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Periodic Solutions for a Delayed Population Model
on Time Scales
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Abstract—This paper deals with a delayed single population model
on time scales. With the assistance of coincidence degree theory,
sufficient conditions for existence of periodic solutions are obtained.
Furthermore, the better estimations for bounds of periodic solutions
are established.
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I. INTRODUCTION

TO study the control of a single population of cells,
Nazarenko [1] presented the following nonlinear delay

differential equation

x′(t) = −px(t) +
qx(t)

r + xn(t− τ)
, (1)

where all the coefficients are positive constants, n is a positive
integer, x(t) is the size of the population, p is the death rate
and the feedback is given by a delayed function.

Taking account of environmental periodic variation, Song
considered the nonautonomous differential equation in [2] as
follows

x′(t) = −p(t)x(t) +
q(t)x(t)

r + xn(t− τ(t))
. (2)

However, the discrete time models governed by difference
equations are more appropriate than the continuous ones when
the populations have non–overlapped generations. Discrete
time models can also provide efficient computational models
of continuous models for numerical simulations. Thus, the
discrete analogy of (2) was considered in [2–3]

x(k + 1) = x(k) exp{−p(k) +
q(k)

r + xn(k − τ(k))
}. (3)

For system (3), sufficient conditions for existence of periodic
solutions were obtained by using different inequality tech-
niques. It is not difficult to find that the methods and main
results in [2] and [3] are greatly similar. The calculus on time
scales, proposed by Stefan Hilger [4–5], obviously avoid the
repetitiveness.

In this paper, we mainly consider the dynamic equation on
time scales of the form

yΔ(t) = −p(t) +
q(t)

r + eny(t−τ(t))
, (4)
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where p(t) and q(t) are positive ω−periodic function on time
scale T. Set x(t) = ey(t), when the time scale T is R, system
(4) is equivalent to system (2); when T is Z, system (4) can
be reduced to system (3).

The aim of this paper is to establish the periodic solutions
of (4) and the approach is based on the continuation theorem
in coincidence degree theory, such as [6–7]. Furthermore, we
can get the sharp bounds and improve the existence criteria
for periodic solutions by the new inequality in [8].

The organization of this paper is as follows. In next section,
the basic definitions and theorems are given. In Section 3, we
establish our main results for periodic solutions by applying
the continuation theorem.

II. PRELIMINARIES

For convenience, we shall first recall some basic definitions
and lemmas about time scales which are used in what follows;
more details can be found in [5–6]. A time scale T is an arbi-
trary nonempty closed subset of real numbers R. Throughout
this paper, we assume that the time scale T is unbounded above
and below, such as R, Z and

⋃
k∈Z

[2k, 2k+1]. The following
definitions and lemmas about time scales are from [6].
Definition 2.1. The forward jump operator σ : T → T, the
backward jump operator ρ : T → T, and the graininess μ :
T → R

+ = [0,+∞) are defined, respectively, by σ(t) :=
inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t}, μ(t) =
σ(t) − t. If σ(t) = t, then t is called right-dense (otherwise:
right-scattered), and if ρ(t) = t, then t is called left-dense
(otherwise: left-scattered).
Definition 2.2. Assume f : T → R is a function and let
t ∈ T. Then we define fΔ(t) to be the number (provided
it exists) with the property that given any ε > 0, there is a
neighborhood U of t such that

|f(σ(t))−f(s)−fΔ(t)(σ(t)−s)| ≤ ε|σ(t)−s| for all s ∈ U.

In this case, fΔ(t) is called the delta (or Hilger) derivative of
f at t. Moreover, f is said to be delta or Hilger differentiable
on T if fΔ(t) exists for all t ∈ T. A function F : T → R is
called an antiderivative of f : T → R provided FΔ(t) = f(t)
for all t ∈ T. Then we define∫ s

r

f(t)Δt = F (s) − F (r) for r, s ∈ T.

Definition 2.3. A function f : T → R is said to be rd-
continuous if it is continuous at right-dense points in T and
its left-sided limits exist(finite) at left-dense points in T. The
set of rd-continuous functions f : T → R will be denoted by
Crd(T).
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Lemma 2.4. Every rd-continuous function has an antideriva-
tive.
Lemma 2.5. If a, b ∈ T, α, β ∈ R and f, g ∈ Crd(T),then
(a)

∫ b

a
[αf(t) + βg(t)]Δt = α

∫ b

a
f(t)Δt+ β

∫ b

a
g(t)Δt;

(b) if f(t) ≥ 0 for all a ≤ t < b, then
∫ b

a
f(t)Δt ≥ 0;

(c) if |f(t)| ≤ g(t) on [a, b) := {t ∈ T : a ≤ t < b}, then
| ∫ b

a
f(t)Δt| ≤ ∫ b

a
g(t)Δt.

Lemma 2.6 ([8]). Let t1, t2 ∈ Iω and t ∈ T. If g : T →
R ∈ Crd(T) is ω−periodic, then

g(t) ≤ g(t1) +
1

2

∫ k+ω

k

|gΔ(s)|Δs

and

g(t) ≥ g(t2) − 1

2

∫ k+ω

k

|gΔ(s)|Δs,

the constant factor 1
2 is the best possible.

For simplicity, we use the following notations throughout
this paper. Let T be ω-periodic, that is t ∈ T implies t+ω ∈ T,

k = min{R
+ ∩ T}, Iω = [k, k + ω] ∩ T,

ḡ =
1

ω

∫
Iω

g(s)Δs =
1

ω

∫ k+ω

k

g(s)Δs,

where g ∈ Crd(T) is an ω-periodic real function, i.e., g(t +
ω) = g(t) for all t ∈ T.

Now, we introduce some concepts and a useful result from
[9].

Let X,Z be normed vector spaces, L : DomL ⊂ X → Z
be a linear mapping, N : X → Z be a continuous mapping.
The mapping L will be called a Fredholm mapping of index
zero if dimkerL = codim ImL < +∞ and ImL is closed in
Z. If L is a Fredholm mapping of index zero and there exist
continuous projections P : X → X and Q : Z → Z such that
ImP = kerL, ImL = kerQ = Im(I − Q), then it follows
that L|DomL ∩ kerP : (I − P )X → ImL is invertible.
We denote the inverse of that map by KP . If Ω is an open
bounded subset of X , the mapping N will be called L-compact
on Ω̄ if QN(Ω̄) is bounded and KP (I − Q)N : Ω̄ → X is
compact. Since ImQ is isomorphic to kerL, there exists an
isomorphism J : ImQ→ kerL.

Next, we state the Mawhin’s continuation theorem, which
is a main tool in the proof of our theorem.
Lemma 2.7 (Continuation Theorem). Let L be a Fredholm
mapping of index zero and N be L-compact on Ω̄. Suppose
(a) for each λ ∈ (0, 1), every solution u of Lu = λNu is

such that u /∈ ∂Ω;
(b) QNu 	= 0 for each u ∈ ∂Ω ∩ kerL and the Brouwer

degree deg{JQN,Ω ∩ kerL, 0} 	= 0.
Then the operator equation Lu = Nu has at least one solution
lying in DomL ∩ Ω̄.

III. MAIN RESULTS

Theorem 3.1. If q̄ > rp̄, then system (4) has at least one
ω−periodic solution.
Proof Let X = Z =

{
y ∈ C(T,R) : y(t + ω) = y(t), ∀t ∈

T
}
, ‖y‖ = maxt∈Iω |y(t)|, y ∈ X( or Z).

Then X and Z are both Banach spaces when they are
endowed with the above norm ‖ · ‖.

Let
Ny = −p(t) +

q(t)

r + eny(t−τ(t))
,

Ly = yΔ(t),

and

Py = Qy =
1

ω

∫ κ+ω

κ

y(t)Δt.

Obviously, kerL = R, ImL =
{
y ∈ Y : ȳ = 0, t ∈

T
}
,dim kerL = 1 = codim ImL.
Since ImL is closed in Z, then L is a Fredholm mapping

of index zero. It is easy to show that P and Q are continuous
projections such that ImP = kerL and ImL = kerQ =
Im(I −Q). Furthermore, the generalized inverse (of L) KP :
ImL→ kerP ∩ DomL exists and is given by

KP y =

∫ t

κ

y(s)Δs− 1

ω

∫ κ+ω

κ

∫ t

κ

y(s)ΔsΔt.

Thus

QNy =
1

ω

∫ κ+ω

κ

(
−p(t) +

q(t)

r + eny(t−τ(t))

)
Δt,

and

KP (I −Q)Ny =

∫ t

κ

y(s)Δs− 1

ω

∫ κ+ω

κ

∫ t

κ

y(s)ΔsΔt

−
(
t− κ− 1

ω

∫ κ+ω

κ

(t− κ)Δt

)
ȳ.

Clearly, QN and KP (I − Q)N are continuous. Using the
Arzela-Ascoli theorem, it is not difficulty to prove that KP (I−
Q)N(Ω̄) is compact for any open bounded set Ω ⊂ X . In
addition, QN(Ω̄) is bounded. Therefore, N is L-compact on
Ω̄ with any open bounded set Ω ⊂ X .

Now, we shall search an appropriate open bounded subset
Ω for the application of the continuation theorem, Lemma 2.7.
For the operator equation Lu = λNu, where λ ∈ (0, 1), we
have

yΔ(t) = λ

(
−p(t) +

q(t)

r + eny(t−τ(t))

)
. (5)

Assume that y(t) ∈ X is a solution of (5) for some λ ∈
(0, 1). Integrating both sides of system (5) over Iω, we obtain

p̄ω =

∫ κ+ω

κ

q(t)

r + eny(t−τ(t))
Δt. (6)

Since y ∈ X , there exist ξ, η ∈ Iω , such that

y(ξ) = min
t∈Iω

{y(t)}, y(η) = max
t∈Iω

{y(t)}. (7)

In view of (6) and (7), we have

p̄ ≤ q̄

r + eny(ξ)
, p̄ ≥ q̄

r + eny(η)
,

that is
y(ξ) ≤ 1

n
ln

(
q̄

p̄
− r

)
,

y(η) ≥ 1

n
ln

(
q̄

p̄
− r

)
.
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Hence,

y(t) ≤ y(ξ) +
1

2

∫ κ+ω

κ

|yΔ(t)|Δt ≤ ln

(
q̄

p̄
− r

)
+ p̄ω := M,

y(t) ≥ y(η) − 1

2

∫ κ+ω

κ

|yΔ(t)|Δt ≥ ln

(
q̄

p̄
− r

)
− p̄ω := L.

Therefore, we can choose R1 such that any solution of (5)
satisfies

max
t∈Iω

|y(t)| ≤ max{|M |, |L|} := R1.

Clearly, R1 is independent of λ. Let R = R1 +R0, where
R0 is taken sufficiently large such that R0 ≥ | ln

(
q̄
p̄ − r

)
|.

Now, we consider the algebraic equations

p̄− q̄

r + eny
= 0, (8)

every solution y∗ of (8) satisfies ‖(y∗)‖ < R. Now, we define
Ω = {(y(t) ∈ X, ‖y(t)‖ < R}. Then it is clear that Ω verifies
the requirement (a) of Lemma 2.7. If y(t) ∈ ∂Ω∩kerL = ∂Ω∩
R, then y(t) is a constant vector in R with ‖y(t)‖ = |y| = R,
so we have QNy 	= 0.

By direct computation, we can obtain deg(JQN,Ω ∩
kerL, 0) = −1 	= 0. Now, we have proved that Ω satisfies
all conditions of Lemma 2.7. Thus, system (4) has at least
one ω−periodic solution in DomL ∩ Ω̄. This completes the
proof.

IV. CONCLUSION

This paper explores the existence of periodic solutions for
a single population model with time delay on time scales.
Our results indicate that the existence theorem for continuous
system (2) can carry over quite easily to its discrete counterpart
(3). Hence our results generalize the corresponding results of
[2–3]. Since there are many other time scales that not just the
set of real numbers R or the set of integers Z, we can also
obtain a much more general result of dynamic system (4) on
time scales.
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[5] Stefan Hilger. Analysis on measure chains–a unified approach to contin-
uous and discrete calculus. Results Math., 18(1990), 18–56.

[6] Martin Bohner, Meng Fan, Jiming Zhang. Existence of periodic solutions
in predator–prey and competition dynamic systems. Nonlinear Anal.
RWA, 7(2006), 1193–1204.

[7] Kejun Zhuang. Periodicity for a semi–ratio–dependent predator–prey
system with delays on time scales. Int. J. Comput. Math. Sci., 4(2010),
44–47.

[8] Bingbing Zhang, Meng Fan. A remark on the application of coincidence
degree to periodicity of dynamic equtions on time scales. J. Northeast
Normal University(Natural Science Edition), 39(2007), 1–3.[in Chinese]

[9] R E Gaines, J L Mawhin. Coincidence Degree and Nonlinear Differential
Equations. Lecture Notes in Mathematics, Berlin: Springer–Verlag, 1977.


