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Abstract—In inspection and workpiece localization, sampling
point data is an important issue. Since the devices for sampling
only sample discrete points, not the completely surface, sampling
size and location of the points will be taken into consideration.
In this paper a method is presented for determining the sampled
points size and location for achieving efficient sampling. Firstly,
uncertainty analysis of the localization parameters is investigated. A
localization uncertainty model is developed to predict the uncertainty
of the localization process. Using this model the minimum size of
the sampled points is predicted. Secondly, based on the algebra
theory an eigenvalue-optimal optimization is proposed. Then a free-
form surface is used in the simulation. The proposed optimization is
implemented. The simulation result shows its effectivity.

Keywords—eigenvalue-optimal optimization, freeform surface in-
spection, sampling size and location, sampled points.

I. INTRODUCTION

INSPECTION and workpiece localization improve produc-
tion efficiency. The first task in these technologies is to

obtain the measurement data. Among the various sensing tech-
niques available, mechanical contact probes such as coordinate
measuring machine (CMM) touch probes and 3D topography
measuring systems using structured light or fringe illumination
are widely used in practical applications. CMMs with touch-
triggered probes can provide high measurement accuracy at
sub-micron level. However, the measurement speed is much
lower than using a 3D vision system. A vision system can
acquire thousands of data points over a large spatial range in
a snapshot [1]. However, the achievable resolution is relatively
low. Therefore, in practical applications, using one of the
techniques means that the user has to suffer its limitations,
e.g. the low speed with CMMs.

After the points are sampled, the researchers can use
the specified algorithm to compute, such as fitting surface,
computing tolerance and configuration. Due to the accuracy
of the sampling device as well as the geometry and surface
inaccuracy of the object, there exists certain measurement
error with each sampled point. Thus, the positioning errors
of coordinate data will result the positional (translational and
rational) error of the object derived form the sampled data.

Theoreticallyif we can measure all points on a object-
the ”real” measuring errors can be identified and analyzed,
however, this is impossible or disadvantageous even if we
can handle infinite points of a surface with infinite points.
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In summary, a sample survey is less expensive, less time
consuming, and may even be more accurate than the complete
enumeration [2]. This excessive sample size must be reduced
to an acceptable number while maintaining the same high
level of accuracy. Several possible sampling strategies have
been addressed in the literature. These include: (a)uniform
sampling, (b)simple random sampling, (c) stratified random
sampling, (d)cluster sampling, (e)systematic sampling and
other more esoteric schema. When we measure the point set
in the machine reference frame using a computer-controlled
coordinate machine, laser and computer vision, there are two
questions that to be answered.

1 In order to get a reliable result, how many points should
we measure on the object surface?

2 If a point number is specified, how should we plan the
sampled points’ location on the CAD model?

The remainder of the paper is organized as follows. In
section 2, we review the existing coordinate-sampling strate-
gies for inspection and workpiece localization, etc. In section
3, based on the uncertainty model, we present an method
for the determination of the sampling size. In section 4, an
optimization for location of sampling points is proposed. And
after some simulation in section 5, we draw the conclusion in
section 6.

II. LITERATURE REVIEW

Many factors affect the sampling strategy, e.g., time, cost,
manufacturing accuracy, tolerance specifications, the applied
analysis algorithms and the object geometry. From a statistical
viewpoint, each measurement data point contains a certain
amount of geometrical information about the surface, and the
quantity of information contained in the set of measurement
data points depends on the number and locations of the
measurement points.

How well the discrete sample points represent the sampled
surface? Dimensional surface measurements have involved the
use of deterministic sequences of numbers for determination
of sample coordinates to maximize information collected.
According to Woo and Liang [3], a two dimensional (2D)
sampling strategy based on the Hammersley sequence shows a
remarkable improvement of a nearly quadratic reduction in the
number of samples when compared with the uniform sampling
strategy, while maintaining the same level of accuracy. The HZ
based strategy in 2D space was also suggested by Woo et al
[4]. The only differences are that the total number of sample
points in the HZ sequence must be a power of two and the
binary representations of the odd bits are inverted. Also, Liang
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et al. [5], [6] compared the 2D HZ sampling scheme to the
uniform scheme and the SR theoretically and experimentally
for roughness measurement with similar results. Lee et al. [7]
demonstrated a methodology for extending the HM sequence
for geometries such as circles, cones, and spheres. Kim and
Raman [8] investigated different sampling strategies and dif-
ferent sample sizes for flatness measurements. Their findings
were similar to others with regards to accuracy determination.
Summerhays et al. [9] proposed new sampling patterns to
guide form measurements of internal cylindrical surfaces with
some success.

Dowling et al. [10] presented a survey of statistical issues
in geometric feature inspection. Fitting and evaluation ap-
proaches, sampling design issues, and sources of measurement
error were discussed. The incorporation of the knowledge of
manufacturing processes was also suggested to improve the
accuracy of geometric form inspection. Prakasvudhisarn [11]
suggested guidelines for cones and conical frustum inspection
by using three sampling sequences, HM, HZ, aligned system-
atic (AS) with various sample sizes. The sampled points were
used to estimate the form error of the feature based on different
fitting algorithms.

To help circumvent the adequacy of the data collection
problems, Menq et al. [12] suggested a statistical sampling
plan to determine a suitable sample size which can represent
the entire population of the part surface with sufficient confi-
dence and accuracy. Zhang et al. [13] proposed a feed-forward
back-propagation neural network approach to estimate sample
sizes of holes’ measurements from various manufacturing
operations. Machining processes, hole diameters, and tolerance
bands were considered as influencing factors. Similarly, Lin
and Lin [14] developed an algorithm based on the grey
theory to predict the number of measuring points on the next
workpiece for flatness verification by using data from the last
four workpieces. Raghunandan and Rao [15] also reported
a method to reduce sample size of flatness estimation by
inspecting the first part in detail and using it as the reference
for succeeding parts in a batch production.

After the sampling size determination of the points, where
the points locate is another problem. Many errors will be
considered. In [16], the authors reviewed error sources of
sampling and different sampling strategies. It is noted that,
in order to accurately measure part geometry, much higher
sampling densities than those in the current practice must be
incorporated.

For workpiece localization application, it is important to ac-
curately recover the position and orientation of the workpiece
subject to sampling errors. For this purpose, it is necessary to
consider the geometric relations among the measured surfaces.
It is known that a different set of sampling points will yield
different transformation results [17]. Since sampling errors are
inevitable, it becomes valuable to use a good sampling plan
to ensure satisfactory recovery of Euclidean transformation.

Menq et al [17] estimated an upper bound of the trans-
formation error with a normalized sensitivity measure. This
measure serves as an index that reflects the joint effect of
both the number of measurement points and the geometric
attributes of measurement locations. Although such an index

has been proposed for a given part geometry, a method for the
synthesis of the measurement points has yet to be developed.
Canny and Paulos [18] proposed a simple example to show
how the probing points affect the possible displacement region
of the object. A method using hitting sets and set covers was
developed to obtain near-optimal probe placements for any
known polygonal object, while the exact optimal solution is
NP-hard. For a sculptured workpiece, it is difficult to apply
this sampling method. Cai et al [19] suggest an index used
for planning fixture locators based on the variance of the
resultant localization error. Nonlinear programming was used
to minimize the variance. The method can only deal with
one continuous surface. When there are many surfaces in
consideration, there exists a combinatorial problem on the
point number assignment of different surfaces.

For the application of medical image registration in [20], a
3-D model is constructed from images, using a sensor such
as a computed tomographic (CT) scanner. In the synthesis
procedure, a noise-amplification index is used to automati-
cally generate near-optimal data configurations over a discrete
point set [21]. Four methods were applied, namely, steepest-
ascent hill climbing (SAH), near-ascent hill climbing (NAH),
population-based incremental learning (PBIL), and a hybrid
PBIL-hill-climbing approach. It was shown that the planning
of 10-75 optimal points may need up to several hundred
minutes of computational time. Such a method is suitable only
for offline planning.

III. DETERMINATION OF THE SAMPLING SIZE

Theoretically, if the sampled points data are the real coor-
dinate of the surface and computing error of computer is not
considered, the accurate result will be arrived at. However,
errors exist in the sampled data. So many researchers figure
out that more sampled points will result in more accurate
the result. Sensitivity analysis of registration parameters to
measurement errors is important. In general, measurement
error, number of scanned data, and locations of scanned data
all affect the determination of the localization results. If we can
characterize the errors of localization parameters due to these
factors, we can estimate the uncertainty of the localization
parameters.

Here, yi denotes the sampled point data, xi denotes the
nominal point data from the nominal surface of the CAD.
Given xi , if we perturb the data set by a small transformation
(including rotation and translation) and set this perturbed data
set to be the sampled data set, the errors between the two sets
can be modeled by the following equation.

εi = (ΔRxi + ΔP − xi) · ni, i = 1, 2, · · ·, N (1)

where N is the number of the element of xi, ni is the
corresponding normal vector of xi, ΔR and ΔP are small
rotation and translation perturbations and can be represented
as:

ΔR =

⎛
⎝ 1 −Δγ Δβ

Δγ 1 −Δα
−Δβ Δα 1

⎞
⎠ (2)
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Where α, β, γ are Euler angel. And

ΔP =

⎛
⎝ Δpx

Δpy

Δpz

⎞
⎠ (3)

From equation 1, 2 and 3, the relation will be arrived at⎛
⎜⎜⎜⎜⎜⎜⎝

ε1

ε2

·
·
·

εN

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−(n1 × x1)T n1,x n1,y n1,z

−(n2 × x2)T n2,x n2,y n2,z

· · · ·
· · · ·
· · · ·

−(nN × xN )T nN,z nN,y nN,z

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

Δα
Δβ
Δγ
Δpx

Δpy

Δpz

⎞
⎟⎟⎟⎟⎟⎟⎠

(4)
or in a compact format

ε̃ = AΔξ (5)

Where A is the sensitivity matrix, ε̃ is the measurement error
in surface normal direction, and Δξ is the transformation
parameter error. Since A is a N × 6 matrix, equation 5 is
equal to the below

Δξ = [(AT A)−1AT ]ε̃ (6)

A first-order expansion of Δξi will generate the following
equation.

Δξi =
N∑

j=1

Δξi

Δxj
εj = [(AT A)−1AT ]rowiε̃ (7)

If Δξi and εi are normally distributed, then

σξj

2 =
N∑

j=1

Δξi

Δxj

2

s2 (8)

Where σξj
2 and s2 are the variances for Δξi and εi, respec-

tively. By multiply σξj
by a constant c (say, c=2 represents a

99.8% confidence level) the uncertainty of the transformation
parameter ξi can be modeled as:

U = cσξi
(9)

ξi,(evaluated) − cσξi
≤ ξi,(ture) ≤ ξi,(evaluated) + cσξi

(10)

It is obviously that the smaller the uncertainty number, the
more accurate the transformation parameter is. The uncertainty
number is determined by the tolerance. The sensitivity of the
localization parameter to sampling error can be further defined
as

Sξi =
σξi

s
(11)

From equation 7, 8 and 11, we will get

Sξi
=

σξi

s
=

√√√√ N∑
j=1

(
Δξi

Δxj
)
2

=

√√√√ N∑
j=1

‖ [(AT A)−1AT ]rowi ‖2

(12)
Form equation 4, it is obviously that A is a function of

sampled data locations and the corresponding normal vectors.
So A is a function mainly related to the digitized geometry.
Now a standard sphere is taken as an example and the
origin of the coordinate frame is at the center of the sphere.

When the sphere rotates along the three axes respectively, the
configuration will not change. However, the perturbation in
the translation along three axes will result in the configuration
change. Assuming that the sampled point data are random
distributed around the sphere, we will arrive at the following
result:

σξi =
√

3√
N

· s, i = 4, 5, 6 (13)

The equation shows that the uncertainty of transformation
parameters for a sphere is proportional to the standard devia-
tion of the sampling error, and is inversely proportional to the
squared root of the number of the sampled data.

In fact, this model can be generalized for any sampled
geometry including free-form surfaces:

σξi
=

K√
N

· s (14)

Where K is a function of the sampled geometry. When the
scanned geometry and area are fixed, it becomes a constant.
In the previous sphere case, K is equal to

√
3; but in other

cases, say for example a free-form surface, K is unknown and
needs to be calibrated.

IV. DETERMINATION OF THE SAMPLING LOCATION

In [22], a near-optimal sampling strategy is presented. The
determinant of matrix is used as objective function of the
optimization to select the optimal sampled point locations that
can minimize the transformation errors. However, according to
the theory of linear algebra, a matrix’s eigenvalues reflect the
magnitude change between the original vector and the vector
transformed by the matrix. Although the matrix determinant
is equal to the product of its entire set of eigenvalues, the
maximized determinant cannot ensure that the matrix has a
maximized eigenvalue eventually. Thus, this paper directly
uses the eigenvalue as the objective function of the optimiza-
tion.

Equation 5 states the relation between the transformation
errors and the final computing result. From [23], there are
the same relation between the sampled point set yi and the
nominal home points set xi. Suppose that δyi is the error
along its normal vector in the CMM frame. We will have

δy = AΔξ (15)

where δy = {δy1, δy2, · · · , δyN}, from equation 15, we get

Δξ = [(AT A)−1AT ]δy (16)

And |Δξ|2 = δyT Mδy
Where M = A[(AT A)−1[(AT A)−1]AT

In workpiece localization, the transformation error will be
considered, and the start point for manufacturing is another
important issue. The relation will be formulated as

δf = Wf
T Δξ (17)

δf = Wf
T [(AT A)−1AT ]δy (18)

‖δf‖2 = δfT δf = δyT Mδy (19)

= δyT [(AT A)−1AT ]T WfWf
T [(AT A)−1AT ]δy (20)
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Fig. 1. Simulation model

Where M = [(AT A)−1AT ]T WfWf
T [(AT A)−1AT ]

Since M is a symmetric matrix, we can rewrite it as follows.

M = UT

⎛
⎜⎜⎝

λ1

λ2

....
λn

⎞
⎟⎟⎠ U (21)

Where {λ1, λ2, · · · , λn} are the eigenvalues of matrix M,
and U is an orthogonal matrix. Substituting M into equa-
tion 20, we have

(δf)2 = V T

⎛
⎜⎜⎝

λ1

λ2

....
λn

⎞
⎟⎟⎠ V

= λ1V
2
1 + λ2V

2
2 + · · · + λnV 2

n (22)

where Vn = U(δy).
Since U is an orthogonal matrix, we have

‖Vn‖2 = V T
n Vn = ‖δy‖2 (23)

Suppose that λ1 ≤ λ2 ≤ · · · ≤ λn, from equation 21, we
can obtain the following

λ1‖δy‖2 < ‖δf‖2 < λn‖δy‖2 (24)

From the above equation, for the same δy, the optimal
location with the minimal locating error, δf , can be determined
by minimizing max{λ1, λ2, · · · , λn}. Thus, according to [22]
we can first fix six points as the base point set and the
maximum eigenvalue is computed. Then one or two new points
interchange with points in the base point set. Its maximum
eigenvalue is also computed. If the latter maximum eigenvalue
is less than that of the base point set, the new points are
recorded and selected as the candidate of the sampled points.
If not, the points will be discarded.

V. SIMULATION RESULT

In this section, a model of freeform surface is used to
demonstrate the simulation results. The surface is a bicubic
B-spline surface, which is shown in figure 1. Its dimension
is 15 × 10cm. The behavior of equation 14 is first examined.
After taking different sampling on the surface randomly, a
N(0.005,0.01) noise is added to these points and result of the
application is denoted as actual point set. Then the relation

Fig. 2. Sensitivity of translation versus sampling size

Fig. 3. Sensitivity of rotation versus sampling size

between the six localization parameters and the number of
sampled is plotted. It is obviously that the localization pa-
rameters of actual point set match more well with that of
the theoretical point set when the size of the sampled points
increases.

From figure 2 and 3, when the sampled point size exceeds
200, these cures match quite well. It means that K is constant
in the two cases. Before the determination of the sampling
size, K must be estimated. By sampling a reasonable number
of sampled points, we can construct the sensitivity matrix A.
From equation 12, the maximum sensitivity number can be
calculated. Then the K can be estimated as K = Smax

√
N .

Here, we use 300 points to calculate the sensitivity numbers of
the six localization parameters. Table 1 lists the six sensitivity
numbers. The largest sensitivity number is in the y direction.
So K = 0.0406 × √

300 = 0.7032 . The standard deviation
of errors in the surface normal direction of the 300 points is
0.128 mm. Based on the tolerance, if we want to control the
localization accuracy to be within 0.008 mm, then δy = U

2 =
0.008

2 = 0.004. So the sampling size will be arrived at

N = (
0.7031

0.004/0.128
)2 = 506 (25)

TABLE I SENSITIVITY OF THE SIX LOCALIZATION PARAMETERS

Alpha Beta Gamma X Y Z
Sens 0.00313 0.0276 0.0232 0.0371 0.0406 0.0331
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Fig. 4. Total error versus computing time

with 1200 points. Since regions near surface boundaries are
not desirable for sampling and the probing radius is 3-mm,
we leave 4-mm margin from every boundary of the surface
to simulate the sampling. As the method in [22], six points
are generated randomly. Or if some points are significant, they
can be chosen into the six points. The maximum eigenvalue of
the matrix M whose elements are decided by the six points is
computed and denoted as λ. Then an exchange between one of
the six points and a candidate point of the 1200 points is done.
After each exchange, the maximum eigenvalue of the matrix
M decided by the new six points is computed and denoted as
λ0. If λ0 > λ, the candidate point will be deleted. Otherwise,
it is saved and used in the next procedure. When the number
of those saved points is equal to the pre-determined size, a
transformation acts on those saved points to get the theoretical
sampling points. The transformation is:

R =

⎡
⎣ 0.9564 −0.2571 0.1386

0.2580 0.9661 0.0121
−0.1371 0.0242 0.9903

⎤
⎦ , P =

⎡
⎣ 2

3
4

⎤
⎦ (26)

Where α = 5◦, β = 8◦, γ = 10◦, Px = 2, Py = 2, Pz = 4.
The localization is implemented. And the Hong-Tan algorithm
is used. The detail of localization and Hong-Tan algorithm is
refereed to [24]. After the localization process, the uncertainty
was calculated using equation 12 again. The 2σξi

= 0.0076
mm is very close to what was required. And when we stop
the algorithm, the function reached 0.000623 mm. the relation
between the total error and time is showed in figure 4.

Let ga = (pa, Ra) and ge = (pe, Re) be, respectively, the
actual and estimated transformation. We define the rotational
and translation errors be

εR = |θ|
where eω̂θ = Re

T Ra, ‖ω‖ = 1, and

εp = ‖pe − pa‖
Here the comparison is performed between the method pro-
posed in this paper and the method proposed in [22]. We call
our method as method a, and the method in [22] as method
b. Figure 5 and figure 6 plot rotational and translation errors
for each method as a function of the number of measurement
points. From the figures we see that our method have better
property than the method b.

Fig. 5. Translation error for Optimization for sampling strategy in freeform
surface inspection

Fig. 6. Rotation error for Optimization for sampling strategy in freeform
surface inspection

VI. CONCLUSION

Inspection and workpiece localization etc have many impor-
tant applications in the industry process. Since the algorithms
applied in the fields are time consuming and the devices only
sample discrete points on the workpiece surface, a good sam-
pling strategy would help perform a reliable and economical
decision. The sampling size and location of the points are
addressed. To predict the minimum required size of the points,
uncertainty analysis of the localization parameters is studied.
The developed uncertainty model suggests that the uncertainty
of the localization parameter is proportional to the standard
deviation of the error of the sampled points and the geometric
constant of the sampled surface, but inversely proportional to
the squared root of sampled points. In linear theory, a matrix’s
eigenvalues reflect the magnitude change between the origin
vector and the vectors transformed by the matrix. Although
the matrix determinant is equal to the product of it entire set
of eigenvalues, the maximized determinant cannot ensure that
the matrix has a maximized eigenvalue eventually. Thus, an
eigenvalue-optimal strategy for determining the locations is
proposed. A freeform surface is used and the simulation result
shows its effectivity.

After the sampling size is determined, we sample the surface
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