
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

451

Abstract—An application framework provides a reusable design

and implementation for a family of software systems. Frameworks
are introduced to reduce the cost of a product line (i.e., a family of
products that shares the common features). Software testing is a time-
consuming and costly ongoing activity during the application
software development process. Generating reusable test cases for the
framework applications during the framework development stage,
and providing and using the test cases to test part of the framework
application whenever the framework is used reduces the application
development time and cost considerably. This paper introduces the
Framework Interface State Transition Tester (FIST2), a tool for
automated unit testing of Java framework applications. During the
framework development stage, given the formal descriptions of the
framework hooks, the specifications of the methods of the
framework’s extensible classes, and the illegal behavior description
of the Framework Interface Classes (FICs), FIST2 generates unit-
level test cases for the classes. At the framework application
development stage, given the customized method specifications of
the implemented FICs, FIST2 automates the use, execution, and
evaluation of the already generated test cases to test the implemented
FICs. The paper illustrates the use of the FIST2 tool for testing
several applications that use the SalesPoint framework.

Keywords—Automated testing, class testing, FICs, FIST2,
object-oriented framework, object-oriented testing.

I. INTRODUCTION
N application framework provides a reusable design and
implementation for a family of software systems [1]. It

contains a collection of reusable concrete and abstract classes.
The framework design provides the context in which the
classes are used. The framework itself is not complete. Users
of the framework complete or extend the framework to build
their particular applications. Places at which users can add
their own classes are called hooks [2].

To build an application using a framework, application
developers create two types of classes: (1) classes that use the
framework classes, and (2) classes that do not. Classes that
use the framework classes are called Framework Interface
Classes (FICs) because they act as interfaces between the
framework classes and the second type of the classes created
by application developers. Fig. 1 shows the relationship
between the framework classes, the hooks, the FICs, and the
other application classes. FICs use the framework classes in
two ways: either by subclassing them or by using them

 Manuscript received July 3, 2007. Jehad Al Dallal is with Department of

Information Sciences, Kuwait University, P.O. Box 5969, Safat 13060,
Kuwait (e-mail: jehad@cfw.kuniv.edu).

without inheritance. Hooks define how to use the framework,
and therefore, they define the FICs and specify the pre-
conditions and post-conditions of the FIC methods. Froehlich
[3] provides a special purpose language and grammar in
which the hook description can be written. The hook
description includes the implementation steps and the
specifications (i.e., pre-conditions and post-conditions) of the
FIC methods.

Fig. 1 Framework application classes

Software testing is a critical and important stage of the

application software development life-cycle and it affects the
overall software quality. In a typical programming project,
approximately half of the effort is spent on testing activities
[4]. However, researchers commonly limit framework
reusability to only code and design. Extending the reusability
to test artifacts is expected to reduce the framework
application testing time and increase application quality.
Building reusable test cases for the framework application
during the framework testing stage increases the framework’s
development time and cost. However, there exists a high
probability that the original investment will be recouped after
producing a few framework applications. This investment
cannot be fully realized unless the reusable test cases are
effective and easy-to-use in testing the applications. Providing
the frameworks with reusable test cases is expected to make
the frameworks more marketable and provide encouragement
for software developers to use them.

The Framework Interface State Transition Tester (FIST2) is
a tool that supports the generation of the reusable class-level
test drivers (i.e., implementations of the test cases) for Java
framework applications at the framework development stage
and the use of the test drivers at the framework application
development stage. Hooks provide the specifications of the

Jehad Al Dallal

Testing Object-Oriented Framework
Applications Using FIST2 Tool: A Case Study

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

452

behaviors of the FICs. The provided specifications are
provided in terms of FIC method pre-conditions and post-
conditions. At the framework development stage, FIST2
automatically synthesizes the state-transition testing models
for the FICs and uses them to generate the reusable test
drivers. These test drivers cannot be applied at the framework
development stage because they are generated for classes that
do not exist at the framework development stage. When
application developers use FICs to implement their
applications, they deal with the specifications of the FICs
introduced by the hooks in three ways: (1) by using them as
defined, (2) by adding new specifications for the added
behaviors to meet the application requirements, and (3) by
ignoring the specifications for the behaviors that are
unnecessary in implementing the application requirements.
Therefore, at the framework application development stage,
FIST2 determines broken test drivers (i.e., test drivers that
cannot be run because of an ignored specification), test drivers
that can be applied as-is, and test drivers that have to be
augmented. Finally, the FIST2 tool augments the augmentable
test drivers, executes them along with the non-broken test
drivers, and evaluates the actual results of the test drivers as
“pass” or “no pass”.

This paper introduces the FIST2 tool and shows how it can
be used to generate reusable test drivers for SalesPoint
framework applications.

The paper is organized as follows. Section II discusses the
related work. Section III introduces the FIST2 tool. Section IV
introduces the SalesPoint framework and illustrates the use of
the FIST2 tool at the framework development stages. In
Section V, the use of FIST2 tool at the development stage of
several classes developed in applications that use SalesPoint
framework. Section VI provides conclusions and a discussion
of future work.

II. RELATED WORK
In object-oriented testing, each class in the system under

test has to be tested individually. Class testing is a unit testing
step with respect to application testing and the first level of
integration testing. At the class testing level, the method
responsibilities, intraclass interactions, and
superclass/subclass interactions are considered [5]. Research
in generating test cases to test an implementation at the class
level can be divided into two broad approaches: (1) generating
test cases from the source code to achieve a given level of
statement, branch, or path coverage; and (2) generating test
cases from the formal specifications of the implementation.
Testing techniques that follow the former approach are called
implementation-based testing techniques (sometimes referred
to as white box testing techniques), while testing techniques
that follow the latter approach are called specification-based
testing techniques (sometimes referred to as black box testing
techniques).

The specification of a class behavior can be expressed using
state-based models, such as finite state machines and UML

statecharts [5]. State-based specifications describe software in
terms of states and transitions. The state of an object of a class
is an abstraction that models a set of instance variable value
combinations that share some property of interest. Typically,
two special states have to be presented in any object state-
model: alpha and omega, to represent the states of the object
before construction and after destruction. A transition is an
allowable two-state sequence. Each transition can be
associated with: (1) an event (i.e., a call for a class method),
(2) a set of predicates, and (3) a set of expected actions. To
execute a transition, the object must be in the accepting state
of the transition, the event is executed, and the predicates
evaluate to true.

There are several state-based specification coverage criteria
proposed in the literature such as all-transitions [6], [7] and
[8], transition-pair [6], [7] and [9], full predicate [6], [9],
round-trip path [5], and all paths-state coverage criteria [10].
In software testing, it is necessary to develop oracles to
evaluate the actual results of the test cases as pass or no pass.
Recently, testing researchers have started to use an automatic
error checking mechanism called contracts [11], [12], [13],
[14], [15], and [16] as a substitute for hard-coded test oracles.
Contracts are used to specify the pre-conditions and post-
conditions of the class methods and the class invariants.
Method pre-conditions are the conditions that must be true
before the method can be executed. Method post-conditions
are the conditions that must be true after the method has been
executed. Class invariants are the conditions that must exist
for all methods. Contracts are used at run-time to detect
software defects.

There are several tools introduced to support the
specification-based testing and the use of the contracts.
Jcontract [14] and iContract [16] are tools used to evaluate test
cases generated for Java programs using Design-by-Contract
(DbC) contracts. In [15], Java Modeling Language JML [17]
and [18] is integrated with the Junit framework [19] to test
Java methods. JML is also used in the Korat framework [12],
where method specifications are used to generate test drivers
for Java methods automatically and to check the correctness of
the outputs. JTest [20] is a tool that uses DbC contracts to
generate test drivers for Java methods automatically and to
check the correctness of the outputs. In [21], the VDM-SL
specification is used to generate black box test drivers and
CORBA-supported VDM oracles for CORBA-compliant
programming languages. Finally, in [22], a JFramework
testing environment is introduced to support testing Java
frameworks using hooks. JFramework synthesizes extended
FSM testing models and different implementations of the FIC
methods from the hook descriptions, generates framework test
drivers, and executes and evaluates them.

Several research studies focused on testing framework
applications, including [23], [24], and [25]. None of proposed
testing techniques is automated. In [23], it is suggested that
the testing of framework applications should be based on
system requirements. The new classes and objects developed
by the application developer must be individually tested.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

453

Moreover, cluster testing should be applied to verify that the
developer objects are making correct use of the framework
code. In this step, the framework test suite could be extended
to test the application extensions. Binder neither suggests a
specific methodology that makes use of the framework test
suite to test the applications at the class or cluster level nor
provides a discussion on which framework test suite can be
extended or how a framework test suite can be extended. In
[24], issues of testing applications developed with design
patterns using object-oriented frameworks are discussed. It is
suggested that framework developers test that the extensible
patterns allow the application developer to extend its
functionality. The application designers should verify that the
extension points are properly coded and tested. The proposed
testing techniques are limited to cluster-level testing. Finally,
in [25], it is proposed to provide the framework with reusable
test cases that can be applied during the application
development stage. However, these test cases are limited to
testing whether the inherited framework features work
correctly in the context of the application classes that inherit
them and do not address testing the features of the application
classes.

III. THE FIST2 TOOL
FIST2 is a tool that supports the generation of the reusable

test drivers for Java framework FICs during the framework
development stage. It also deploys, executes, and evaluates the
test drivers at the application development stage.

A. Framework Development Stage
At the framework development stage, the FIST2 tool

supports the generation of the reusable test drivers for Java
framework FICs. The tool semi-automates the construction of
the state-transition tables for the FICs, checks the correctness
of the tables, and generates reusable test drivers using the all
paths-state technique.

Fig. 2 shows the high-level design of the tool when used at
the framework development stage. The user (typically the
framework developer in a test case generation role) selects the
framework. The framework is stored in a database that
contains the framework code and the descriptions of the
hooks. The tool passes the hook descriptions to the FIC state-
transition table-builder module. The FIC state-transition
table-builder module parses the pre-conditions and post-
conditions of the FIC methods, analyzes them, and produces
the state-transition table for the FIC. The framework
developer can edit the generated table to add the code required
to satisfy the predicates of the transitions and to add the non-
event-driven transitions. The tool translates the tabular form
of the state-transition model into a text and stores the text in a
file in the framework database. The user can use the Model
Checker module of the FIST2 tool to check the correctness of
the model in terms of connectivity and usability in building
the test drivers.

Fig. 2 The high-level design of FIST2 tool (framework development

stage)

The all paths-state test drivers builder component of the
FIST2 tool uses the state-transition table to generate the all
paths-state test drivers and associates the test driver identifiers
with the model transitions. In addition, it uses the hook
descriptions to determine and generate the stubs required at
the application testing stage to isolate the FICs. The test
drivers and stubs are stored in the framework database and
provided to the user. In the FIST2 tool, the all paths-state
technique [10] is used because it generates test drivers such
that if some of them are broken at the application development
stage because of ignored specifications, the remaining test
drivers will cover the used specifications. Therefore, it
eliminates the need for building test drivers from scratch to
test specifications that are introduced at the framework
development stage.

B. Application Development Stage
At the application development stage, the FIST2 tool

supports the use of the reusable test drivers generated during
the framework development stage for Java framework FICs.
The tool interacts with the Hook Master tool to construct the
updated state-transition tables for the FICs, checks the
correctness of the tables, determines the reusable test drivers,
augments some reusable test drivers, and generates new test
drivers to test new specifications. It then executes the test
drivers and evaluates their results.

Fig. 3 shows the high-level design of the tool when used at
the application development stage. The tester selects the
framework stored in a database that contains the framework
code, the FIC state-transition tables, and the reusable test
drivers. The user uses Hook Master to semi-automate the
implementation of the FICs. Hook Master comments on the
Java code of the hook methods with the corresponding pre-
conditions and post-conditions specified in the hook
description. The pre-conditions and post-conditions are

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

454

written in the DbC language [13]. The user can add new code
and specifications in DbC to the Java code to complete the
implementation of the FIC. Hook Master also produces the
method-name-mapping table that maps the methods defined in
the hooks to the ones implemented in the FIC.

Fig. 3 The high-level design of FIST tool (application development

stage)

The FIST2 tool gets the used FIC methods and the new
methods from Hook Master to update the FIC state-transition
tables using the FIC state-transition table updater module. The
user can use the Model Checker module of the FIST2 tool to
check the correctness of the table. The tool stores the updated
table and passes it, along with the reusable test drivers, to the
Application test drivers builder module, which detects broken
test drivers, augments some reusable test drivers, and
generates new ones to test the new specifications not covered
in the augmented test drivers. In addition, the Application test
drivers builder module generates a driver class for the test
drivers and uses the method-name-mapping table generated by
Hook Master to generate the FIC mapping class. The
Application test drivers builder module also produces the
necessary stubs. The generated classes and test drivers are
stored in the application database.

The Test driver executer module of the FIST2 tool compiles
the test drivers and the implemented FICs using the dbc_javac
compiler of the Jcontract tool [14]. The Jcontract compiler
checks the DbC specifications in the Javadoc comments,
generates instrumented .java files with extra code to check the
contracts (i.e., pre-conditions and post-conditions) in the
Javadoc comments, and compiles the instrumented .java files
with the javac compiler. The resulting .class files are
instrumented with extra bytecodes to check the contracts at
runtime. Other classes, such as the mapping class and the
driver class, are compiled using the regular Java compiler.
Finally, the FIST2 tool executes the test drivers and uses the
Jcontract tool to check the contracts automatically at runtime
and report any violations found.

IV. GENERATING REUSABLE TEST DRIVERS FOR THE
SALESPOINT FRAMEWORK

SalesPoint [26] is a framework written in Java and
developed to create point-of-sale simulation applications, such
as a ticket vending machine application or a big supermarket
(i.e., with many departments) application. The framework
supports the management of relations between the business,
the customers, and administrative tasks like accounting. The
SalesPoint framework consists of 161 classes; it comes with
hooks that describe the behavior of 78 FICs and show how
they can be implemented or customized.

In this case study, it is found that only 20 FICs of the 78
FICs introduced by the framework hooks were used in the
considered framework applications. The testing models of the
20 FICs consist of a total of 70 states and 1,226 transitions,
including 326 transitions for illegal behavior of the FICs. In
this paper, we show the use of the FIST2 tool in generating the
test drivers for a FIC example named NewShop, which has to
be implemented in each application.

A. Generating Test Drivers for NewShop FIC
NewShop FIC is a class defined in the SalesPoint

framework hooks to extend the Shop SalesPoint framework
class. Shop is responsible for central management tasks and
persistence. It consists of 44 public methods that operate on
21 instance variables. SalesPoint framework hooks, which
define NewShop class, describe how to use 12 of the Shop
class methods and do not introduce any additional methods for
the NewShop class. The hooks specify the name of the FIC
(i.e., NewShop), the names of the methods, the method
parameters, and the method specifications. The FIST2 tool
parsed the hook descriptions and the Shop method
specifications written in DbC and synthesized the state-
transition testing model table, which consists of 5 states,
including the alpha and omega states and 118 transitions. The
table was shown to the user (see Fig. 4) who added the
implementations required for the predicates and 41 transitions
required to specify the behavior of the class due to illegal
events. Then, the tool generated the test drivers according to
all paths-state testing technique. The test drivers use the
names of the FIC and the methods introduced by the hooks.

Fig. 5 shows a test driver example generated by the tool.
Each test driver is a class that subclasses the “virtual”
NewShop class. The test driver class contains only a
constructor method in which a state-transition model path is
traversed according to the all paths-state testing technique. For
each traversed transition in the path, the generated code
included the required implementation for the transition
predicates, the call for the method associated with the
transition, and the DbC Javadoc comments used at run time to
check that the actions were performed correctly and the
reached state (in terms of instance variable values) was as
expected. Finally, the tool associated with each transition in
the model the IDs of the test driver classes that traverse the
transition and stored the table and the test drivers in the
SalesPoint framework database.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

455

Fig. 4 Part of the state-transition table generated for the NewShop

FIC

Fig. 5 Sample test driver generated for the NewShop FIC

V. TESTING FICS IN SALESPOINT FRAMEWORK APPLICATIONS
USING FIST2

Several SalesPoint application classes developed by
second-year undergraduate students were randomly selected in
this case study. At the application development stage, there
were several problems to be solved. This section illustrates the
problems and their proposed solutions. In addition, examples
are used to show how the FIST2 tool is used to test selected
application classes.

A. Implementing FICs
Considered applications were not developed using the

introduced tool. However, we show, in the following example,
a simulation development process using the tool. In the
FastFood System application, when the Hook Master tool was
used to create a NewShop class, the class was named
FastFood. The developer interacted with the tool to override
two introduced methods and to extend the constructor method.
In this example, except for the constructor method, the user
did not change the names of the methods introduced by the
hooks. Since the FastFood class extends the Shop class, the

FastFood class inherits all none overridden Shop class
methods. Table I shows the mapping between the names of the
implemented methods in the FastFood class and the names of
the methods introduced by the hooks. The contents of Table 1
are stored to be used by the FIST2 tool. When Hook Master
generated part of the FastFood class code using the
implementation steps provided in the SalesPoint framework
hooks, it instrumented the method specifications provided by
the hooks into the generated code as DbC Javadoc comments.
Finally, the application developer customized some of the
FastFood class methods generated by the Hook Master tool,
added some DbC post-conditions for the customized methods,
added one method to the FastFood class, and added the DbC
pre-conditions and post-conditions for the added method.

TABLE I

METHOD NAME MAPPING TABLE FOR FASTFOOD CLASS
Method declaration in
SalesPoint framework

hooks
Method declaration in the

FastFood class
NewShop() FastFood()
createShopMenuSheet() createShopMenuSheet()
quit() quit()

B. Using Test Drivers
After implementing the FIC, the FIST2 tool uses some or all

the reusable FIC test drivers provided with the framework. To
make the test drivers ready for use, the FIST2 tool tackles
several problems. The following examples discuss the
problems and explain the solution techniques.

1) Tackling the ignored specification problem
Application developers have the flexibility to ignore FIC

specifications introduced by the hooks if these specifications
are unnecessary in implementing the application requirements.
The transitions that model the ignored specifications have to
be removed from the FIC state-model. The all paths-state
coverage technique produces test cases such that if a transition
is removed, and therefore, test cases are broken, the remaining
test cases still cover the remaining used transitions. Therefore,
no test cases should have to be created to test any of the
reused transitions.

To use the FIST2 tool for testing the FastFood class, the
contents of the method name mapping table, the implemented
FastFood class, and the state-transition table created at the
framework development stage for the NewShop “virtual”
class were provided. FIST2 used the contents of Table 1 to
determine the reused transitions. All ignored transitions have
to be removed. In addition, all unreachable states from alpha
state have to be removed along with the transitions linked to
them. This results in 5 states and 159 transitions in the state-
transition model of the FastFood class. In this example as well
as all implemented FICs in all the selected applications in the
case study, none of the introduced transitions for the
NewShop class were ignored. If some transitions were
ignored, all test driver IDs associated with the removed

public class TEST6_NewShop{
 public TEST6_NewShop(){
 /* Test transition: source state: Alpha, sink state: s1, event:

NewShop()*/
 NewShop o = new NewShop();
 /** @assert(o.getShopState()==o.DEAD) */

 /* Test transition: source state: s1, sink state: s2, event:

start()*/
 o.start();
 /** @assert(o.getShopState()==o.RUNNING) */

 /* Test transition: source state: s2, sink state: s3, event:

suspend()*/
 o.suspend();
 /** @assert(o.getShopState()==o.SUSPENDED) */

 /* Test transition: source state: s3, sink state: s2, event:

resume()*/
 o.resume();
 /** @assert(o.getShopState()==o.RUNNING) */
 }
}

transitions

states

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

456

transitions would have to be removed from the list of test
driver IDs associated with the remaining transitions. The set
of test driver ID lists associated with the remaining transitions
is the set of the reusable test drivers. All other test drivers
cannot be used in testing the implemented class. This shows
how the problem of finding and removing broken test drivers
is solved.

2) Tackling the method renaming problem
One of the problems in reusing the test drivers is that the

test drivers use the method names shown in the first column of
the method name mapping table, while the actual
implementation to be tested uses the method names shown in
the second column of the table. To solve this problem, the
FIST2 tool generates a Java class that has the same name as
the FIC class defined in the hooks. In the Pizza Shop system,
one of the SalesPoint framework applications, the application
developer implemented a FIC called NewCatalogItem and
named the implemented class Order. For the Order class
example, the FIST2 tool generated the NewCatalogItem class,
shown in Fig. 6. This class inherits the implemented class (i.e.,
Order class) and maps the methods introduced by the
SalesPoint framework hooks to the ones used in the actual
implementation of the class using the contents of the method
name mapping table. For example, when the application
developer implemented the Order class, the constructor
method was renamed to match the name of the new class
name. Therefore, when test drivers call up the
NewCatalogItem constructor method, the Order constructor
method should be called up as well. The renaming problem
seems not to be a problem for constructor methods, because in
Java, for example, the constructor method of the superclass
can be always invoked using the keyword super regardless of
the superclass name. However, the problem has to be solved
as illustrated above when methods other than the constructor
method are renamed. No example for the latter case was found
in any of the SalesPoint framework applications because
SalesPoint framework hooks do not introduce any new
methods for the FICs.

Fig. 6 NewCatalogItem class generated by FIST2 tool

3) Tackling the different implementations of a FIC method
problem

In some cases, the application developer can decide to have
different implementations for a method introduced by the
hooks. These different implementations have common pre-
conditions and post-conditions introduced by the hooks
because they are constructed using the same hooks. The
different implementations can have the same method name but
different parameters, or they can have the same parameters but
different method names.

To test the different implementations, the test drivers that
test the method should be exercised as many times as the
number of implemented versions of the method. To do so,
FIST2 builds a SwitchKey class to keep track of the order of
the version to be called when the test driver is exercised. The
code of the SwitchKey class is shown in Fig. 7. For example,
the application developer of the Pizza Shop system
implemented two versions of the constructor method of the
NewCatalogItem class. In the first version, one parameter was
added to the constructor method introduced by the hook,
while in the other version, the constructor method parameter
was removed. Therefore, the following code is included in the
NewCatalogItem class, as shown in Fig. 6:

 public NewCatalogItem(String st)

{
 switch (SwitchKey.getSwitchKey().getSwitchkey())

{
 case 1:super(st, new Customer()); break;
 case 2:super(); break;

 }
}

Fig. 7 SwitchKey class generated by FIST2 tool

In this case, as shown in Fig. 8, before executing the test

driver, the driver of the test drivers has to set the SwitchKey
to decide which constructor method is to be called.

public class NewCatalogItem extends Order {
 public NewCatalogItem(String st) {
 switch (SwitchKey.getSwitchKey().getSwitchkey()) {
 case 1:super(st, new Customer());
 break;
 case 2:super();
 break;
 }
 }
 public CatalogItemImpl getShallowClone() {
 return super.getShallowClone();
 }
}

public class SwitchKey {
 private static SwitchKey SwKey;
 private int switchKey;
 public SwitchKey() {
 switchKey=1;
 SwKey=this;
 }
 public static SwitchKey getSwitchKey() {
 return SwKey;
 }
 public void setSwitchkey(int sk) {
 switchKey=sk;
 }
 public int getSwitchkey() {
 return switchKey;
 }
}

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

457

4) Tackling the method parameter update problem
Application developers have the flexibility to add or

remove parameters from the parameter list of the FIC methods
introduced by the hooks as long as they do not change the pre-
conditions and post-conditions introduced in the hooks. When
an application developer removes one or more parameters
from the implemented version of the method introduced by a
hook, the unused parameters are just ignored at the time the
test drivers invoke the method introduced by the hook. For
example, when Order class was implemented, in one version
of the implemented constructor method, the parameter of the
implemented constructor was removed. In the implementation
of the constructor method, the application developer decided
to pass the parameter value hard-coded when super method
was called as follows:
public class Order extends CatalogItemImpl {
 public Order() {
 super("0000");
 … }
 …}

In this case, as shown in Fig. 6, the NewCatalogItem class
generated by the FIST2 tool just ignored the parameter value
passed to the constructor method of the class when the Order()
method was invoked using the keyword super.

When the application developer adds more parameters to
the parameter list of a method introduced by a hook, the
application developer has to pass a hard-coded value to the
added parameters when the method is invoked in the class that
inherits the implemented class. For example, when the Order
class was implemented, in one version of the implemented
constructor method, one parameter was added. Therefore,
when the constructor method that has the additional parameter
is invoked, a value was passed to the additional parameter, as
shown in Fig. 6. The application developer has to determine
the values to be passed on to such parameters. If more than
one test value has to be exercised, the application developer
has to find the test drivers that invoke the method and execute
them with the other test values of the parameter.

5) Tackling the test driver augmentation problem
Application developers have the flexibility to add new

methods to the implemented FICs. These methods are not
tested by the reusable test drivers, and therefore, they have to
be tested using augmented test drivers or new test drivers
created from scratch. We have identified two different effects
of the added methods on the state-transition model of the FIC
generated by FIST2 at the framework development stage. The
first effect is adding a transition to the model between two
existing states. The other effect is adding states and transitions
between them or between the existing states and the new ones.

The first effect requires simple augmentation. FIST2
generates a round-trip path tree [5] for the new model,
associates the unbroken test driver IDs linked to the
transitions to the corresponding tree links, and finds the
uncovered tree links. If an uncovered transition is directly
linked to the alpha state, the tool generates test drivers from

scratch for all round-trip paths that pass through the
uncovered transition and marks all used transitions in the
round-trip paths as covered. On the other hand, if the
uncovered transition is not directly linked to the alpha state
(i.e., there are some transitions covered in the reusable test
drivers in the paths between the alpha state and the source
state of the uncovered transition), the tool augments a test
driver so that its ID is associated with a covered transition that
has the same sink state as the source state of the uncovered
transition. The tool repeats this covering algorithm until all
new transitions are covered in the test drivers.

The augmentation of the test drivers to cover a transition
added between existing states in the table generated at the
framework development stage is called simple augmentation.
This is mostly because the test drivers are augmented by just
adding a call to the new method at some point in the test
driver code. On the other hand, the test driver augmentation
pre-formed to cover the transitions between added states and
existing states is called complex augmentation. This is
because considerable lines of codes have to be added to the
test drivers to cover such transitions.

The developer of the Pizza Shop system added 11 methods
to the Order class (i.e., the implemented version of the
NewCatalogItem FIC). The FIST2 tool used the DbC
specifications of the added methods to update the class testing
methods and used the updated model to generate the test
drivers to test the added methods. In this example, all the
methods were covered by the simple augmentation of some of
the reusable test drivers.

6) Invoking test drivers
Finally, the FIST2 tool generates a driver class for the test

drivers. The driver invokes the constructor methods of the
non-broken reused as-is, augmented, and new test drivers that
test the implemented FIC. Part of the driver class for the Order
test drivers is shown in Fig. 8. If the class that inherits the
implemented class uses the SwitchKey class, the driver class
of the test drivers creates an instance of the SwitchKey class
and sets the key value whenever needed. In our example, the
NewCatalogItem class uses the SwitchKey class, as shown in
Fig. 6. Therefore, as shown in Fig. 8, an instance of the
SwitchKey class is created. The tool searches for the test
drivers associated with the transitions that invoke methods
implemented in different versions and increments the
SwitchKey value each time before invoking them. For the
Order class example, the tool found that all the test drivers
invoked the constructor methods. Since there are two versions
of the constructor method in the implemented FIC (i.e., Order
class), all the test drivers have to be invoked twice: one after
setting the switchKey to “1” and one after setting it to “2”.
Initially, the switchKey is set to “1”, as shown in Fig. 7, and
therefore, no explicit statement is required to set it to “1”.

After determining the reusable test drivers and augmenting
some of them, the FIST2 tool compiled the Order class and the
test drivers using the Jcontract compiler, which translated the
DbC Javadoc comments into bytecode to check the contracts.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

458

Other classes, such as NewCatalogItem, SwitchKey, and the
driver class, were compiled using a typical Java compiler.
Finally, the tool executed the driver class and the Jcontract
tool checked the contracts at runtime and reported the testing
results.

Fig. 8 Part of the DRIVER_ORDER class generated by FIST2 tool

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced a tool to support testing

framework applications. The tool generates reusable test
drivers for the FICs at the framework development stage.
Moreover, the tool effectively uses the reusable test drivers at
the framework application development stage to test the
implemented FICs. The tool uses the method specifications
provided in the hook descriptions or provided by the
framework or application developers to build the testing
models for the FICs and to check the correctness of the FICs
at runtime.

The tool was used to generate reusable test drivers at the
development stage of the SalesPoint framework. It was also
used to reuse the test drivers for testing the implemented FICs
in several SalesPoint framework applications.

In future, we plan to study the relationship between the size
of the portion of the framework applications tested using the
reusable test cases and the intersection area between the
domains of the framework and the applications. Our
preliminary results showed that the size increases as the
intersection area between the domains of the framework and
the application increases and vice versa.

REFERENCES
[1] K. Beck and R, Johnson, 1994. Patterns generated architectures, Proc.

of ECOOP 94, 139-149.
[2] G. Froehlich, H.J. Hoover, L. Liu, and P.G. Sorenson, May 1997.

Hooking into Object-Oriented Application Frameworks, Proc. 19th Int'l
Conf. on Software Engineering, Boston, 491-501.

[3] G. Froehlich, 2002. Hooks: an aid to the reuse of object-oriented
frameworks, Ph.D. Thesis, University of Alberta, Department of
Computing Science.

[4] K. Saleh, A. Boujarwah and J. Al-Dallal, Jan 2002, "Anomaly detection
in concurrent Java programs using dynamic data flow analysis", Journal
of Information and Software Technology, Vol. 44, no 1, pp. 53-61.

[5] R. Binder, 1999. Testing object-oriented systems, Addison Wesley.

[6] T. Chow, 1978, Testing software design modeled by finite state
machines, IEEE Transactions on Software Engineering, EE-4(3), 178-
187.

[7] J. Offutt and A. Abdurazik, October 1999, Generating tests from UML
specifications, Second International Conference on the Unified
Modeling Language (UML99), Fort Collins, CO, 416-429.

[8] K. Bogdanov and M. Holcombe, 2001, Statechart testing method for
aircraft control systems, Software Testing, Verification and Reliability,
11(1), 39-54.

[9] A. Abdurazik, P. Ammann, W. Ding, and J. Offutt, September 2000,
Evaluation of three specification-based testing criteria, Sixth IEEE
International Conference on Engineering of Complex Computer Systems
(ICECCS '00), Tokyo, Japan, 179-187.

[10] J. Al Dallal, 2002, Class-based testing of object-oriented framework
interface classes, Ph.D. Thesis, University of Alberta, Department of
Computing Science.

[11] L. Briand, Y. Labiche, and H. Sun, July 2002, Investigating the use of
analysis contracts to support fault isolation in object-oriented code,
International Symposium on Software Testing and Analysis ISSTA,
Rome, Italy.

[12] C. Boyapati, S. Khurshid, and D. Marinov, Korat, July 2002: Automated
Testing Based on Java Predicates, International Symposium on Software
Testing and Analysis ISSTA, Rome, Italy.

[13] B. Meyer, 1992, Design by contracts, IEEE Computer, Vol. 25(10), 40-
52.

[14] Jcontract, July 2006, http://www.parasoft.com/jsp/products/home.jsp?
product= Jcontract, ParaSoft Corporation.

[15] Y. Cheon and G. Leavens, June 2002, A simple and practical approach
to unit testing: the JML and JUnit way, Proc. of the 16th European
Conference on Object-Oriented Programming (ECOOP2002), pp. 231-
254.

[16] iContract: the Java Design-by-Contract tool, July 2006,
http://www.javaworld.com/javaworld/jw-02-2001/jw-0216-
cooltools.html.

[17] G. Leavens, A. Baker, and C. Ruby, 1999, JML: a notation for detailed
design. In H. Kilov, B. Rupe, and I. Simmonds, editors, behavioral
specifications of Businesses and Systems, chapter 12, Kluwer, pp. 175-
188.

[18] G. Leavens, A. Baker, and C. Ruby, August 2001, Preliminary design of
JML: a behavioral interface specification language for Java, TR 98-
06p, Iowa State University, Department of Computer Science.

[19] Junit, July 2006, http://junit.sourceforge.net/.
[20] Jtest, July 2006, http://www.parasoft.com/jsp/products/home.jsp?

product=Jtest, ParaSoft Corporation.
[21] P. Fenkam, H. Gall and M. Jazayeri, September 2002, Constructing

corba-supported oracles for testing: a case study, Proc. of the 17th IEEE
International Conference on Automated Software Applications
(ASE’02), Edinburgh, UK, pp. 129-138.

[22] J. Al Dallal and P. Sorenson, September 2002, System testing for object-
oriented frameworks using hook technology, Proc. of the 17th IEEE
International Conference on Automated Software Applications
(ASE’02), Edinburgh, UK, pp. 231-236.

[23] R. Binder, August 1996. Testing for reuse: libraries and frameworks,
Object Magazine, 77-80.

[24] W. Tsai, Y. Tu, W. Shao, and E. Ebner, October, 1999. Testing
extensible design patterns in object-oriented frameworks through
scenario templates, 23rd Annual International Computer Software and
Applications Conference, Phoenix, Arizona, pp. 166-171.

[25] Y. Wang, D. Patel, G. King, I. Court, G. Staples, M. Ross, and M.
Fayad, March 2000, On built-in test reuse in object-oriented framework
design, ACM Computing Surveys (CSUR), Vol. 32(1es), pp. 7-12.

[26] The SalesPoint framework v2.0 homepage, July 2006, http://www-
st.inf.tu-dresden.de/SalesPoint/v3.0/.

Jehad Al Dallal received his B.Sc. and M.Sc. in degrees in Computer
Engineering from Kuwait University in Kuwait in 1995 and 1997,
respectively. He received his PhD degree in Computer Science from
University of Alberta in Canada in 2003.

He is currently working at Kuwait University, Department of Information
Sciences as an Assistant Professor. His research interests include software
testing and software analysis.

public class DRIVER_ORDER{
 public static void main(String args[]){
 SwitchKey k=new SwitchKey();
 new TEST1_NewCatalogItem();
 new TEST2_NewCatalogItem();
 …
 k.setSwitchkey(2);
 new TEST1_NewCatalogItem();
 new TEST2_NewCatalogItem();
 …
 }
}

