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Abstract—The presence of a vertical fatigue crack in the web of 

a plate girder subjected to pure bending influences the bending 
moment capacity of the girder. The growth of the crack may lead to 
premature elastic failure due to flange local yielding, flange local 
buckling, or web local buckling. Approximate expressions for the 
bending moment capacities corresponding to these failure modes 
were formulated. Finite element analyses were then used to validate 
the expressions. The expressions were employed to assess the effects 
of crack length on the capacity. Neglecting brittle fracture, tension 
buckling, and ductile failure modes, it was found that typical girders 
are governed by the capacity associated with flange local yielding as 
influenced by the crack. Concluding, a possible use of the capacity 
expressions in girder design was demonstrated. 

 
Keywords—Fatigue crack, flange yielding, flange buckling, web 

buckling. 

I.  INTRODUCTION 
LATE girders form an important part of typical slab-girder 
highway bridges and are regularly subjected to fatigue 

loading produced by the ongoing passage of vehicles across 
the bridge structure. Over time the fatigue loading may lead to 
the gradual physical deterioration and consequential reduction 
in strength of a plate girder. A plate girder loaded under 
predominantly bending stresses experiences the most 
damaging effects in regions under fluctuating tensile stresses. 
Inherent discontinuities and imperfections in the plate girder 
induce local tensile stress concentrations which may 
eventually initiate the growth of a vertical through-thickness 
edge-crack through the web plate [1-13] (see Fig. 1). The 
growth of the edge-crack may ultimately bring about the 
premature elastic failure of the plate girder [14-20]. 

Numerous studies have investigated the influence of 
through-thickness cracks on the strength and stability of plate-
like specimens loaded under compression, tension, and shear 
[21-34]. Research concerning beam-like structures has largely 
focused upon the effects of large discontinuities such as slots 
and copings on the bending and shear strength [35-44]. Far 
less research has concentrated upon the effects of through-
thickness cracks on the strength of plate girders [45, 46]. 

The presence of a vertical through-thickness edge-crack in 
the tension region of a web plate induces a local disturbance 
in the normal bending stress distribution. Specifically, the 
edge-crack serves to locally shift the neutral axis of the plate 
girder towards the compression flange, which is accompanied 
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by a local increase of the compressive bending stresses in the 
compression region of the web plate and in the compression 
flange. This local increase of stresses may give rise to the 
premature initiation of various elastic failure modes including 
flange local yielding, flange local buckling, and web local 
buckling. 

The goal of this research was to derive approximate 
expressions for the bending moment capacities of a web- 
cracked plate girder corresponding to local yielding of the 
compression flange and elastic local buckling of the 
compression flange and web plate. Finite element (FE) 
analyses were performed using the general FE software 
ABAQUS to validate the derived capacity expressions. The 
capacity expressions were then plotted as functions of edge-
crack length for various trial plate girders. 
 

 
Fig. 1 (a) I-shaped plate girder loaded under pure bending and (b) 

section through edge-crack 

II. BENDING STRESS DISTRIBUTION 
The normal bending stress distribution in uncracked 

sections of a plate girder is approximately described by 
classical beam theory in which the distribution takes on a 
linear form as shown in Fig. 2 (a). Using the coordinate 
system designated in Fig. 1, the linear bending stress 
distribution in any uncracked section is expressed as 
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where σw is the bending stress at the extreme fibers of the web 
plate, dw is the depth of the web plate, and a is one half the 
edge-crack length. 
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Fig. 2 (a) Normal bending stress distribution, σy, in uncracked section 
of a plate girder and (b) normal bending stress distribution, σy(x,0), in 

cracked section 
 
Given that plate girders are constructed of relatively thin 

plates, plane stress conditions are assumed to govern the stress 
field within the plates. The local disturbance in the web plate 
stress field induced by the edge-crack is approximately 
determined with the use of the Airy stress function, F(x,y). 
The two-dimensional stress field for any elastic body may be 
expressed in terms of the Airy stress function as [47] 
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where the Airy stress function satisfies the biharmonic 
equation given by [47] 
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Hence satisfying the equilibrium and compatibility 

requirements. The presence of a crack within an elastic body 
requires an expanded definition of the stress field and is 
achieved by expressing the Airy stress function in terms of the 
Westergaard stress function, Z(ζ), as [48] 
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and ζ is the complex variable ζ = x + iy. The substitution of 
(4) into (2) results in the stress field about a crack becoming 
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 The normal bending stress distribution, σy(x,0), along the x-
axis (see Fig. 2 (b)) is approximated by assuming that the 
edge-crack resides within an infinite plate loaded by far-field 
stresses distributed identically to the uncracked bending stress 

distribution (see Fig 3 (a)) as expressed by (1). The stress field 
about the crack for this configuration is obtained by 
superimposing the stress fields for two distinct cases [49]. The 
first case consists of the infinite plate and far-field stresses 
without the crack. The second case consists of the crack 
within the infinite plate loaded by internal crack face stresses 
distributed identically to the uncracked bending stress 
distribution as expressed by (1). As a further simplification, 
the linearly varying crack face stresses are approximated as 
being uniformly distributed with a magnitude σw’ taken as the 
average of the crack face stresses (see Fig. 3 (b)). This 
average stress is obtained by substituting x = 0 into (1) 
resulting in 
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Fig. 3 (a) Infinite plate with central crack loaded by far-field stresses 
and (b) central crack within an infinite plate loaded by uniform crack 

face stresses 
 

Superimposing the uncracked bending stress distribution 
for the first case as given by (1) with the stress distribution for 
the second case as given by (6)2 and setting y = 0 results in 

 

yy Zx σσ += Re)0,(                                   (8) 

 
The Westergaard stress function for the second case (see 

Fig. 3b) is given by [50, 51] 
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Substituting (1) and (9) into (8) gives the final expression 

for the normal bending stress distribution along the x-axis 
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The local shift of the neutral axis along the x-axis (see Fig. 

2 (b)) is determined by equating (10) to zero and solving for x 
resulting in 
 



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:7, No:6, 2013

457

 

 

22 48
2
1

wwo dadax +−=                              (11) 

 
The depth of the web plate along the x-axis under tension, 

dt, therefore becomes 
 

adadaaxd wwot ++−=+= 22 48
2
1                    (12) 

 
Also, the depth of the web plate along the x-axis under 

compression, dc, becomes 
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2
1
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III. LOCAL YIELDING OF COMPRESSION FLANGE 
The localized shift of the neutral axis towards the 

compression flange increases the bending stresses in the 
compression flange along the x-axis which may lead to local 
yielding. For uncracked sections of a plate girder, the bending 
stresses at the extreme fibers of the compression flange, σf, 
and web plate, σw, are related by similar triangles in the form 
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where tf is the compression flange thickness. Solving for σw 
gives 
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The local increase of bending stresses in the compression 

flange is first calculated by equating the compressive force in 
the uncracked section of the web plate with the compressive 
force in the cracked section of the web plate, expressed as 
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where tw is the web plate thickness and σcw is the increased 
bending stress at the extreme fibers of the web plate along the 
x-axis. Solving for σcw gives 
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Assuming a linear distribution of compressive bending 

stresses above the shifted neutral axis along the x-axis, the 
increased bending stresses at the extreme fibers of the 
compression flange, σcf, is calculated by employing similar 
triangles in the form 
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for which solving for σcf results in 
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Substituting (13) and (15) into (17) and introducing the 

result into (19) gives 
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f
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where the factor βcf  is defined as 
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Solving (20) for σf and setting σcf equal to the yield strength, 

σY, of the girder material gives 
 

YYcfcrf σσβσ ≤=−                            (22) 

 
Equation (22) represents the critical bending stress at the 

extreme fibers of the compression flange in uncracked 
sections of a plate girder corresponding to yielding of the 
extreme fibers of the compression flange in the edge-cracked 
section along the x-axis. The bending moment capacity 
corresponding to local yielding of the compression flange is 
thus given by 
 

SM crfcr −= σ                                  (23) 

 
where S is the elastic section modulus of the plate girder 
section with respect to the strong axis of bending. 

IV. ELASTIC LOCAL BUCKLING OF COMPRESSION FLANGE 
The local increase in bending stresses within the 

compression flange may alternatively lead to elastic local 
buckling of the compression flange stems. The critical 
bending stress at the extreme fibers of the compression flange 
in uncracked sections of a plate girder corresponding to elastic 
buckling of a flange stem in the edge-cracked section along 
the x-axis is determined using (20) and (21). Equating σcf in 
(20) to the classical elastic plate buckling capacity results in 
[52]. 
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where the factor k is dependent upon the geometrical 
properties and support conditions of the flange stem, and  bf is 
the compression flange width. D is the plate rigidity given by 
[52] 
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where E is the modulus of elasticity and ν is Poisson’s ratio. 
Substituting (25) into (24) and solving for σf gives 
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One side of a flange stem is unrestrained while the side 

bordering the web plate is assumed to be simply supported or 
fully clamped. Assuming the restrained side to be fully 
clamped requires that k = 4 [52]. The bending moment 
capacity corresponding to elastic local buckling of the 
compression flange is thus given by 
 

SM crfcr −= σ                              (27) 

V.  ELASTIC LOCAL BUCKLING OF WEB PLATE 
The local increase in bending stresses within the 

compression region of the web plate influences the elastic web 
local buckling capacity of a plate girder. This capacity is 
estimated by first calculating the critical bending stress at the 
extreme fibers of the web plate, σcw, along the x-axis. A 
predefined region of the cracked web plate is assumed to 
locally buckle and the Rayleigh-Ritz method is employed to 
estimate σcw. 

The predefined buckled region is presumed to be a square 
embedded plate of width dc (see Fig. 4 (a)). This assumption is 
judged to be reasonable in light of the buckled shapes of 
cracked plates under tension obtained by Brighenti [24-26]. 
The central axis of the plate is aligned with the edge-crack 
along the x-axis. The plate is assumed to buckle in a form 
described by a shape function, w(x,y). The edges of the plate 
are fully clamped, of which the boundary conditions are 
expressed as follows 
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A shape function of the following form satisfies these 

boundary conditions 
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where A is an arbitrary variable subject to variation. The 
actual compressive bending stresses in the region above the 
edge-crack are approximated by loading the vertical sides of 
the embedded plate with the linear compressive bending stress 
distribution along the x-axis, σy

c(x,0), as shown in Fig. 4 (b) 
and given by 
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Fig. 4 (a) Location of embedded plate within the web plate and (b) 

the assumed external load distribution 
 

The total potential energy, П, of the loaded embedded plate 
is expressed as [53] 
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where W is the strain-energy density function, V is the volume 
of the plate, Ti are the applied surface tractions, ui are the 
corresponding displacements, and S is the surface over which 
the tractions are applied. The y-intercept of (30) is shifted by a 
magnitude of -dc / 2 such that (30) is applied upon the vertical 
side of the embedded plate at y = -dc / 2. The change in total 
potential energy, δП, with respect to A is then equated to zero. 
Solving for σcw and dividing the result by tw gives 
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The substitution of (13) and (15) into (17) gives 
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where the factor βcw  is defined as 
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Introducing (32) into (33) and solving for σf results in 
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where tw is used in place of tf in the plate rigidity. It follows 
that the bending moment capacity corresponding to elastic 
local web buckling is given by 
 

SM crfcr −= σ                                     (36) 

VI. FE ANALYSES 
FE analyses were performed to validate the bending 

moment capacity expressions given by (23), (27), and (36). 
Four full-scale trial plate girders as well as corresponding full-
scale trial web plates were modeled using ABAQUS. Each 
girder had a length, L = 5 m, and was configured as a 
cantilever (see Fig. 5). The web plate depth was set to 127 cm 
and the flange plate width was set to 35 cm. The flange plate 
thickness was set as twice the thickness of the web plate 
thickness (see Table I). Also, each girder was modeled with 
the general material properties of alloy steel (modulus of 
elasticity, E = 200 GPa; yield strength, σY = 345 MPa; 
Poisson’s ratio, ν = 0.3). An external bending moment, Mo, 
was applied to the free end of each girder such that the 
internal bending moment was constant throughout the length. 
Finally, each girder was modeled with four different through-
thickness edge-crack lengths in the tension region of the web 
plate at mid-span (see Table I). 
 

 

Fig. 5 Trial plate girder cantilever configuration 
 

 
The web and flange plate thicknesses of PG-1 and PG-2 

were purely theoretical for the purpose of investigating a 
broader spectrum of possible failure modes. The trial plate 
girders were meshed using 10-node quadratic tetrahedron 
solid elements. The entire face of one end of each girder was 
configured to have fully clamped support conditions. The 
external bending moment was modeled by loading the 
opposite face with a linearly varying normal stress distribution 

such that the top half was in compression and the bottom half 
in tension. The crack itself was modeled as a thin 0.1 cm wide 
extrusion through the web plate. A series of partitions were 
modeled about the crack to enable a finer mesh in the vicinity 
of the crack. 

 
 TABLE I 

TRIAL PLATE GIRDER GEOMETRIC PROPERTIES 
 

Plate 
Girder 
(PG) 

Web 
Thickness, 

tw (cm) 

Crack 
Length, 
2a (cm) 

Plate 
Girder 
(PG) 

Web 
Thickness, 

tw (cm) 

Crack 
Length, 
2a (cm) 

PG-1a 0.15 6.0 PG-3a 0.60 6.0 

PG-1b 0.15 12 PG-3b 0.60 12 

PG-1c 0.15 24 PG-3c 0.60 24 

PG-1d 0.15 48 PG-3d 0.60 48 

PG-2a 0.30 6.0 PG-4a 1.20 6.0 

PG-2b 0.30 12 PG-4b 1.20 12 

PG-2c 0.30 24 PG-4c 1.20 24 

PG-2d 0.30 48 PG-4d 1.20 48 

 
The expressions for the normal bending stress distribution 

between the edge-crack tip and the shifted neutral axis given 
by (10), and between the shifted neutral axis and the extreme 
fibers of the compression flange given by (30), were first 
validated by employing PG-1 through PG-4. The external 
bending moment was set to Mo = 500 kN൉m and the 
corresponding bending stress distribution above the edge 
crack was numerically calculated. The plots of bending stress 
distributions for each girder and crack length as obtained from 
(10) and (30) as well as from the FE analyses are shown in 
Fig. 6. 

Given that the analytical bending stress distributions closely 
correlated to the numerical results, PG-1 through PG-4 were 
next employed to validate the expression for the bending 
moment capacity corresponding to flange local yielding given 
by (23). This was achieved by increasing Mo to a magnitude 
exceeding the yield moment, My, and requesting stress history 
outputs of elements at the extreme outer fibers of the 
compression flange above the edge-crack. The bending 
moment at which the stresses in these elements exceeded the 
yield strength was then calculated. The capacities for each 
girder and crack length as calculated from (23) as well as from 
the FE analyses are listed in Table II. It is observed that a 
close correlation exists between the two sets of results. 
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Fig. 6 Analytical and numerical normal bending stress distributions 

along the x-axis above the edge-crack for each trial plate girder 
 
 
 

 

TABLE II 
ANALYTICAL AND NUMERICAL FLANGE LOCAL YIELDING CAPACITIES 

Plate 
Girder 
(PG) 

Eq. 
(23) 

(kN·m) 

FE 
 (kN·m) 

Error 
(%) 

Plate 
Girder 
(PG) 

Eq. 
(23) 

(kN·m) 

FE 
 (kN·m) 

Error 
(%) 

PG-1a 597.9 598.6 -0.10 PG-3a 2384 2386 -0.08 

PG-1b 595.6 598.6 -0.50 PG-3b 2374 2386 -0.50 

PG-1c 585.5 596.6 -1.86 PG-3c 2334 2386 -2.18 

PG-1d 534.9 595.7 -10.2 PG-3d 2129 2380 -10.5 

PG-2a 1194 1196 -0.17 PG-4a 4749 4754 -0.10 

PG-2b 1190 1196 -0.50 PG-4b 4730 4754 -0.50 

PG-2c 1170 1193 -1.92 PG-4c 4647 4754 -2.25 

PG-2d 1068 1192 -10.4 PG-4d 4233 4752 -10.9 

 
The numerical buckling simulations employed by the FE 

analyses are made difficult in part by global and local 
buckling modes overriding intended buckling modes. The 
expression for the bending moment capacity corresponding to 
flange local buckling given by (27) was indirectly validated 
by recognizing that the accuracy of (27) is directly dependent 
upon the accuracy of the stress at the extreme fibers of the 
compression flange as well as the accuracy of the bending 
stress distribution given by (10) and (30). The close 
correlation between the analytical and numerical bending 
moment capacities associated with flange local yielding 
signified that the corresponding critical stresses at the extreme 
fibers of the compression flange also exhibited a close 
correlation. Furthermore, given that (10) and (30) were 
previously validated, it was judged that (27) represents a 
reasonably accurate expression of the bending moment 
capacity associated with flange local buckling. 

Full-scale trial web plates corresponding to PG-1 through 
PG-4 were employed to indirectly validate the expression for 
the bending moment capacity corresponding to web local 
buckling given by (36). Only the web plates were modeled in 
order to avoid the aforementioned difficulties concerning 
numerical buckling simulations. Each web plate was 
configured to have fully clamped support conditions along the 
longitudinal edges bordering the flange plates. The web plates 
were modeled using 4-node shell elements. The associated 
edge-cracks were modeled by assigning a seam to a single-line 
partition. Furthermore, the out-of-plane translation of each 
web plate was restrained except for the region of the 
embedded plate, thus reducing the analysis to that of a fully 
clamped embedded plate. 

The vertical sides of the embedded plate were then loaded 
with a unit compressive stress distribution in the form 
expressed by (30). The first buckling mode stress 
corresponding to σcw was then computed and introduced into 
(33). The bending moment capacity was then calculated by 
solving (33) for σf and plugging the result into (36). The 
capacities for each girder and crack length as calculated from 
(36) as well as from the FE analyses are listed in Table III. It 
can be seen that the analytical and numerical results exhibit 
rough uniformity. The correlation is much more accurate for 
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very thin web plates (PG-1 and PG-2). A substantial amount 
of accuracy is lost for thicker web plates, thus signifying the 
possible need for further experimental analyses and correction 
factors. 
 

TABLE III 
ANALYTICAL AND NUMERICAL WEB LOCAL BUCKLING CAPACITIES 

Plate 
Girder 
(PG) 

Eq. 
(36) 

(kN·m) 

FE 
(kN·m) 

Error 
(%) 

Plate 
Girder 
(PG) 

Eq. 
(36) 

(kN·m) 

FE 
(kN·m) 

Error 
(%) 

PG-1a 30.2 27.9 8.24 PG-3a 2422 1780 36.1 

PG-1b 30.4 28.1 8.19 PG-3b 2431 1784 36.3 

PG-1c 31.3 28.5 9.82 PG-3c 2473 1825 35.5 

PG-1d 36.0 35.2 2.27 PG-3d 2708 1994 35.8 

PG-2a 294.1 223.2 31.8 PG-4a 19711 14106 39.7 

PG-2b 295.3 224.6 31.5 PG-4b 19786 14144 39.9 

PG-2c 300.7 227.9 31.9 PG-4c 20126 14602 37.8 

PG-2d 330.9 249.0 32.9 PG-4d 22021 15936 38.2 

VII. RESULTS AND DISCUSSION 
Having validated the capacity expressions, (23), (27), and 

(36) were plotted as functions of edge-crack length for each 
trial plate girder (see Fig. 7). The horizontal segments of the 
plots indicate the yield moment capacity. Web local buckling 
is the governing failure mode for PG-1 and PG-2. This is 
reflective of the extremely thin web plate thicknesses. It can 
be seen that the web local buckling capacity gradually 
increases with increasing crack length. This phenomenon was 
previously observed by Brighenti [24-26] and Khedmati et al. 
[27] in numerical tests of centrally cracked plates under 
compression. The increase in buckling strength despite the 
local increase in bending stresses is in part explained by the 
shrinking of the embedded plate as the crack length increases. 

Flange local yielding is the governing failure mode for the 
realistic trial plate girders (PG-3 and PG-4). It is observed that 
the crack must grow to a length in the order of 20 - 25 cm 
before the elastic bending moment capacity begins to 
significantly decrease. For instance, a crack length of 2a = 5 
cm results in a negligible decrease in capacity relative to My, 
while a crack length of 2a = 40 cm results in a decrease of 
7%. Two criteria must then be met in order for premature 
flange local yielding failure to occur in this particular type of 
cracked section. First, the crack length must be within or 
exceed the range of 20 - 25 cm. Second, the required elastic 
bending moment capacity, Mr, must be just below the 
provided capacity, Mcr. 

A simplified example of a possible use of the capacity 
expressions is as follows. A plate girder being designed for 
predominantly bending stresses must have a required elastic 
bending moment capacity of Mr = 2250 kN൉m. Sizing the 
girder with the dimensions of PG-3 results in an elastic 
capacity of Mcr = My = 2386 kN൉m. Since Mr < Mcr = My, the 
elastic capacity is satisfied. However, designing for a 
presumed edge-crack in the web plate with 2a = 40 cm results 
in an elastic capacity governed by flange local yielding of 

 

 

 

 
Fig. 7 Plots of bending moment capacity expressions as functions of 

edge-crack length for each trial plate girder 
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Mcr = 2219 kN൉m. In this case, Mr > Mcr and the girder section 
must be enlarged. Resizing the girder with the dimensions of 
PG-4 results in an elastic capacity of Mcr = 4415 kN൉m when 
2a = 40 cm, thus satisfying the strength requirement. The 
section dimensions may be fine tuned to attain greater 
efficiency. 

Additional elastic failure modes including web local 
buckling due to transverse compressive stresses adjacent to 
the edge-crack, brittle fracture, and a critical plastic zone size 
at the crack tip were not investigated in this particular study. 
However, these alternative failure modes may indeed govern 
depending upon the plate girder dimensions and load 
requirements. 
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