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Effect of a magnetic field on the onset of
Marangoni convection in a micropolar fluid
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Abstract—With the presence of a uniform vertical magnetic field
and suspended particles, thermocapillary instability in a horizontal
liquid layer is investigated. The resulting eigenvalue is solved by the
Galerkin technique for various basic temperature gradients. It is found
that the presence of magnetic field always has a stability effect of
increasing the critical Marangoni number.
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I. INTRODUCTION

The analysis of Marangoni convection in a thin fluid layer
induced by thermocapillary has many important applications
in a number of engineering problems, such as the production
of paints, colloids and detergents in chemical engineering.
The study of the onset of steady Marangoni convection in
an electrically conducting fluid layer with a non-deformable
free surface in a magnetic field was initiated by [1]. Later, [2]
showed numerically that oscillatory convection cannot occur if
the free surface is non-deformable. Subsequently, [3] extended
the work of [4] on steady convection to take the effect of the
surface deflection into account.

Most of the previous studies were concerned with a uniform
vertical temperature gradient in a fluid layer. The analysis
of the combined effect of magnetic field and non-uniform
basic temperature gradient on steady Marangoni convection
in the absence of rotation have been presented by [5]. Also,
[6] concluded that the inverted parabolic temperature gradient
distribution could be the most stabilizing. The analysis of
[6] was extended by [7] to solve the problem of stationary
Rayleigh-Bénard convection in a micropolar fluid layer with
a non-uniform basic temperature gradient. The fourth order
Runge-Kutta-Gill’s method and the linear stability theory was
used by [8] to attack the problem of oscillatory Bénard-
Marangoni convection of an electrically conducting liquid in
a magnetic field with a non-uniform temperature gradient.
Several authors [9], [10], [11] discussed the effect of feedback
control on the onset of convection.

This paper is concerned with the presence of a uniform ver-
tical magnetic field and the effect of a cubic basic temperature
distribution in micropolar fluid.
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II. MATHEMATICAL FORMULATION

The aim of the present work is to examine the stability of a
horizontal layer of quiescent micropolar fluid of thickness d in
the presence of a magnetic field. Following [12], the linearized
and dimensionless governing equations can be written as (cf.
[6]),

(1 + N1)(D2
− a2)2W + N1(D2

− a2)Ω
−QD2W = 0, (1)

N1(D2
− a2)W − N3(D2

− a2)Ω +
2N1Ω = 0, (2)

(D2
− a2)T + f(z)(W − N5Ω) = 0, (3)

where W , T and Ω are respectively the amplitudes of the
infinitesimal perturbations of velocity, temperature and spin,
N1 = ζ/(ζ + η) is the coupling parameter (0 ≤ N1 ≤ 1),
N3 = η′/(ζ+η) is the couple stress parameter (0 ≤ N3 ≤ m),
N5 = β/(ρ0Cvd2) is the micropolar heat conduction param-
eter (0 ≤ N5 ≤ n). Q = μmH2

od2/[ζ + η)γm] is the Chan-
drasekhar number and Ma = σT ΔTd/μχ is the Marangoni
number. Here, η′ is the shear spin viscosity coefficient, ζ is the
coupling viscosity coefficient or vortex viscosity, η is the shear
kinematic viscosity coefficient, ρ0 is the reference density, β
is the micropolar heat conduction coefficient, χ is the thermal
conductivity, H is the magnetic field, μ is the viscosity, Cv

is the specific heat, σT is the coefficient of surface tension,
g is the acceleration due to gravity, ΔT is the temperature
difference between two boundaries (TH − TL), m and n are
real numbers. The differentiation with respect to the vertical
coordinate z is denoted by an operator D = d/dz and a is
the total horizontal wave number.

The layer is assumed to be bounded below by a rigid
boundary, which is kept at a constant temperature, and above
by a perfectly insulated, flat free surface. Moreover, the spin-
vanishing boundary condition is assumed at the boundaries.
The boundary conditions, lower and upper, for the amplitudes
of the normal mode are then given by

W = DW = T = Ω = 0 at z = 0, (4)

W = D2W + a2MaT = DT = Ω = 0 at z = 1.(5)

Following [13] and [14], the steady state temperature profile
given by

T̄b = T̄OS − a1(z̄ − d) − a2(z̄ − d)2 − a3(z̄ − d)3, (6)

is considered which precisely represents an experimental data
[14], where (̄ ) denotes dimensional quantities, T̄OS is the
temperature at the upper free surface and ai, i = 1, 2, 3 are
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constants. In non-dimensional form, the f(z) in (3) is given
by

f(z) = a∗

1 + 2a∗

2(z − 1) + 3a∗

3(z − 1)2. (7)

The special case a∗

1 = 1, a∗

2 = 0 and a∗

3 = 0 recovers
the classical linear basic state temperature distribution. The
different temperature gradients studied in this paper are listed
in Table I. Model 4 (Cubic 2) represents the experimental
conditions of [14].

III. METHOD OF SOLUTION

Eqns. (1) – (3) are solved subject to the boundary conditions
(4) – (5). The condition on Ω is the spin-vanishing boundary
condition. The single term Galerkin technique is used to find
the critical eigen value. Multiplying equations (1), (2), and (3)
by W , Ω, and T , respectively. Then performing the integration
by parts with respect to z from 0 to 1 for the resulting
equations. By using the boundary conditions (4) – (5) and
taking W = AW1(z), Ω = BΩ1(z) and T = CT1(z) in
which A, B and C are constants and W1(z) = z2(1 − z2),
Ω1(z) = z(1 − z) and T1(z) = z(2 − z) are trial functions,
yields the following equation for the eigen value:

Ma =
f4[f2(315(1 + N1)f3 + 132Q)− 315f2

1 ]
630(1 + N1)[f2f6 − N5f1f5]

, (8)

where

f1 =
1
15

N1

(
4 +

11
28

a2

)
(9)

f2 =
1
3

(
N3 +

1
10

N3a
2 +

1
5
N1

)
(10)

f3 =
4
5

(
21 +

22
21

a2 +
2
63

a4

)
(11)

f4 =
4
3

(
1 +

2
5
a2

)
(12)

f5 =
1
10

(
11
14

a∗

3 − a∗

2 +
7
6
a∗

1

)
a2 (13)

f6 =
1
21

(
a∗

3 −
31
20

a∗

2 +
23
10

a∗

1

)
a2. (14)

The expression (8) is a generalization of the corresponding
result obtained by [7] for the polynomial-type basic tempera-
ture distributions. The critical Marangoni number -Mc for the
onset of convection is the global minimum of Ma over a ≥ 0.

IV. RESULTS AND DISCUSSION

Fig. 1 displays result for the oscillatory neutral curves in
the (Ma, a)-plane for different non-uniform basic temperature
gradients. The coordinates of the minimum point on these
curves correspond to the critical values of Mc and ac. The
increase of Q leads to a shift of the minimum point towards
the region of larger wave numbers at lower Mc. The critical
wave number -ac, is in general, insensitive to the changes in
the micropolar parameters but is influenced by the magnetic
field as well as the changes of the basic temperature profiles.
From the Table II it can be seen that the increase in N1, Mc be-
comes higher. This table illustrated that as the Chandrasekhar
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Fig. 1. Plot of Ma versus a for various value of N1 in the case Q = 300,
N3 = 2.0, N5 = 1.0.
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Fig. 2. Plot of Mc versus N1 with N3 = 2 and N5 = 1, A: Linear, Q = 0,
B: Linear, Q = 100, C: Cubic 2, Q = 0, D: Cubic 2, Q = 100, E: Inv.
Parabolic, Q = 0, F: Inv. Parabolic, Q = 100, G: Cubic 1, Q = 0, H: Cubic
1, Q = 100.

number Q increases, the critical Marangoni number -Mc also
increases. It is clear that for the critical Marangoni number
-Mc, the following inequality holds: Mc1 < Mc2 < Mc3. It
is the linear model which is the most destabilizing, while the
Cubic 1 is the most stabilizing f(z).

Fig. 2 shows the variation of the critical Marangoni number
-Mc with the coupling parameter N1 for assigned values
of the Chandrasekhar number Q. The result indicates that
the critical Marangoni number is generally an exponential
increasing function of N1. Further inspection of Fig. 2 reveals
that the Linear temperature profile is the most destabilizing
while the Cubic 1 profile is the most stabilizing one among
these four types of non-uniform basic temperature profiles.
Also it is observed that the increase in the concentration of the
microelements, the critical Marangoni number -Mc increases
showing that the magnetic field has the stabilizing effect and
is in compliance of the Newtonian results.
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TABLE I
REFERENCE STEADY-STATE TEMPERATURE GRADIENTS.

Model Ref. steady-state f(z) a∗

1 a∗

2 a∗

3
temp. gradient

1 Linear 1 1 0 0
2 Inverted parabolic 2(1 − z) 0 −1 0
3 Cubic 1 3(z − 1)2 0 0 1
4 Cubic 2 0.6 + 1.02(z − 1)2 0.6 0 0.34

TABLE II
CRITICAL MARANGONI NUMBER (Mc)j (j=1 TO 3) FOR DIFFERENT

VALUES OF Q AND N1 (N3 = 2.0, N5 = 1.0).

N1 Q Mc1 Mc2 Mc3

(Linear) (Inverted parabolic) (Cubic 1)
0.0 100 213 313 487

300 457 674 1047.9
1.0 100 243 444 887

300 457 835 1675.4

V. CONCLUSION

The problem of Marangoni convection in a micropolar
fluid by a cubic basic state temperature profile and vertical
magnetic field has been studied theoretically. Of interests
are the influences of non-uniform basic temperature gradients
with imposed magnetic field on the onset of Marangoni
instability. The above result indicates that it is possible to
delay the onset of convection by the application of a cubic
basic state temperature profile. In addition, the presence of a
magnetic field for a viscous, conducting fluid is to reduce the
intensity of Marangoni convection and hence leads to a more
stable system. As expected, the presence of the micron-sized
suspended particles add to the stabilizing effect of magnetic
field.
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