
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:12, 2012

1683

Hierarchies Based on the Number of Cooperating
Systems of Finite Automata on Four-Dimensional

Input Tapes
Makoto Sakamoto, Yasuo Uchida, Makoto Nagatomo, Takao Ito,Tsunehiro Yoshinaga,Satoshi Ikeda,

Masahiro Yokomichi, and Hiroshi Furutani

Abstract—In theoretical computer science, the Turing machine has
played a number of important roles in understanding and exploit-
ing basic concepts and mechanisms in computing and information
processing [20]. It is a simple mathematical model of computers
[9]. After that, M.Blum and C.Hewitt first proposed two-dimensional
automata as a computational model of two-dimensional pattern pro-
cessing, and investigated their pattern recognition abilities in 1967
[7]. Since then, a lot of researchers in this field have been investigat-
ing many properties about automata on a two- or three-dimensional
tape. On the other hand, the question of whether processing four-
dimensional digital patterns is much more difficult than two- or three-
dimensional ones is of great interest from the theoretical and practical
standpoints. Thus, the study of four-dimensional automata as a
computasional model of four-dimensional pattern processing has been
meaningful [8]-[19],[21]. This paper introduces a cooperating system
of four-dimensional finite automata as one model of four-dimensional
automata. A cooperating system of four-dimensional finite automata
consists of a finite number of four-dimensional finite automata and
a four-dimensional input tape where these finite automata work
independently (in parallel). Those finite automata whose input heads
scan the same cell of the input tape can communicate with each other,
that is, every finite automaton is allowed to know the internal states of
other finite automata on the same cell it is scanning at the moment.
In this paper, we mainly investigate some accepting powers of a
cooperating system of eight- or seven-way four-dimensional finite
automata. The seven-way four-dimensional finite automaton is an
eight-way four-dimensional finite automaton whose input head can
move east, west, south, north, up, down, or in the fu-ture, but not in
the past on a four-dimensional input tape.

Keywords—computational complexity, cooperating system, finite
automaton, four-dimension, hierarchy, multihead.

I. INTRODUCTION

ACooperating system of four-dimensional finite automata

(CS-4-FA) [2]-[4],[19] consists of a finite number of

four-dimensional finite automata and a four-dimensional in-

put tape where these finite automata work independently (in

parallel). Those finite automata whose input heads scan the

same cell of the input tape can communicate with each other,

that is, every finite automaton is allowed to know the internal

states of other finite automata on the same cell it is scanning

at the moment.
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In this paper, we propose a cooperating system of seven-

way four-dimensional finite automata (CS-SV4-FA) which

is a restricted version of CS-4-FA’s, and mainly investigate

its several properties as four-dimensional language acceptors.

The seven-way four-dimensional finite automaton [16] is a

four-dimensional finite automaton [1] whose input head can

move east, west, south, north, up, down, or in the future,

but not in the past. The paper has six sections in addition

to this Introduction. Section II contains some definitions

and notions. Section III investigates a relationship between

seven-way four-dimensional simple multihead finite automata

(SV4-SPMHFA’s) and CS-SV4-FA’s. It is shown that SV4-

SPMHFA’s and CS-SV4-FA’s are equivalent in accepting

power if each sidelength of each four-dimensional input tape

of these automata is equivalent. Section IV investigates the

difference between the accepting powers of CS-SV4-FA’s and

CS-4-FA’s, and shows that CS-SV4-FA’s are less powerful than

CS-4-FA’s. Section V investigates the difference between the

accepting powers of deterministic and nondeterministic CS-

SV4-FA’s, and shows that deterministic CS-SV4-FA’s are less

powerful than nondeterministic CS-SV4-FA’s.
Section VI investigates the hierarchies can be obtained by

varying the number of finite automata in the system for classes

of sets accepted by CS-SV4-FA’s and CS-4-FA’s. Section VII

concludes by giving some open problems.In this paper, we

let each sidelength of each input tape of these automata be

equivalent in order to increase the theoretical interest.

II. PRELIMINARIES

Definition 2.1. Let
∑

be a finite set of symbols. A four-
dimensional tape over

∑
is a four-dimensional rectangular

array of elements of
∑

. The set of all four-dimensional tapes

over
∑

is denoted by
∑

(4). Given a tape x ∈ ∑
(4), for

each integer j(1 ≤ j ≤ 4), we let lj(x) be the length of x

along the jth axis. The set of all x ∈ ∑(4)
with l1(x) =

n1, l2(x) = n2, l3(x) = n3, and l4(x) = n4 is denoted by∑(n1,n2,n3,n4). When 1 ≤ ij ≤ lj(x) for each j(1 ≤ j ≤ 4),
let x(i1, i2, i3, i4) denote the symbol in x with coordinates

(i1, i2, i3, i4), as shown in Fig.1. Furthermore, we define

x[(i1, i2, i3, i4), (i
′
1, i

′
2, i

′
3, i

′
4)],

when 1 ≤ ij ≤ i′j ≤ lj(x) for each integer j(1 ≤ j ≤ 4),
as the four-dimensional input tape y satisfying the follwing

conditions:
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(i) for each j(1 ≤ j ≤ 4), lj(y) = i′j − ij + 1;

(ii) for each r1, r2, r3, r4(1 ≤ r1 ≤ l1(y), 1 ≤
r2 ≤ l2(y), 1 ≤ r3 ≤ l3(y), 1 ≤ r4 ≤
l4(y)), y(r1, r2, r3, r4)
= x(r1+ i1− 1, r2+ i2− 1, r3+ i3− 1, r4+ i4−1).
(We call x[(i1, i2, i3, i4), (i

′
1, i

′
2, i

′
3, i

′
4)] the

[(i1, i2, i3, i4), (i
′
1, i

′
2, i

′
3, i

′
4)]-segment of x.)

x(1, 1, 1, 1)

up
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Fig. 1. Four-dimensional Input Tape

We recall a seven-way four-dimensional simple k-head finite
automaton (SV4-SPk-HFA)[5]-[6]. An SV4-SPk-HFA M is a

finite automaton with k read-only input heads operating on a

four-dimensional input tape surrounded by boundary symbols

�’s. The only one head(called the ‘reading’ head) of M is

capable of distinguishing the symbols in the input alphabet,

and the other heads(called ‘counting’ heads) of M can only

detect whether they are on the boundary symbols or a symbol

in the input alphabet. When an input tape x is a presented

to M , M determines the next state of the finite control, the

next move direction (east, west, south, north, up, down, future,

past or no move) of each input head, depending on the present

state of the finite contorol, the symbol read by the reading

head, and on whether or not the symbol read by each counting

head is boundary symbol. We say that M accepts x if M ,

when started in its initial state with all its input heads on

x(1, 1, 1, 1), eventually halts in an accepting state with all its

heads on the bottom boundary symbols of x. As usual, we

define nondeterministic and dterministic SV4-SPk-HFA’s.

A seven-way four-dimensional sensing simple k-head finite
automaton(SV4-SNSPk-HFA) is the same device as a SV4-

SPk-HFA except that the former can detect coincidence of the

input heads.

We denote a deterministic(nondeterministic) SV4-SPk-HFA

by SV4-SPk-HDFA(SV4-SPk-HNFA), and denote a deter-

ministic (nondeterministic)SV4-SNSPk-HFA by SV4-SNSPk-

HDFA(SV4-SNSPk-HNFA).

We now give formal definition of a cooperating system of k
four-dimensional deterministic finite automata (CS-4-DFA(k))

as an acceptor.

Definition 2.2. A CS-4-DFA(k) is a k-tuple M = (FA1, FA2,

. . . , FAk), k ≥ 1, such that for each 1 ≤ i ≤ k,

FAi = (
∑

, Qi, Xi, δi, q0i, Fi, φ, �),

where

1)
∑

is a finite set of input symbols.

2) Qi is a finite set of states.

3) Xi = (Q1 ∪ {φ}) × · · · × (Qi−1 ∪ {φ}) × (Qi+1 ∪
{φ}) × · · · × (Qk ∪ {φ}), where ‘φ’ is a special state

not in (Q1 ∪Q2 ∪ · · · ∪Qk).
4) δi : (

∑∪{�})×Xi ×Qi → Qi×east(= (0,+1, 0, 0))
,west(= (0,−1, 0, 0)),south(= (+1, 0, 0, 0)),north

(= (−1, 0, 0, 0)),up(= (0, 0,−1, 0)),down(= (0, 0,
+1, 0)),future(= (0, 0, 0,+1),past(= (0, 0, 0,−1
)),no move(= (0, 0, 0, 0))is the next move function,

where ‘�’ is the boundary symbol not in
∑

.

5) q0i ∈ Qi is the initial state of FAi.

6) Fi ⊆ Qi is the set of accepting states of FAi.

Every automaton of M independently (in parallel) works

step by step on the same four-dimensional tape x over
∑

surrounded by boundary symbols �’s. Each step is assumed to

require exactly one time for its completion. For each i(1 ≤ i ≤
k), let qi be the state of FAi at time ‘t’. Then each FAi, enters

the next state ‘pi’ at time ‘t+ 1’ according to the function

δi(x(α, β, γ, ρ), (q
′
1, . . . , q

′
i−1, q

′
i+1, . . . , q

′
k), qi) =

(pi, (d1, d2, d3, d4)),

where x(α, β, γ, ρ) is the symbol read by the input head of

FAi at time ‘t’ and for each j ∈ {1, . . . , i− 1, i+ 1, . . . , k},

q′j =

⎧⎪⎪⎨
⎪⎪⎩

qj ∈ Qj if the input heads of FAi and FAj ,

are on the same input position at

the moment ‘t’;
φ otherwise,

and moves 1st input head to x(α+ d1, β+ d2, γ+ d3, ρ+ d4)
at time ‘t + 1’. We assume that the input head of FAi never

falls off the tape beyond boundary symbols.

When an input tape x ∈ ∑(4)
is presented to M , we say

that M accepts the tape x if each automaton of M , when

started in its initial state with its input head on x(1, 1, 1, 1),
eventually enters an accepting state with its input head on one

of the bottom boundary symbols.

We next introduce a cooperating system of k seven-way four-
dimensional deteministic finite automata (CS-SV4-DFA(k)),

with which we are mainly concerned in this paper.

Definition 2.3. A CS-SV4-DFA(k) is a CS-4-DFA(k) M =
(FA1, FA2,. . . , FAk) such that the input head of each FAi can

only move east, west, south, north, up, down, or in the future,

but not in the past.

To give the formal definition of a cooperating system
of k four-dimensional nondeterministic finite automata
(CS-4-NFA(k)) and a cooperating system of k seven-way
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four-dimensional nondeterministic finite automata (CS-SV4-

NFA(k)) is left to the reader. For each X ∈ {SV4-SPk-

HDFA,SV4-SPk-HNFA,SV4-SNSPk-HDFA,SV4-SNSPk-

HNFA,CS-4-DFA(k),CS-4-NFA(k),CS-SV4-DFA(k),CS-SV4-

NFA(k)}, by Xc we denote an X which each sidelength of

each input tape is equivalent; by L[X](L([Xc]) we denote the

class of sets of input tapes accepted by X’s(Xc’s). We will

focuse our attention on the acceptors which each sidelength

of each input tape is equivalent.

III. SV4-SPMHFA’S AND CS-SV3-FA’S

In this section, we establish a relation between the accept-

ing powers of seven-way four-dimensional simple multihead

finite automata and cooperating systems of seven-way four-

dimensional finite sutomata over input tapes which each

sidelength is equivalent. This result will be used in the latter

sections.

Lemma 3.1. For any k ≥ 1 and X ∈ {N,D},

L[SV4-SNSPk-HXFAc]⊆L[CS-SV4-XFA(2k)c]

Proof. Let M be an SV4-SNSPk-HFAc. We will construct a

CS-SV4-XFA(2k)c M ′ to simulate M . M ′ acts as follws:

1) M ′ simulates the moves of the reading head of M and

all the east, west, south, north up, or down moves of

counting heads of M by using its (k+1) finite automata.

2) M ′ simulates all the moves in the future direction of

counting heads of M by making the down moves of

input heads of its other (k − 1) finite automata.

3) During the simulation, if M moves its reading head in

the future direction, then M ′ makes all of input heads

of finite automata of M ′ move in the future direction so

that all the automata of M ′ can keep their input heads

on the same three-dimensional rectangular array and can

communicate with each other in that three-dimensional

rectangular array.

It is easy to see that M ′ can simulate M . �

Lemma 3.2. For any k ≥ 1 and any X ∈ {N,D},

L[CS-SV4-XFA(k)c]⊆L[SV4-SNSP(2k2 − k + 1)-HXFAc].

Proof. Let M = (FA1,FA2,. . . ,FAk)be a CS-SV4-XFA(k)c.

We will construct an SV4-SNSP(2k2 − k + 1)-HXFAc M ′

to simulate M . Let R denote the reading head of M ′, and

h1, h2, . . . , h2k2−k denote the 2k2 − k counting heads of M ′.
M ′ acts as follws:

1) M ′ stores the internal states of FA1,FA2,. . . ,FAk in its

finite contorol.

2) For each three-dimensional rectangular array of the input

tape:

(a) M ′ simulates the east, west, south, north, up, or

down moves of input heads of FA1,FA2,. . . ,FAk

by using R and h1, h2, . . . , hk.

(b) M ′ stores in its finite control the internal state

of each FAi, 1 ≤ i ≤ k, when the input head

of FAi leaves the three-dimensional rectangular

array and the order, (d1, d2, . . . , dk), in which

the input heads of FA1, FA2, . . . , FAk leave

the plane subsequently (i.e., FAd1 firstly moves

its input head in the future direction from

the three-dimensional rectangular array. FAd2

secondly moves its input head in the future di-

rection from the three-dimensional rectangular

array, and so on.), and M ′ keeps the position

where the input head of each FAi, 1 ≤ i ≤ k,

leaves the three-dimensional rectangular array

by the positions of h1, h2, . . . , hk.

(c) Furthermore, for each i(1 ≤ i ≤ k − 1), the

interval between the times at which FAdi and

FAdi+1 move their input heads in the future

direction from the three-dimensional rectangu-

lar array is stored by a counter with O(n6k)
space bound, which can be realized by using

h(2i−1)k−1, h(2i−1)k−2, . . . , h(2i−1)k, where n
is the number of rows (or columns or planes

or three-dimensional rectangular array) of the

input tape.

Note that M works in O(n6k) time, that is, if an input tape

with n rows (or columns or planes) is accepted by M , then

it can be accepted by M in O(n6k) time. Thus, it is easy to

verify that M ′ can simulate M . �

From [5],it follows that ∪1≤k<∞L[SV4-SPk-HXFAc] =
∪1≤k<∞L[SV4-SNSPk-HXFAc] for any X ∈ {N,D}. Com-

bining this result with Lemmas 3.1 and 3.2, we have the

follwing thorem.

Theorem 3.1. ∪1≤k<∞L[SV4-SPk-HXFAc]

= ∪1≤k<∞L[CS-SV4-XFA(k)c] for any X ∈ {N,D}.

Corollary 3.1. For any k ≥ 1, there is no CS-SV4-NFA(k)
that accepts the set of connected patterns.

Remark 3.1. It is easy to see that for each k ≤ 1, (1)four-

dimensional sensing simple k head finite automata [5] are

simulated by cooperating systems of (k+1) four-dimensional

finite automata, and (2) cooperating systems of k four-

dimensional finite automata are simulated by four-dimensional

sensing simple (k + 1) head finite automata.

Remark 3.2. It is shown in [22] that (one-dimensional) one-

way simple multihead finite automata snd cooperating systems

of (one-dimensional) one-way deterministic finite automata are

incomparable in accepting power. From this fact, it follows

that SV4-SPMHFAc’s and CS-SV4-DFAc’s are incomparable

in accepting power if the input tapes are restricted to those

x such that l4(x) > l1(x) = l2(x) = l3(x). We can also

show that SV4-SPMHFAc’s are more powerful than CS-SV4-

DFAc’s if the input tapes are restricted to those x such that

l4(x) < l1(x) = l2(x) = l3(x).
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IV. SEVEN-WAY VERSUS EIGHT-WAY

In this section, we investigate the difference between the

accepting powers of CS-4-DFA(k)c’s [CS-4-NFA(k)c’s] and

CS-SV4-DFA(k)c’s [CS-SV4-NFA(k)c’s].

Theorem 4.1. For each X ∈ {N,D}, L [CS-4-

DFA(1)c]− ∪1≤k<∞ L[CS-SV4-XFA(k)c] �= ∅.

Proof. Let T1 = {x ∈ {0, 1}(4)|(∃m ≥ 2)[l1(x) = l2(x)
= l3(x) = l4(x) = m & x[(1, 1, 1, 1), (m,m,m, 1)] =
x[(1, 1, 1, 2), (m,m,m, 2)]]}. Clearly, T1 ∈ L[CS-4-

DFA(1)c]. From [5], it is easy to see that T1 is not in

∪1≤k<∞L[SV4-SPk-HNFAc]. From this fact and Theorem

3.1, the theorem follows. �

From Theorem 4.1, we can get the following corollary.

Corollary 4.1. For each k ≥ 1 and X ∈ {N,D}, (1)L[CS-

SV4-XFA(k)c]� L[CS-4-XFA(k)c], and (2) ∪1≤k<∞L[CS-

SV4-XFA(k)c] � ∪1≤k<∞L[CS-4-XFA(k)c].

V. NONDETERMINISM VERSUS DETERMINISM

In this section, we investigate the difference between the ac-

cpting powers of CS-SV4-NFA(k)c’s and CS-SV4-DFA(k)c’s.

Theorem 5.1. L[CS-SV4-NFA(1)c] − ∪1≤k<∞ L[CS-SV4-

DFA(k)c] �= ∅.

Proof. Let T2 = {x ∈ {0, 1}(4)|(∃m ≥ 2)[l1(x) = l2(x) =
l3(x) = l4(x) = m]&∃i, ∃j(1 ≤ i ≤ m, 1 ≤ j ≤ m, 1 ≤
k ≤ m)[x(i, j, k, 1) = x(i, j, k, 2) = 1] . Clearly, T2 ∈
[CS-SV4-NFA(1)c]. From [5], it is easy to see that T2 is not

in ∪1≤k<∞L[SV4-SPk-HDFAc]. From this fact and Theorem

3.1, the theorem follows. �

From Theorem 5.1, we get the following corollary.

Corollary 5.1. For each k ≥ 1, (1)L[CS-SV4-

DFA(k)c] � L[CS-SV4-NFA(k)c], and (2) ∪1≤k<∞L[CS-

SV4-DFA(k)c] � ∪1≤k<∞L[CS-SV4-NFA(k)c].

VI. HIERARCHIES BASAED ON THE NUMBER OF

AUTOMATA

In this section, we investigate the hierarchies based on the

number of their cooperating systems.

A. Eight-Way Case
We first investigate how the number of automata of CS-4-

FAc’s affects the accepting power.

Theorem 6.1. For each k ≥ 1 and each X ∈ {N,D}, L[CS-

4-XFA{0}(k)c]� L[CS-4-XFA{0}(k + 2)c], where L[CS-4-

XFA{0}(k)c] denote the class of sets of cubic tapes over a
one-letter alphabet which each sidelength of each input tape

is equivalent accepted by CS-4-XFA(k)c’s.

Proof. It is easy to prove that every CS-4-DFA(k)c[CS-4-

NFA(k)c] can be simulated by an (eight-way) four-dimesional

sensing deterministic [nondeterministic] k-head finite automa-

ton, and every (eight-way) four-dimensional sensing deter-

ministic [nondeterministic] k-head finite automaton can be

simulated by a CS-4-DFA(k+1)c[CS-4-NFA(k+1)c]. From [8],

for sets of four-dimensional tapes over a one-letter alphabet,

(eight-way) four-dimensional sensing deterministic [nondeter-

ministic] (k+1)-head finite automata are more powerful than

the cooresponding k-head finite automata. From these facts,

the theorem follows. �

Unfortunately, it is unknown whether L[CS-4-

XFA{0}(k)c]� L[CS-4-XFA{0}(k + 1)c] for any k ≥
1 and for any X ∈ {D,N}. It is also unknown wtether

L[CS-4-XFA(k)c]� L[CS-4-XFA(k + 1)c] for any k ≥ 2

and for any X ∈ {D,N}. (It is easy to show that L[CS-4-

XFA(1)c]� L[CS-4-XFA(2)c].)

B. Seven-Way Case
We next investigate how the number of automata of CS-

SV4-FAc’s affects the accepting power.

For each n ≥ 1, let T(n) = {x ∈ {0, 1}(4)|(∃m ≥ n)

[l1(x) = l2(x) = l3(x) = l4(x) = m &
x[(1, 1, 1, 1), (m,m,m, 1)] = x[(1, 1, 1, 2), (m,m,m, 2)]} ∈
Rn(m) & x[(1, 1, 1, 3), (m,m,m,m)] ∈ {0}(3)]}, where

Rn(m) = {x ∈ {0, 1}(4)| l1(x) = m, l2(x) = m, l3(x) =
m, l4(x) = m & (x has exactly n 1’s)} for each m ≥ n. It

is obvious that for any fixed positive integer n, T(n) can be

accepted by a CS-SV4-DFA(n)c.

We first consider the following problem: given a fixed

positive integer n, find a CS-SV4-FAc which accepts T(n)

and uses the minimum number of automata. Unfortunately,

we cannot generally solve the problem in the present paper,

but we give the lower and upper bounds. Let f(n) denote

the minimum number of automata required for deterministic

CS-SV4-FAc’s to accept T(n), and g(n) denote the minimum

number of automata required for nondeterministic CS-SV4-

FAc’s to accept T(n). Clearly, g(n) ≤ f(n) for any n ≥ 1.

Theorem 6.2. For each k ≥ 1, (1) f(k2+k−1) ≤ 2k−1, (2)

f(k2+2k) ≤ 2k, and (3) f(k(k−1)/2+1) ≥ k.

Proof. The proofs of (1) and (2) are similar. We only give the

proof of (2) here. To prove (2) is equivalent to proving that:

for each k ≥ 1, T (k2 + 2k) ∈ L[CS-SV 4-DFA(2k)c].

For each n ≤ 1, let T ′(n)={x[(1, 1, 1, 1), (l1(x), l2(x),
l3(x), 2)]|x ∈ T (n)}. For convenience, we prove by induction

on k that T ′(k2 + 2k) ∈ L[CS-SV 4-DFA(2k)c]. It will be

obvious that (2) follows from this fact.

We now prove (3). Suppose that there is a CS-SV 4-

DFA(k − 1)c M(k − 1)= (FA1,FA2,· · · ,FAk−1) accepting

T (k(k − 1)/2 + 1). Let hi denote the input of FAi for each

i ∈ {1, 2, · · · , k − 1}.

For each m ≥ k(k − 1)/2 + 1, let V (m) = {x ∈ T (k(k −
1)/2 + 1)|l1(x) = l2(x) = l3(x) = l4(x) = m}, and for
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each permutation σ : {1, 2, · · · , k − 1} → {1, 2, · · · , k − 1},

let Wσ(m) be the set of all input tapes x ∈ V (m) such that

during the accepting computation of M(k − 1) on x, input

heads hσ(1), hσ(2), · · · , hσ(k−1) leave the first cube of x in

this order. Then there must exist some permutation τ such

that

|Wτ (m)| ≥ |V (m)|/(k − 1)! = Ω(m3(k(k−1)/2+1)).

For each x ∈ Wτ (m) and each 1 ≤ i ≤ k − 1, let

qτ(i)(x), pτ(i)(x) and tτ(i)(x) denote the internal state of

FAτ(i), the position of hτ(i) and the time, respectively, when

hτ(i) leaves the first cube during the accepting computation of

M(k − 1) on x.

For each x ∈ Wτ (m), let

t(x) = (tτ(2)(x)− tτ(1)(x), tτ(3)(x)− tτ(2)(x), · · · ,
tτ(k−1)(x)− tτ(k−2)(x)),

and

u(x) = ((qτ(1)(x), pτ(1)(x)), · · · ,
(qτ(k−1)(x), pτ(k−1)(x)), t(x)).

Clearly, for each 2 ≤ i ≤ k − 1, tτ(i)(x) − tτ(i−1)(x) =
O(mk−i), because otherwise FAτ(i), · · · , FAτ(k−1) would

enter a loop on the first cube, and thus M(k−1) would never

accept x. So |{u(x)|x ∈ Wτ (m)}|=O(mk(k−1)). Therefore, it

follows that for large m
|Wτ (m)| > |{u(x)|x ∈ Wτ (m)}|,

and so there exist two diffirent input tapes x, y ∈ Wτ (m)
such that u(x) = u(y). Let z be the tape obtained from x
by replacing the second cube of x with the second cube of

y. It follows that z is also accepted by M(k − 1). This is a

contradiction, because z in not in T (k(k − 1)/2 + 1). This

completes the proof of (3). �

Theorem 6.3. g(2k2 − 5k + 4) ≥ k, for k ≥ 1.

Proof. The proof is very similar to that of (3) of Theorem 6.2.

Suppose to the contrary that there is a CS-SV 4-NFA(k −
1)c M(k−1) = (FA1, FA2, · · · , FAk−1) accepting T (2k2−
5k + 4). Let hi denote the input head of FAi for each i ∈
{1, 2, · · · , k − 1}.

For each m ≥ 2k2 − 5k + 4, let V (m) = {x ∈
T (2k2 − 5k + 4)|l1(x) = l2(x) = l3(x) = l4(x) = m}.

With each x ∈ V (m), we associate one fixed accepting

computation, c(x), of M(k − 1) on x in which M(k − 1)
operates in O(m4(k−1)) time. Furthermore, for each permuta-

tion σ:{1, 2, · · · , k − 1} → {1, 2, · · · , k − 1}, let Wσ(m) be

the set of all input tapes x ∈ V (m) such that during c(x),
input heads hσ(1), hσ(2), · · · , hσ(k−1) leave the first cube of x
in this order. Then there must exist some permutation τ such

that

|Wτ (m)| ≥ |V (m)|/(k − 1)! = Ω(m6k2−15k+12).

For each x ∈ Wτ (m) and each 1 ≤ i ≤ k − 1, let

qτ(i)(x), pτ(i)(x) and tτ(i)(x) denote the internal state of

FAτ(i), the position of hτ(i) and the time, respectively, when

hτ(i) leaves the first cube of x during c(x).

For each x ∈ Wτ (m), let

t(x) = (tτ(2)(x)− tτ(1)(x), tτ(3)(x)− tτ(2)(x), · · · ,
tτ(k−1)(x)− tτ(k−2)(x)),

and

u(x) = ((qτ(1)(x), pτ(1)(x)), · · · ,
(qτ(k−1)(x), pτ(k−1)(x)), t(x)).

Clearly, for each 2 ≤ i ≤ k − 1, tτ(i)(x) − tτ(i−1)(x) =

O(m4(k−1)). So |{u(x)|x ∈ Wτ (m)}| = O(m4k2−10k+6).
Therefore, it follows that for large m

|Wτ (m)| > |{u(x)|x ∈ Wτ (m)}|,
and so there exist two different input tapes x, y ∈ Wτ (m)
such that u(x) = u(y). Let z be the tape obtained from x by

replacing the second cube of x with the second cube of y.

Clearly, from c(m) and c(y), we can construct an accepting

computation of M(k−1) on z. This is a contradiction, because

z in not in T (2k2 − 5k + 4). This completes the proof of the

thereom. �

From Theorems 6.2 and 6.3, we can get the following

theorem.

Theorem 6.4. For each k ≥ 1 and each X ∈ {D,
N}, L[CS-SV4-XFA(k)c]�L[CS-SV4-XFA(k + 1)c].

Proof. For each k ≥ 1, let D(k)=max{n|f(n) = k} and

N(k)=max{n|g(n) = k}. From Theorem 6.2 (3) and Thorem

6.3, we have

D(k) ≤ k(k + 1)/2 and N(k) ≤ 2k2 − k,

respectively.

For each X ∈ {D,N}, let M be a CS-SV 4-XFA(k)c

accepting T (X(k)). From M , we can easily construct a CS-

SV 4-XFA(k + 1)cM ′ which accepts T (X(k) + 1). Thus

T (X(k) + 1) ∈ L[CS-SV4-XFA(k + 1)c]. From this and the

fact that T (X(k) + 1) /∈ L[CS-SV4-XFA(k)c], it follows that

T (X(k)+1) ∈ L[CS-SV4-XFA(k+1)c]−L[CS-SV4-XFA(k)c].
�

VII. CONCLUSION

We conclude this paper by giving several open problems

except the open problem stated in the previous section.

In this paper, we introduced a cooperating system of four-

dimensional finite automata, and investigated several basic

accepting powers and the hierarchies. We conclude this paper

by giving some open problems as follows.

1. For each k ≥ 2,

L[CS-4-DFA(k)c] � L[CS-4-NFA(k)c] ?

2. For each k ≥ 1, and each X∈{D,N}, L[CS-

SV4-XFA{0}(k)c]�L[CS-SV4-XFA{0}(k + 1)c], where

L[CS-SV4-XFA{0}(k)c] denote the class of sets of cubic

tapes over a one-letter alphabet which each sidelength
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of each input tape is equivalent accepted by CS-SV4-

XFA(k)c’s?

3. For n ≥4, g(n) < f(n)? (It is easy to show that for

1≤n≤3, g(n) = f(n).)
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