Median IM tMAD Median

Instead of using a global thresholding, level-dependent

thresholding uses a set of thresholds, one for each IMF (scale 

level). The soft-thresholding method shrinks the IMF samples

by  towards zero as follows [3]
j

j jj j

j jj

j j j j

if IM tIM t -

Ĉ 0 if IM t

IM t +  if IM t

t

B. EMD-SG 

The Savitzky-Golay (SG) filter method is time-domain

smoothing [6]. This method was originally designed to

preserve higher moments within time-domain spectral peak

data. The SG filter can be considered as piece-by-piece fitting 

of polynomial function to the signal. The smoothed points are

computed by replacing each data point with the value of its 

fitted polynomial. The fitting is done by least squares 

approach.

IV. RESULTS 

In order to test the EMD denoising method, we have 

performed numerical simulations for four test signals:

"Doppler", "Blocks", "Bumps" and "Heavysine" obtained
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using WAVELAB Software . The method is also tested on 

one real biomedical signal: "ECG". The signals size is

L=2048. MAE and SNR are calculated as the measures of 

efficiency of noise reduction. For synthesized signals the

variance of the white Gaussian noise is set so that the original

SNR (before denoising) is maintained at 2 dB. The SNR of the

"ECG" is -9 dB. The original signals and noise free ones are 

depicted in Figures 1 and 2, respectively. Figure 3 shows a

sequential extraction of local oscillations by the EMD of the

signal "Blocks" (Fig. 1(a)). Tables I and II show comparisons

of MAE and SNR values for averaging, median, wavelet,

EMD-Soft and EMD-SG methods. The EMD decomposed the

"Blocks" signal into 5 oscillating modes (IMFs) and a 

residual. One can remark that the first IMF corresponds to fast

oscillation while the fifth IMF corresponds to slow one (Fig. 

3). A comparison of the signal (top diagram) and the residue

(bottom diagram) of Figure 3 shows that the residue captures

the trend of the signal. Each noisy signal is decompose using

the EMD and the derived IMFs are filtered (thresholded)

using a SG filter of third-order (soft-thresholding). The

standard deviation, , is set to 0.3 [4]. Thus, the N value is 

determined automatically based on the value. Figure 4

displays the outcome of applying the EMD denoising scheme

to the five signals. Each reconstructed signal plot (dot line) is

superposed on the corresponding free noise signal (solid line).

Globally, the results are qualitatively appealing; the

reconstructions jump where the signal jumps and are smooth

where the true signal is smooth. The significant results are 

obtained for “Blocks”, “Heavysine”, “Bumps” and “ECG” 

(Figs. 4(b)-(e)) which are very close to their corresponding

original signals. These findings are confirmed by the SNRs

values listed in Table I where significant improvements in

SNR range from 9.73 dB to 26.79 dB. As indicated in Tables I 

and II, both the EMD-SG and the EMD-Soft outperform the

averaging and median methods. For “Heavysine” and “ECG”

signals both the EMD-SG and the EMD-Soft perform better

than the wavelet method. For “Bumps” signal both the EMD-

SG and the wavelet method give the same SNR. However, the

wavelet method (14.97 dB) performs better than the EMD-SG

(13.57 dB) for “Doppler” signal. The efficiency of the

compared methods depends on the signal behaviour. In 

particular, for the “ECG” signal the averaging method

achieves better SNR than the wavelet method. The oscillations 

seen in flat regions (Figs. 4(b)-(c)) may be due to the

interpolation scheme used in the sifting process and thus it

would be interesting to search for other interpolation methods

other than cubic splines. A careful examination of the 

“Doppler” signal (Fig. 4(a)) shows that the beginning of this

signal, (oscillations of rapid change), is not well 

reconstructed. This may be due to the rate sampling used. The 

same problem is seen in the wavelet reconstruction.

Available from Stanford Statistics Department, courtesy of

D.L. Donoho and I.M. Johnstone.

Table I 

Denoising results in SNR of test signals corrupted by Gaussian noise.

Doppler Blocks Bumps Heavysine ECG

SNR SNR SNR SNR SNR

Noisy 2.06 2.03 2.03 2.03 -9.02

Averaging 9.86 9.06 9.46 12.66 7.23

Median 10.57 10.17 10.55 10.67 4.62

Wavelet 14.97 11.94 14.47 18.76 5.82

EMD-Soft 11.13 11.18 11.18 19.86 14.39

EMD-SG 13.57 11.76 14.50 20.60 17.77

Table II 

Denoising results in MAE of test signals corrupted by Gaussian noise.

Doppler Blocks Bumps Heavysine ECG

MAE MAE MAE MAE MAE

Noisy 0.81 0.81 0.81 0.81 0.46

Averaging 0.32 0.29 0.32 0.24 0.04

Median 0.30 0.31 0.31 0.30 0.09

Wavelet 0.16 0.20 0.19 0.12 0.04

EMD-Soft 0.21 0.25 0.24 0.10 0.03

EMD-SG 0.18 0.22 0.18 0.09 0.01

V. CONCLUSION 

In this paper a new signal denoising approach is introduced.

This denoising scheme, based on EMD method, is simple and 

fully data-driven. The method does not use any pre- or post-

processing. The EMD-Soft is fully automated denoising

method. To run the EMD-SG only the analysis window size of

the SG filter is required. Results obtained for synthetic signals

and for one real signal indicate that both EMD-Soft and EMD-

SG are effective for noise removal. The EMD-Soft and the 

EMD-SG methods outperform averaging and median methods

and for three signals EMD-SG performs better than the 

wavelet method. To confirm the effectiveness of the EMD

denoising, the method must be evaluated with a large class of 

signals and in different experimental conditions such as noise

levels, sampling rates and sample sizes. For better signal

reconstruction, we plan to study how to adapt the SG filter 

order to each IMF. 
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Figure 1. Test signals with L=2048. 

Figure 2. Noisy test signals (SNR=2dB; SNR=-9dB for ECG).

Figure 3. Illustration of the Sifting process. The “Blocks”

signal is decomposed into ten IMFs and a trend. (residue).

Figure 4.Results of the EMD-SG denoising. The free noise

signals (solid line). The reconstructed signals (dot line).
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