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Abstract—Before performing polymerase chain reactions (PCR), 
a feasible primer set is required. Many primer design methods have 
been proposed for design a feasible primer set. However, the majority 
of these methods require a relatively long time to obtain an optimal 
solution since large quantities of template DNA need to be analyzed. 
Furthermore, the designed primer sets usually do not provide a 
specific PCR product. In recent years, evolutionary computation has 
been applied to PCR primer design and yielded promising results. In 
this paper, a particle swarm optimization (PSO) algorithm is proposed 
to solve primer design problems associated with providing a specific 
product for PCR experiments. A test set of the gene CYP1A1, 
associated with a heightened lung cancer risk was analyzed and the 
comparison of accuracy and running time with the genetic algorithm 
(GA) and memetic algorithm (MA) was performed. A comparison of 
results indicated that the proposed PSO method for primer design finds 
optimal or near-optimal primer sets and effective PCR products in a 
relatively short time. 

Keywords—polymerase chain reaction (PCR), primer design, 
evolutionary computation, particle swarm optimization (PSO). 

I. INTRODUCTION

OLYMERASE chain reaction (PCR) is a common 
technology applied in the biomedical and biotechnology 

field. This technology is used for fast mass duplication of DNA 
sequences [1]. By repeating some cycles of the denaturation, 
annealing and extension reactions, it allows a small amount of 
DNA to be amplified exponentially. Typically 25–45 of these 
cycles are performed [2]. Amplification of specific regions of 
the genome is determined by specific primer sets with forward 
and reverse orientation. In the past, feasible primer sets were 
usually found manually through trial and error, but this method 
is time consuming, because many constraints have to be 
satisfied at the same time. Typically considered primer design 
constraints are the length of the primer, the GC content, the 
melting temperature and GC clamp. The length of primers 
should be within 16 bps~28 bps, while the difference of the 
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primer pair length should not exceed 3 bps. The GC content of 
primers should be within 40%~60%. The melting temperature 
of primers should be within the range of 50oC~62oC, while the 
difference of the melting temperature of a primer pair should 
not exceed more than 5oC. Finally, the 3’ end of primers should 
be G or C.  

In recent years, secondary structures were applied to primer 
design, such as dimer, hairpin and specificity of a primer pair. 
To date, various approaches for primer design have been 
proposed. Kämpke et al. (2001) use dynamic programming to 
design primers [2]. This allows for designing multiple primers 
for multiple target DNA sequences. Chen et al. (2003) used a 
GA to develop a web-based tool (PDA) for primer design [3]. 
Hsieh et al. (2003) developed an efficient algorithm using 
automatic variable fixing and automatic redundant constraint 
elimination to tackle the binary integer programming problem 
associated with the minimal primer set (MPS) selection 
problem [4]. Wang et al. employed a greedy algorithm to 
generate the MPS specifically annealed to all open reading 
frames (ORFs) in a given microbial genome to improve the 
hybridization signals of microarray experiments [5]. Wu et al.
(2004) proposed a genetic algorithm (GA) imitating nature’s 
process of evolution and genetic operations on chromosomes in 
order to achieve optimal solutions [6]. Miura et al. (2005) 
developed an algorithm identifies the specificity-determining 
subsequence (SDSS) of each primer and examines its 
uniqueness in the target genome [7]. Qu et al. (2009) developed 
MFEprimer program for evaluating the specificity of PCR 
primers based on multiple factors [8]. 

In this paper, an evolutionary algorithm for primer design 
with specific PCR product is proposed. The proposed algorithm 
is a particle swarm optimization (PSO). PSO is a 
population-based stochastic optimization technique, which was 
developed by Kennedy and Eberhart in 1995 [9]. PSO 
simulates the social behavior of organisms, such as birds in a 
flock or fish in a school, and describes an automatically 
evolving system. In PSO, each single candidate solution can be 
considered "an individual bird of the flock", that is, a particle in 
the search space. Each particle makes use of its own memory, 
as well as knowledge gained by the swarm as a whole to find 
the best (optimal) solution. All of the particles have fitness 
values, which are evaluated by an optimized fitness function. 
They also have velocities which direct the movement of the 
particles. During movement, each particle adjusts its position 
according to its own experience, and according to the 
experience of a neighboring particle, thus making use of the 
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best position encountered by itself and its neighbor. The 
particles move through the problem space by following a 
current of optimum particles. The process is then reiterated a 
predefined number of times or until a minimum error is 
achieved [10]. PSO was originally introduced as an 
optimization technique for real-number spaces. PSO has been 
successfully applied in many areas: function optimization, 
artificial neural network training, fuzzy system control, and 
other application problems. A comprehensive survey of the 
PSO algorithms and their applications can be found in Kennedy 
et al. [11]. 

Here, primer constraints, such as primer length, difference of 
primer pair length, GC proportion, PCR product size, melting 
temperature (Tm), difference of melting temperature (Tm-diff), 
GC clamp, dimer of primers (including cross-dimer and 
self-dimer), hairpin and specificity are used to design optimal 
primer sets. Different PCR product and different methods of 
calculating the melting temperature are performed to compare 
with genetic algorithm (GA) and memetic algorithm (MA) 
primer design algorithms using the gene CYP1A1, which has 
been associated with a heightened lung cancer risk, and the 
accession number is NM_000499, which is defined in NCBI as 
“Homo sapiens cytochrome P450, family 1, subfamily A, 
polypeptide 1 (CYP1A1), mRNA”. Experimental results 
indicated the proposed PSO for the primer design correctly and 
quickly identifies an optimal primer pair required for a specific 
PCR experiment. 

II. PROBLEM DEFINITION
In this section, we define the primer design problem. Let TD

be the template DNA sequence, which is made up of 
base-nucleic acid codes of the DNA. TD is defined as follows: 

}},G'',C'',T'',A''{|{ iBBT iiD (1)
where B  is the base-nucleic acid sequence, which is made 

up by ‘A’, ‘T’, ‘C’, or ‘G’; i  is the index of the position on TD

and is a positive integer (Z+).

The primer design problem consists of finding a pair of 
sub-sequences of corresponding constraints from TD. One 
sub-sequence is called the forward primer and the other is 
called the reverse primer. The forward primer and the reverse 
primer are defined as follows: 
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where Pf is the forward primer, and Fs and Fe denote the start 
index and the end index of Pf in TD. Pr is the reverse primer, Rs

and Re denote the start index and the end index of Pr in TD. Pf

and Pr are called a primer pair. B  represents an the anti-sense 
sequence of the original base-nucleic acid sequence. For the 
sequence, B = “ACGTCGAACGGT”, for example, the 

complement sequence is “TGCAGCTTGCCA”. Since the 
complement of ‘A’ is ‘T’ and the complement of ‘C’ is ‘G’. The 
anti-sense sequence is the reverse of the complement sequence; 
therefore the anti-sense sequence is B  = 
“ACCGTTCGACGT”.

In Fig. 1, the length of the template DNA is , the minimum 
PCR product length is , the maximum PCR product length is ,
the start position of the forward primer is Fs, the length of the 
forward primer is Fl, the PCR product length between the 
forward primer and the reverse primer is Pl, the length of the 
reverse primer is Rl, the random range of Fs is , and the length 
from Fs to the template DNA end is . Now, a vector with Fs, Fl,
Pl and Rl can determine a primer pair. We define this vector as: 

Pv = (Fs, Fl, Pl, Rl) (4) 

With Pv, we can calculate the reverse primer start index as: 

Rs = Fs + Pl Rl (5) 

Consequently, the forward primer and the reverse primer can 
be obtained from Pv. Pv is the prototype of a particle in the PSO, 
and later sections will use Pv to perform evolutionary 
computations. Table 1 gives a summary of all parameters in 
Fig. 1. 

Fig. 1 Parameters of the template DNA and primer set. 

TABLE I
LIST OF PARAMETERS IN FIG. 1

Parameter Description 

Fs Start position of the forward primer 
Fl Length of the forward primer 

Pl
PCR product length between forward primer and reverse 
primer 

Rl Length of the reverse primer 
Random range of Fs

Minimum PCR product length 
Maximum PCR product length 
Length from Fs to the template DNA end 
Length of template DNA 

Fs Start position of the forward primer 
Fl Length of the forward primer 

III. PARTICLE SWARM OPTIMIZATION FOR PRIMER DESIGN

The flowchart of the proposed algorithm is shown in Fig. 2. 
The processes of initial particle swarm, fitness evaluation, 
pbest and gbest finding, particle updating, and stopping criteria 
are described below.
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Fig. 2 PSO primer design flowchart 

A. Initial particle swarm
Initially, one hundred particles Pv = (Fs, Fl, Pl, Rl) are 

randomly generated as an initial particle swarm without 
duplicates. Fs is randomly generated between 1 and (   1). Fl

is randomly generated between the minimum length of the 
primer and the maximum length of the primer. In the present 
study, the minimum length of the primer was set to 16 bps and 
the maximum length of the primer was set to 28 bps. In order to 
limit the PCR product length, we did not select Pl = Re Fs 1,
but randomly generated Pl between  and . Rl was randomly 
generated in the same way as Fl. Each particle is given a 
velocity (v). The velocity of each particle is randomly 
generated within 0~1. 

B. Fitness evaluation
PSO requires a fitness function to evaluate the fitness of each 

particle in order to check whether the primers satisfy the design 
constraints. We use the primer design constraints as values for 
the fitness function and the fitness value is minimized. 

A primer length of 16 bps to 28 bps is considered feasible for 
a PCR experiment. If a primer is longer, its specificity is higher, 
but a relatively high Tm is also required. On the other hand, a 
relatively short primer will decrease the specificity. Hence, 
neither a primer that is too long nor too short is suitable. We do 
not include the length constraint in the fitness function, because 
Fl and Rl are always limited between the minimum length of the 
primer and the maximum length of the primer in the constraints. 
The fitness value is provided by the following fitness functions, 
which are made up of Lendiff(Pv), Tm(Pv), Tmdiff(Pv),
GCproportion(Pv), GCclamp(Pv), dimer(Pv), hairpin(Pv) and 
specificity(Pv), each of which is described below: 

Fitness(Pv) = 3 * (Lendiff(Pv) + GCproportion(Pv) + GCclamp(Pv))
                      + 10 * (Tm(Pv) + Tmdiff(Pv) + dimer(Pv)

+ hairpin(Pv) + 50* specificity(Pv))
 (6) 

Lendiff(Pv) is used to check whether the length difference of a 
primer pair exceeds 3 bps. A length difference no more than 3 
bps for the forward primer and the reverse primer is considered 
optimal in a PCR experiment. 

The Tm(Pv) function is used to check whether the melting 
temperature Tm of a primer pair is between 50oC and 62oC, and 
Tmdiff(Pv) checks whether the difference of the melting 
temperature exceeds 5oC.

In the paper, the melting temperatures of primers are 
calculated by two formulas. The first one is Wallace’s formula 
[12] and the other formula was proposed by Bolton and 
McCarthy [13]. The two computational formulas are: 
(a) Wallace’s formula: 

TmW(P) = (#G + # C) * 4 + (#A + #T) * 2 (7) 

(b) Formula proposed by Bolton and McCarthy: 

TmB(P) = 81.5 + 16.6 * (log10[Na+]) 
+ 0.41 * (GC content) – 675 / | P | (8)

where P represents a primer and | P | represents the length of P.

The GC proportion in a primer is denoted GC%(P), a value 
that indicates the ratio of the nucleotides G and C that appear in 
a primer. The GCproportion(Pv) function is used to check whether 
the GC%(P) of the forward and reverse primer is to lie in 
between a specific region. An appropriate GC proportion of a 
primer is in the range of 40-60%. 

The function GCclamp(Pv) is used to check whether the 3’ 
terminal end of a primer is G or C. 

Annealing of two primers (called a dimer) will influence the 
results of a PCR experiment. Consequently, the combination of 
two primers should be avoided. Dimers include cross-dimers 
and self-dimers. A cross-dimer is formed when Pf and Pr anneal 
to each other, and a self-dimer is formed when Pf and Pf, or Pr

and Pr anneal to each other. The function dimer(Pv) is used to 
check whether the forward primer and the reverse primer 
anneal to each other or anneal to themselves. 

A primer also should avoid annealing to itself. When a 
primer anneals to itself, it form a hairpin. The function 
hairpin(Pv) is used to check for this condition in a primer. 

Finally, the specificity(Pv) function is used to judge whether 
the primer repeats itself in the template DNA sequence or not; it 
thus ensures the specificity of the primer. The PCR experiment 
might fail if the primers are not annealed to specific region and 
appears more than once in the DNA sequence. We used the 
number of times of Pf and Pr appear in TD to adjust the fitness 
value; specificity(Pv) is thus defined as the number of times of 
Pf and Pr reappear in TD.

In the proposed fitness function, weights were used to 
discriminate between good and bad design constraint functions. 
Three weights represent different degrees of importance for the 
design constraint functions; these weights were set to 3, 10 and 
50, respectively. The weights 3, 10 and 50 were chosen 
according to the PCR experiment requirements; these weights 
can be adjusted by biologists and researchers based on their 
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own experimental requirements. A weight of 50 represents a 
design constraint function of major importance, and a weight of 
10 represents a design constraint function of a secondly 
importance. A weight of 3 represents a minor design constraint 
function. For example, consider Pv1 and Pv2 with the fitness 
function described above, for the Lendiff(Pv1) = 0, GCproportion(Pv1)
= 0, GCclamp(Pv1) = 0, Tm(Pv1) = 0, Tmdiff(Pv1) = 0, dimer(Pv1) = 
0, hairpin(Pv1) = 0 and specificity(Pv1) = 1. The fitness value is 
thus Fitness(Pv1) = 50. For Lendiff(Pv2) = 1, GCproportion(Pv2) = 2, 
GCclamp(Pv2) = 2, Tm(Pv2) = 0, Tmdiff(Pv2) = 0, dimer(Pv2) = 0, 
hairpin(Pv2) = 0 and specificity(Pv2) = 0, the fitness value is 
Fitness(Pv2) = 15. Although Pv1 is only deficient in 
specificity(Pv1) and Pv2 is deficient in the three parameters
Lendiff(Pv2), )( 2vproportion PGC  and GCclamp(Pv2), Fitness(Pv2) is 
better than Fitness(Pv1). Thus, the one deficiency in Pv1 affects 
the PCR experiment to a greater extent Pv2, and Pv2 is therefore 
the more feasible primer set for the PCR experiment. 

C. Pbest and gbest finding
One of the characteristics of PSO is that each particle has a 

memory of its own best experience. Each particle can find its 
personal best position and velocity (called as pbest) and the 
global best position and velocity (called as gbest) when 
moving. If the fitness of a particle Pv is better than the fitness of 
pbest in the previous generation, pbest will be updated as Pv in 
the current generation. And then if the fitness of a particle Pv is
better than gbest in the previous generation and is the best one 
in the current generation, gbest will be updated as Pv. Through 
pbest and gbest, each particle will adjust its appropriate 
direction in the next generation. 

D. Particle updating 
Each generation, the particles will change their position and 

velocity. Equation (9) and (10) are the updating formulas for 
each particle. 
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In equation (9) and (10), next
iv  is the updated velocity of the 

ith particle; now
iv  is the current velocity of the ith particle; c1

and c2 are the constriction factors; w is the inertial weight; 
rand( ) is a number which is randomly generated within 0~1; 

p
is  is the personal best position of the ith particle; g

is  is the 

global best position of the particles; now
is  is the current position 

of the ith particle; next
is  is the updated position of the ith

particle. In order to avoid the particle outrunning the limits of 
Fs, Fl, Pl and Rl when updating, we use a random process to 
reset the particle according to primer constraints. 

E. Stopping criteria 
The algorithm is terminated when the particles have 

achieved the best position, i.e. their fitness value is 0, or the 
number of generations has reached. 

IV. RESULTS AND DISCUSSION
In the recent years, primer design has become an important 

issue. The qualities of primers always influence whether a PCR 
experiment is successful or not. In this paper, we proposed a 
PSO algorithm to design an optimal primer set. The sequence 
of NM_000499 which is defined in NCBI as “Homo sapiens 
cytochrome P450, family 1, subfamily A, polypeptide 1 
(CYP1A1), mRNA” was tested with the proposed algorithm. 
The gene CYP1A1 has been associated with a heightened lung 
cancer risk. We use Pentium 4 CPU 3.4 GHz and RAM 1GB 
with Microsoft Windows XP SP3 as test environment.  

Five main parameters were set for the PSO; they are the 
number of iterations (generations), the number of particles, the 
inertial weight w, the constriction factors c1 and c2. Their values 
are set to 200, 10, 0.8, 2 and 2, respectively. We compare the 
proposed approach to GA and MA primer design. Four main 
parameters were set for the GA and MA; these parameters are 
the number of iterations, the population size, the probability of 
crossover and the probability of mutation. The respective 
values are 500, 100, 1.0 and 0.01 for GA and 100, 100, 1.0 and 
0.01 for MA. Owing to the local search mechanism of MA, it 
took more time than GA for primer design. For a fair 
competition, the parameters for GA and MA only have a 
difference of the number of iterations. The processing time 
under these circumstances was almost identical for GA and 
MA, and thus the accuracy results are directly comparable. 

Five hundred runs were performed with the three primer 
design methods, with PCR product length between 150~300 
bps, 500~800 bps and 800~1000 bps, and a Tm calculated by 
Wallace formula and Bolton and McCarthy formula (Table II). 
The average accuracy was perfect when using PSO with the 
Wallace formula for primer design, and as high as 98.33% 
when using MA with the Wallace formula for primer design. 
However, the average accuracy only got up to 74.93% when 
using the GA to design primer pairs with the same Tm formula. 
We also performed Tm calculations with the Bolton and 
McCarthy formula with the same primer restrictions for PSO, 
MA and GA primer design methods. When using Bolton and 
McCarthy formula, the average accuracy was 94.93% for PSO 
primer design, and 88.93% for MA primer design. However, 
the average accuracy obtained with the GA primer designed is 
even worse. 

From Table II, we can find that no matter accuracies or 
running times of the proposed approach for primer design with 
different product lengths are all better than MA and GA primer 
design. In the paper, we allow GA more iterations and running 
time approximate MA. We found the accuracies of using GA 
for primer design with specific PCR product still greatly lower 
than MA’s and PSO’s. The results indicate that primer design 
with specific PCR product using PSO and MA are excellent 
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methods and far superior to a GA. However, the best one is 
PSO.

GA was developed based on the Darwinian principle of the 
‘survival of the fittest’ and the natural process of evolution 
through reproduction [14]. The performance of GA has been 
shown to outperform SFS (sequential forward search), PTA 
(plus and take away) and SFFS (sequential forward floating 
search) [15]. Although GA is used in many applications, they 
don’t necessarily result in optimal solutions for all problems. 
The GA used in this study employs the fitness function 
mentioned above. GA is commonly employed in primer design, 
whereas the resulting accuracy is usually insufficient. Average 
accuracy for the Wallace formula and the Bolton and McCarthy 
formula were 74.93% and 32.40%, respectively. In conclusion, 
it can be said that GA lead to inferior solutions for primer 
design problems, especially when the Bolton and McCarthy 
formula is used to calculate Tm. 

MA can be described as GA that focuses on local search. A 
local search is performed on each population member to 
improve its experience when the initial population is created 
and the offsprings of crossover and mutation are subjected to a 
local search process. The local search is conducted by adding or 
subtracting an incremental value from every gene, and then 
testing the chromosome’s performance. In primer design, MA 
yielded higher accuracies. The average accuracies were 
98.33% and 88.93% when using the Wallace formula and the 
Bolton and McCarthy formula to calculate Tm, respectively. 
MA results in near-optimum solutions when applied to primer 
design, and are generally superior to GA when the processing 
time is in the same range. However, it is still not generally used 
in primer design problems. 

PSO is based on the idea of collaborative behavior and 
swarming in biological populations. PSO shares many 
similarities with evolutionary computation techniques like GA. 
PSO, MA and GA are population-based search approaches that 
depend on information sharing among their population 
members to enhance the search processes by using a 
combination of deterministic and probabilistic rules. However, 
PSO does not include genetic operators such as crossover and 
mutation. The recognition and social model of interaction 
between particles is similar to crossover and the random 
parameters will affect the speed of a particle, similarly to 
mutation in a GA or MA. In fact, the only different among them 

is that crossover and mutation in a GA or MA is probabilistic 
(crossover rate and mutation rate), but the renewed particle in 
PSO should be processed at each iteration without any 
probability. Compared with GA and MA, the information 
sharing mechanism in PSO is considerably different. In GA, the 
evolution is generated by using crossover and mutation in the 
same population. Chromosomes share information with each 
other, so the whole population moves like one group towards 
an optimal area. In the problem space, this model is similar to a 
search for only one area. Therefore, the drawback of this model 
is that it can easily trap into a local optimum. Although 
mutation is used, the probability usually is lower, limiting the 
performance. In MA, a local search mechanism is applied to 
avoid trap into a local optimum. It is better than GA to find the 
optimal solution, but it must take more time than GA. In PSO, 
particles are uniformly distributed in the problem space, and 
only gbest gives out information to other particles. It is a 
one-way information sharing mechanism. Evolution only looks 
for the best solution. In most cases all the particles tend to 
converge to the best solution quickly, even in the local version. 

Compared to GA, PSO has a more profound intelligent 
background and can be performed more easily [16]. 
Computation time used in PSO is shorter than in GA [17], 
needless to say MA. The performance of PSO is affected by the 
parameter settings, inertia weight w, and the acceleration 
factors c1 and c2. However, if the proper parameter values are 
set, the results can easily be optimized. Proper adjustment of 
the inertia weight w and the acceleration factors c1 and c2 is 
very important. If the parameter adjustment is too small, the 
particle movement is too small. This scenario will also result in 
useful data, but is a lot more time-consuming. If the adjustment 
is excessive, particle movement will also be excessive, causing 
the algorithm to weaken early, so that a useful feature set can 
not be obtained. Hence, suitable parameter adjustment enables 
particle swarm optimization to increase the efficiency of 
optimal primer design. 

The average accuracies were 100.00% and 94.93% when 
using the Wallace formula and the Bolton and McCarthy 
formula to calculate Tm with design different PCR product 
size, respectively. PSO produce near-optimum solutions when 
applied to primer design, and are superior to GA and MA when 
the processing time greatly less than GA and MA. 
Nevertheless, it is still covered up in primer design problems. 

TABLE II
THE ACCURACY AND RUNNING TIME FOR GA, MA AND PSO PRIMER DESIGN USING WALLACE FORMULA AND BOLTON AND MCCARTHY FORMULA WITH PCR

PRODUCT LENGTH BETWEEN 150 ~ 300 BPS, 500~800 BPS AND 800~1000 BPS. A, ACCURACY (%); T, RUNNING TIME (MS). BOLDFACE INDICATES HIGHEST 
VALUES

Wallace's formula Bolton and McCarthy formula Tm formula and primer 
design methods GA MA PSO GA MA PSO 
PCR product length a (%) t (ms) a (%) t (ms) a (%) t (ms) a (%) t (ms) a (%) t (ms) a (%) t (ms) 

150~300 bps 76.60 1179390 99.60 1167562 100.00 90032 30.80 1654391 88.20 1152250 95.40 778797
500~800 bps 72.39 1167531 97.80 1180594 100.00 86609 33.20 1746156 89.40 1201156 93.60 844063

800~1000 bps 75.80 1171125 97.60 1168875 100.00 90718 33.20 1653312 89.20 1242563 95.80 781938
average 74.93 1172682 98.33 1172344 100.00 89120 32.40 1684619 88.93 1198656 94.93 801599
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In this paper, PSO is proposed to design optimal primer sets, 
which can be correctly and efficiently applied to PCR 
experiments. The above results demonstrate that proposed 
approach is indeed design feasible primers in a dry dock 
analysis.

V. CONCLUSION
Primer design is important. It is the pre-action of PCR. The 

qualities of primers always influences whether a PCR 
experiment is successful or not. To date, many primer design 
approaches have been developed, but most of they are 
inefficient or do not design optimal primers for use in the PCR 
experiments. In this study, we designed optimal primer pairs 
using PSO, and performed primer constraints to appraise the 
fitness values, such as primer length, difference of primer pair 
length, GC proportion, PCR product length, melting 
temperature (Tm), difference of melting temperature 
(Tm-diff), GC clamp, dimer of primer pair (including 
cross-dimer and self-dimer), hairpin and specificity. Based on 
their significance, each constraint was given a corresponding 
weight. Through the design of a fitness function, feasible 
primer sets could always be found using the PSO algorithm.  

We use a test set of the gene CYP1A1, associated with a 
heightened lung cancer risk to design primers with different 
PCR product and Tm formulas using three evolutionary 
computation approaches which are the proposed approach 
PSO, GA and MA, respectively. The accuracy and running 
time of our proposed approach was compared with GA and 
MA primer design. A comparison of results indicated that the 
proposed PSO method for primer design finds optimal or 
near-optimal primer sets and effective PCR products in a 
relatively short time. And the primer design results show that 
different Tm calculation methods affect the size of the primer 
length and the melting temperature. Using Wallace formula 
for calculating Tm acquires a shorter primer length and lower 
temperature value, but using Bolton and McCarthy formula for 
calculating Tm yields longer primer lengths and a higher 
temperature value.  

In conclusion, this study applied PSO to design primers 
with specific PCR product lengths. The proposed approach is 
effective and takes relatively short time to design optimal 
primers. It can help biologists and researchers to effectively 
complete PCR experiments. 

APPENDIX

The results of PSO, MA and GA primer design for 
NM_000499 with 500 runs in Pentium 4 CPU 3.4 GHz and 
RAM 1GB with Microsoft Windows XP SP3 and parameters 
setting described in this paper can be download at 
ftp://pd@bio.kuas.edu.tw/PSO/PSO-primer-results.rar. 
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