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Abstract—The objective of the paper is twofold. First, to develop a
formal framework for planning for mobile agents. A logical language
based on a temporal logic is proposed that can express a type of
tasks which often arise in network management. Second, to design a
planning algorithm for such tasks. The aim of this paper is to study
the importance of finding plans for mobile agents. Although there
has been a lot of research in mobile agents, not much work has been
done to incorporate planning ideas for such agents. This paper makes
an attempt in this direction. A theoretical study of finding plans for
mobile agents is undertaken. A planning algorithm (based on the
paradigm of mobile computing) is proposed and its space, time, and
communication complexity is analyzed. The algorithm is illustrated
by working out an example in detail.

Keywords—Acting, computer network, mobile agent, mobile com-
puting, planning, temporal logic.

I. INTRODUCTION

MOBILE agents (MAs) [14] have found wide application
in information searching, retrieval, electronic com-

merce, and network management to mention a few. A plethora
of research (both foundational and applications) has been done
in mobile agents. Some of the areas include code mobility [10],
minimal agent code size [9], reliable communication among
mobile agents [17], communication language for agents [25],
and security [4].

Research in automated planning [11] is concerned with de-
veloping effi cient algorithms (or planners) for solving different
types of tasks. Effi cient planners [6], [13] have been developed
for classical planning. The assumptions made in classical
planning are: deterministic action effects, full observability,
and no exogenous events; i.e., there is no uncertainty. Real-
world planning, however, needs to deal with uncertainties.
In planning under uncertainty there are some scenarios (see
for example [23], [24]) where acting is necessary. This paper
considers a real-world scenario where acting is necessary.

A type of planning problems for mobile agents, similar to
the Traveling Salesman problem, is considered in [16]. The
objective is to minimize the expected time to complete a task
for which plans are fi rst found assuming complete knowledge
of the network. The work in this paper differs substantially
from [16]. The objective of this paper is (i) to provide a
logical specifi cation scheme for a type of tasks of mobile
agents, and (ii) to fi nd plans for mobile agents, for these tasks,
in an environment which is partially observable. Planning for
mobile agents may be useful when the agents perform network
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management tasks and when they are used for information
search and/or retrieval.

Let the task of a mobile agent be to fi nd some information
α on a network as shown in Fig. 1. The agent starts at node
A and the desired information is available at node D. Assume
that faults do not occur in the network and that the information
associated with a node is static. If the topology of the network
is known a priori, a search algorithm can fi nd an optimal path
(in this case two steps).

It is quite realistic to assume that only a partial view of
the topology is available at any node of the network. In such
a scenario it is not known with certainty whether the agent
really reaches node D in two steps. In the worst case it may
roam across the entire network before reaching the destination
node. Although the agent has, indeed, achieved the given task,
the process involved may be quite costly. This stems from the
fact that the migrate operation of a mobile agent is expensive.
Moreover, while the agent is roaming in a network the problem
of fi nding its exact location is computationally intensive. Thus
it is easy to imagine the cost involved when the agent makes
several wrong moves in a network that is of considerable size.
One way to make the search effi cient is by communication.

In this paper a partially observable network is considered.
Since the model of the network is not known so plan computa-
tion cannot be done a priori. An action has to be performed to
acquire knowledge about the world. For example, one should
either touch the water with his toes or jump into the water to
fi nd out whether it is warm. In either case the state changes
because he will become wet. Some scenarios where acting is
necessary is discussed in Section VII. The related work is also
discussed in Section VII.
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Fig. 1. Acquiring information in a network

The plan structure, for the example given above, consists
of only the movement activities of an agent: (i) a sequence
of hops (hopA,B; hopB,D), or (ii) a combination of hops,
enter, and exits in a hierarchical network. The primitive
activities of an agent, say, delete a file, install a software, or
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remove virus are not depicted in a plan.

The task (or goal) considered in the above example is
called reachability goal. However more complex goals (eg.,
temporally extended goals) have been considered and suitable
logical languages, based on temporal logics, are proposed
in [1], [2]. A type of temporally extended goals is considered
in this paper. Some examples of tasks of a mobile agent are
given below. These tasks are similar to that arising in network
management [5].

Example 1 A mobile agent has to reach a supercomputer
(sc) in the Computer Science subnet (CS) of the network of
an educational institution (edu).

Example 2 Consider an interconnection of private networks.
Inside a private network there may be computers with a
particular confi guration (pconfig). The goal of a mobile agent
is to hop through those networks, inside which there is at least
one such computer, before reaching a network named Home.

Example1 3 A mobile agent has to reach a host computer
with a specifi c application software (app) installed. But the
mobile agent is a Java program and so it has to hop through
only computers that have JVM installed (jvm).

These tasks can easily be encoded in a logic LMA that
is similar in spirit to the Computation Tree Logic (CTL) [8],
which is a branching-time temporal logic. The logical language
LMA is discussed in Section III. For instance, Example 1 can
be written in LMA as E(true U v[edu ∧ CS[v[sc]]]) that is
to be read like a CTL formula E(p U q)–there exists a path
where at some point q is true and prior to that at all other
points on the path p is true. A term a[p] denotes a location
named a where a property p holds; when the property p is of
interest v[p] is used, where v denotes some location. Another
inspiration for using the logic is from the works in [12], [19]
where planning is viewed as model checking CTL goals.

Thus the problem considered in this paper is briefly stated
as: find a plan that achieves a task (goal), expressed in LMA,
in a partially observable hierarchical computer network, using
two mobile agents. The communication among agents should
be as less as possible. The motivation behind going for little
or no communication between agents is based on the fact that
the provision of a reliable communication infrastructure for
mobile agents is still an open issue [17].

The approach adopted in this work is sketched below.
The planning algorithm uses two cooperative mobile agents
to compute a plan with minimum communication among
themselves. The goals for the individual agents are obtained
from the task specifi cation given in LMA. Each agent moves
in the network in a depth-fi rst manner. The overall plan is
obtained by combining the plans of the individual agents. A
plan is stored in a distributed fashion over the network.

The rest of the paper is structured as follows. The network
model is defi ned in Section II. The planning problem is
discussed in Section IV. The planning algorithm is given in
Section V and its properties are discussed in Section VI. The
conclusions and future work are given in Section VIII.

1This example is used as the running example in this paper.

II. A DISTRIBUTED WORLD MODEL

A hierarchical computer network similar to that adopted
in [20] is considered. The network consists of computers
located at different geographical locations. For example, the
Internet is a collection of private networks, a private network
in turn is a collection of VLANs, and each VLAN in turn is a
collection of computers. One way to model such a network is
to use a top level graph that represents a collection of private
networks and each node in the graph has a subgraph that
represents the network contained inside it. However, it does
not capture the logical boundaries governing the structure: that
a VLAN hides the identity of the computers inside it is not
captured in this representation.

These boundaries may also refer to administrative or po-
litical boundaries. Consider for instance, an agent flying from
London to New York and then going to Times Square (located
within New York). The agent may fi rst travel in an airplane
and get to the airport at New York. But the agent may be
detained at the airport and may not be allowed to enter the
city of New York. Here permissions (enter, exit) are needed.
Barriers or boundaries in the context of mobile computation
have been discussed at length in [7].

The notion that a location hides the information and struc-
ture of the locations contained inside it is an important aspect
in the world model. Each location, in the model, has a unique
name, a set of properties, and some computational ability.
The subgraphs are assumed to be trees and are referred to as
location trees. The model M of a distributed world consists of
a location graph (LG) where a node in LG contains a location
tree. LTl denotes a location tree with root l.

An example of a distributed world is given in Fig. 2. In
the Fig. LG consists of 12 locations (1,2,...,12). The location
tree for node 8 is only shown; similar trees exist for the other
nodes. The properties associated with nodes is indicated by p
and q. Neighbors mean the adjacent nodes in LG, eg., nodes
5 and 11 are the neighbors of node 8.
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Fig. 2. A Distributed World

The following are the assumptions of the distributed world
(DW). The spatial confi guration of the locations do not change.
DW is not dynamic (i.e., the properties of the locations
are time invariant). Faults do not occur in the network. A
location knows only its neighbors to which it is linked in
the network, but not the properties associated with those
neighbors. No location knows the total number of locations
in the network. A location has limited computational power–
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this is discussed in detail in Section V. A location can take
part in a communication with a mobile agent.

A mobile agent working in the distributed world acquires
information about the world in an incremental manner. This
is illustrated in Fig. 3 with respect to the world in Fig. 2.

1
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Agent ’ s  state Information of agent

at location 1 neighbors of 1 are 2,3,4

after communicating
with neighbors of 1

properties of 2,3,4

Fig. 3. Agent’s information of the world

Thus when the agent is at location 1, it has partial informa-
tion of the world topology. After communicating it has come
to know the properties of the neighbor locations. The agent,
however, at this stage has no knowledge about the location
trees of the neighbors. The agent has to perform actions to
gather the information. Unless it moves to a neighbor (say,
location 3) it cannot fi gure out who the neighbors of location 3
are. Thus acting is necessary in the world. If the agent moves
to location 3, its partial view of the world will be as shown
in Fig. 4.
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Fig. 4. Information acqusition after acting

III. A LOGIC FOR SPECIFYING TASKS

A logical language for specifying tasks (goals) of a mobile
agent, abbreviated LMA, in the distributed world is discussed.
The logic LMA is based on CTL [8]. The syntax of a CTL
formula is given as f −→ p | ¬f1 | f1 ∧ f2 |EXf1 |AXf1 |
E(f1 U f2) |A(f1 U f2), where p ∈ AP (the set of atomic
propositions), E and A are the existential and universal path
quantifi ers respectively, X is the next-time operator, and U is
the until operator. A CTL formula is defi ned with respect to a
structure 〈S,R,L〉, where S is a fi nite set of states, R ⊆ S×S
(R is total), and L is a labeling function that labels states with
truth of atomic propositions.

The logical language for specifying tasks in the distributed
world should capture the fact that locations have unique names
and properties are bound to locations. Moreover, a location
may contain other locations. CTL does not allow the use of
explicitly named locations. So the constructC[p] is included. It
denotes that a property p is true at a location named C. When

the property p is of interest, v[p] is used where v signifi es
some location. There is a clear distinction between a path in
a location tree and a path in a location graph. The former
implies containment of locations. In order to differentiate the
two, the path quantifi er Es and the operator Us are introduced
to specify properties in location trees. This is explained with
respect to the distributed world in Fig. 2. Suppose that the truth
of a CTL formula E(p U q) is to be evaluated at location 8.
Assume that both p and q are false at locations 5 and 11.
Now as per the semantics of CTL, the formula is satisfi able
at location 8 since there is a path in the location tree (8-13-
14); all the locations (5,11,13,16) are considered neighbors of
location 8. However, from the defi nition of the structure of the
world only locations 5 and 11 are the neighbors of location 8.
Thus to keep the meanings of paths in location tree and paths
in location graph distinct, the two operators Us and U are used
respectively.

Recall that the model M of a distributed world consists
of the location graph LG where a node in LG contains a
location tree. Thus the logic LMA has two levels of syntax: ψ
for specifying properties of paths in LG and φ for specifying
properties of paths in the location trees. In the syntax given
below p ∈ AP–the set of atomic propositions in M.

     A. Syntax and Semantics of LMA

Syntax of LMA
ψ −→ C[φ] | v[φ] | ¬ψ1 |ψ1 ∧ ψ2 |E(ψ1 U ψ2) | � |⊥
φ −→ p |C[φ1] | v[φ1] | ¬φ1 |φ1 ∧ φ2 |Es(φ1 Us φ2) | �|⊥

Semantics of LMA
The satisfaction of an LMA formula ψ is with respect to
the distributed world model M, LG, and an initial location
l0 ∈ LG. This is denoted as (M, LG, l0) |=LG ψ. In
(LG, l0) |=LG ψ, M is understood and so omitted. The
satisfaction relation |=LG is dependent on the satisfaction
relation for φ, which is evaluated at the corresponding
location tree. This satisfaction relation is with respect to M,
a location l, and the location tree of l. In the following M is
omitted and (LTl, l) |=LT φ, is defi ned inductively as:

(LTl, l) |=LT p iff p holds at l
(LTl, l) |=LT C[φ] iff C is a child of l and (LTC , C) |=LT φ

(LTl, l) |=LT v[φ] iff for some child l′ of l (LTl′ , l
′) |=LT φ

(LTl, l) |=LT ¬φ iff (LTl, l) 
|=LT φ

(LTl, l) |=LT φ1 ∧ φ2 iff (LTl, l) |=LT φ1 and
(LTl, l) |=LT φ2

(LTl, l) |=LT Es(v[φ1] Us v[φ2]) iff for some path starting
at l i.e., (l = l1, l2, . . . , lj) in LTl [j ≥ 1], the following
conditions hold: (i) (LTlj , lj) |=LT φ2 and
(ii) for all i [1 ≤ i < j] (LTli, li) |=LT φ1

The satisfaction relation |=LG is defi ned inductively as: (recall
that l0 is the initial location)
(LG, l0) |=LG C[φ] iff l0 = C and (LTl0, l0) |=LT φ

(LG, l0) |=LG v[φ] iff for some location l ∈ LG

(LTl, l) |=LT φ

(LG, l0) |=LG ¬ψ iff (LG, l0) 
|=LG ψ

(LG, l0) |=LG ψ1 ∧ ψ2 iff (LG, l0) |=LG ψ1 and



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

424

1

2

3

4

5

6

7

9

10

11

15

16
jvm

app

12

8
jvm

jvm

app

17

1819

20

14

13

8 10jvm

jvm jvm jvm jvm

jvmjvm

jvmjvm

LG

LTLT8 10

Fig. 5. Semantics of LMA

(LG, l0) |=LG ψ2

(LG, l0) |=LG E(ψ1 U ψ2) iff for some path ( l0, l1, . . . , lj)
in LG, [j > 0], (LG, lj) |=LG ψ2 and for all i [0 ≤ i < j]
(LG, li) |=LG ψ1

Thus the examples given in Section I can be expressed as:

Example 1: E(true U v[edu ∧ CS[v[super]]])
Example 2: E(v[Es(true Us v[pconfig])] U Home[true])
Example 3: E(v[jvm] U v[Es(v[jvm] Us v[app])])

The semantics of the formula in Example 3 is now il-
lustrated. Let the network be as shown in Fig. 5. In the
Fig. only the location trees for nodes 8 and 10 are shown;
similar trees exist for all the other nodes. The propositions
jvm and app besides the nodes imply that it is true at
these nodes. Only nodes 8 and 10 satisfy the subformula
v[Es(v[jvm] Us v[app])]. For the path 1-3-5-8, it is easy to
see that jvm is true at all the nodes (1,3,5). So the given
formula is satisfi able at node 1. Although node 10 satisfi es
the subformula, there is no path from node 1 that satisfi es the
given property.

    B. Limitations of LMA

Suppose that there is a scenario where an agent is asked
to install a printer driver in all workstations of WsT make.
Assume that a node in LG represents a workstation of some
make. Here the task is similar to a traveling salesman problem.
This task is not expressible in LMA. Now let this task be
modifi ed as: before reaching the destination node install a
printer driver in all workstations of WsT make when the
workstations may be within k steps from each other. For this
task to be expressible in LMA, the semantics of the until
operator U has to be modifi ed. It may be noted that the
semantics of U take care of the above task when k = 1.

IV. THE PLANNING PROBLEM

The planning domain is defi ned as D = (M, S, A,R),
where M is the distributed world model, S is the set of
locations in M, A is the set of actions, and R : S ×A → S

is the transition function. Actions are of three types. For any
i, j ∈ LG such that j is a neighbor of i, execution of hopi,j

at i transfers an agent to j. The agent uses the actions enter
and exit for moving in the location trees. If i is a child of j,
execution of enteri at j transfers an agent to i; an exit at i
transfers it back to j.

The freedom of roaming about in the distributed world
is captured by hop. For the London-NewYork example in
Section II, flying can be achieved by hop–that takes the agent
from the boundary of one location to the boundary of another.
A different type of action is needed to go from the airport to
Times Square; for this enter is needed. For returning from
Times Square to the airport exit is needed.

Given the planning domain D, an initial location l0 ∈ LG,
and an LMA goal formula f = E(f1 U f2), with no
occurrence of E in f1 and f2, the planning problem is to
fi nd a plan π for f at l0. Henceforth the term goals shall be
used instead of tasks. The result of applying π to l0 is a plan
path–l0, l1, . . . , lk, where each li ∈ LG, [0 ≤ i ≤ k]. A plan
π satisfi es f if the plan path satisfi es f1 U f2. Observe that a
path l0, . . . , lj in LG satisfi es f1 U f2 iff (LG, lj) |=LG f2
[j > 0] and for all i [0 ≤ i < j] (LG, li) |=LG f1 (refer to
the semantics in Section III-A).

A plan for f consists of local plans and hops. Let locu

denote the local plan at location u. The structure of a plan
for f is: locl0, hopl0,l1, locl1, hopl1,l2, . . . , hoplk−1,lk , loclk. A
hop occurs at least once. Each local plan locli is of the form
enterm1, enterm2, . . . , entermk′ , exit, exit, . . . , exit, k′ ≥
1, where m1 = li and m2 . . .mk′ would be descendants of li.
The number of exit actions equals the number of enter actions
except for the localplan following the last hop. Observe that
enter is distinct from hop: to verify a property p at location C
(C[p]) or to reach location D contained inside C, a hop to C
is not enough; an enterC is needed. However if the goal is
C[true] then only a hop to C will suffi ce. A local plan at a
location u in LG for the subformulas f1 and f2 is found by
procedure localplan–that is described in the next Section. The
local plan is stored at u.

V. A PLANNING ALGORITHM

Planning is done by two mobile agents (Ag1 and Ag2) in a
distributed manner. A plan for a given goal is also stored in a
distributed fashion.

An LMA goal formula f = E(f1 U f2) is decomposed
to two subgoals. Each subgoal is provided to a mobile agent.
The agents collaborate to fi nd a plan for f . In the following,
f1-location is used to to mean that f1 is true at a location;
f2-location to mean that f2 is true at a location. The initial
location of Ag1 is l0. The goal of Ag1 is to go through f1-
locations until it reaches a location l′ where either of the
following conditions hold: f2 is true at l′ or l′ is marked
visited by Ag2. The initial location of Ag2 is lk–that is chosen
randomly. (This is done since the agent need not necessarily
start at an f2-location.)Ag2 fi rst reaches an f2-location. It then
goes through f1-locations until it reaches a location l′ that is
marked visited by Ag1. Each agent combines the other agent’s
partial plan to obtain the plan for f . Ag1 computes the prefi x
of a plan and Ag2 the suffi x of a plan. Here the objective
is not fi nding optimal plans. Both the agents perform depth-
fi rst-search for exploring the network. The agents acquire
knowledge about the topology of the network incrementally.

The following assumptions are made. An agent always
updates its visited information of the locations. An agent
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communicates only with the neighbors of its current location.
The algorithm is based on the paradigm of mobile computing.
The agent’s mobility is represented by the operation move

that symbolizes the process of migration of the agent from
one node to another. If an agent fi nds a plan, or discovers that
no plan exists for a given goal, it informs the other agent.
For each communication between an agent and a location,
all messages are transmitted, unaltered, in exactly one unit of
time. A location always responds to a query. Each location
knows the location from where the message is received.

A location in LG does the following: (i) communicates with
an agent, and (ii) computes the truth of an LMA subformula.
A node u in a location tree has complete knowledge of the
subtree rooted at u. So the truth of a subformula can be
obtained via model checking [8]. The computation in (ii) is
done exactly once at each location. A location u stores the
following: (a) visited information of agents (u.visited Agi),
(b) the neighbors of u that the agent fi nds useful (Si

u),
[i = 1, 2]. (c) local plan (u.plan fi), and (d) u.parent and
u.son. The parent and son fi elds of all locations in LG are
initialized to null.

Description of the algorithm for Ag1
The procedure Ag1.f indplan is now described. Let Ag1 be

at l and l1, l2 are the neighbors of l. It asks l1 and l2 about
the truth of f1, f2, and the visited information of Ag2 at those
locations. If any of these conditions is true at a neighbor, Ag1

places it in S1

l . If a neighbor (say l1) returns f2 is true, then
the son of l is set to l1. Ag1 moves to l1, sets the parent of
l1 to l, marks l1 visited, and fi nds a local plan for f2 at l1. If
a neighbor (say l1) returns visited Ag2 is true, then the son
of l and parent of l1 are set as in the previous case. The idea
of marking nodes resemble how ants use pheromone to mark
paths [21].

As soon as a plan for f is found, Ag1 informs Ag2 and
terminates. If a neighbor (say l1) returns f1 is true, Ag1
fi rst moves to l1, marks l1 visited, fi nds a local plan for
f1 at l1, and sets the son of l and parent of l1. Now Ag1
repeats the above process at l1. If a satisfying plan for f
is not found at l1, Ag1 backtracks to l and tries alternate
paths. Ag1 also uses the procedures proc Ag1 and localplan.

Description of the algorithm for Ag2
The initial job of Ag2 is to reach an f2-location. So it

communicates with its neighbors and explores the location
graph LG. Once an f2-location (say v) is found, Ag2 now
tries to reach a location (say l′), that has been visited by
Ag1, through f1-locations. This is done by the procedure
Ag2.f indplan which is similar to Ag1.f indplan. Once l′ is
found at l, it sets the parent of l to l′, and the son of l′ to
l. Now it informs Ag1 and terminates. If Ag2 fails to reach
such a location (l′ from v), it fi nds an alternate f2-location
and repeats the above process. Ag2 also uses the procedures
proc Ag2 and localplan.

procedure proc Ag1
input: an initial location l0 and the subformulas f1, f2 of an
LMA goal formula f = E(f1 U f2)

outcome: a plan for f (if it exists), failure otherwise
begin
1 ask l0 whether f1 is true at l0
2 if f1 is true at l0
3 then l0.visited Ag1 := 1;
4 l0.plan f1 := localplan(l0, f1);
5 pred of l0 := null;
6 Ag1.f indplan(l0, pred of l0)
7 inform Ag2 failure and terminate
end

procedure Ag1.f indplan(v, pred of v)
input: a location v ∈ LG and the predecessor of v
outcome: move forward or backtrack or failure
begin
1 ask the unvisited neighbors of v about the truth of f1, f2,
and visited Ag2; select the neighbors based on the answers
and place them in a list S1

v // list stored at v
2 if S1

v is empty then if pred of v = null then inform Ag2

failure and terminate else move to pred of v; (say v′)
// backtrack and resume Ag1.f indplan(v′, pred of v′)
3 if there is an u ∈ S1

v where f2 is true
4 then v.son := u; move to u; u.parent := v;

u.visited Ag1 := 1;
u.plan f2 := localplan(u, f2); inform Ag2 success

and terminate
5 else if there is an u ∈ S1

v where u.visited Ag2 = 1
6 then v.son := u; move to u; u.parent := v;
u.visited Ag1 := 1; inform Ag2 success and terminate
7 else for each unvisited neighbor u ∈ S1

v where f1 is true
8 v.son := u; move to u; u.parent := v;

u.visited Ag1 := 1;
u.plan f1 := localplan(u, f1);
Ag1.f indplan(u, v)

// Ag1.f indplan(v, pred of v) is suspended here
9 end for
10 if pred of v = null then inform Ag2 failure and
terminate else move to pred of v (say v′)
// backtrack and resume Ag1.f indplan(v′, pred of v′)
end

procedure proc Ag2
input: an initial location lk and the subformulas f1, f2 of an
LMA goal formula f = E(f1 U f2)
outcome: fi nds a plan for f (if it exists), failure otherwise
begin
1 cur := lk; set cur as explored; ask cur whether f2 is
true at cur
2 if f2 is true at cur
3 then cur.visited Ag2 := 1;
4 cur.plan f2 := localplan(cur, f2);
5 pred of cur := null;
6 Ag2.f indplan(cur, pred of cur)
7 if there is no more location to be explored then inform Ag1

failure and terminate
8 else get to a new location l in LG; goto 1
end
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procedure Ag2.f indplan(v, pred of v)
input: a location v ∈ LG and the predecessor of v
outcome: move forward or backtrack or failure
begin
1 ask the unvisited neighbors of v about the truth of f1 and
visited Ag1; select the neighbors based on the answers and
place them in a list S2

v // list stored at v
2 if S2

v is empty then if pred of v = null then inform Ag1

failure and terminate else move to pred of v (say v′)
// backtrack and resume Ag2.f indplan(v′, pred of v′)
3 if there is an u ∈ S2

v where u.visited Ag1 = 1
4 then v.parent := u; move to u; u.son := v;
u.visited Ag2 := 1; inform Ag1 success and terminate
5 else for each unvisited neighbor u ∈ S2

v where f1 is true
6 v.parent := u; move to u; u.son := v;

u.visited Ag2 := 1;
u.plan f1 := localplan(u, f1);
Ag2.f indplan(u, v)

// Ag2.f indplan(v, pred of v) is suspended here
7 end for
8 if pred of v = null then inform Ag1 failure and
terminate else move to pred of v (say v′)
// backtrack and resume Ag2.f indplan(v′, pred of v′)
end

procedure localplan(l, φ)
input a location l, an LMA subformula φ
output a plan for φ
begin
case: φ = l[true] return emptyplan
case: φ = l[p] return enterl, exit

case: φ = l[φ1] // φ1 is other than true or p
return enterl, localplan(l′, φ1), exit where l′

is a child of l
case: φ = l[Es(v1[φ1] Us C[φ2])]
Traverse a path through nodes u where φ1 is true, concatenate
enteru and localplan(u, φ1) to the partial plan (initially
empty), until a node C is reached where φ2 is true; return
partial plan + enterC + localplan(C, φ2) + exit + exit +
. . . + exit. The number of exit actions would be one more
than the number of enter actions in partial plan.

[The operator + signifi es concatenation of plans.]
case: φ = Es(v1[φ1] Us v2[φ2])
Traverse a path through nodes u where φ1 is true, concatenate
enteru and localplan(u, φ1) to the partial plan, until a node
l′ is reached where φ2 is true; return partial plan+enterl′+
localplan(l′, φ2) + exit + exit + . . . + exit. The number of
exit actions would be one more than the number of enter
actions in partial plan.
case: φ = φ1 ∧ φ2

Find the plans for φ1 and φ2 using the above cases; return
the concatenation of these plans.
end

The cases in the above procedure are as per the different
forms of φ given in the syntax of LMA.

Upon termination of the algorithm, any location that lies in
the plan path for f will know its parent and son; except the

f1

f1

f1

f2

Ag1 Ag2
b

c e

d

a

Fig. 6. A Network topology

TABLE I
COMPUTATION STAGES

state location information data
active a b : f1 S1

a = {b, c}
at a c : f1 a.son = b

a.visited Ag1 = 1

local plan f1 at a

suspended moves
at a to b

active b d : ¬f1,¬f2 S1

b
= nil

at b b.parent = a
b.visited Ag1 = 1

local plan f1 at b

terminates moves
at b to a

suspended a
code at a
resumes

suspended moves a.son = c
at a to c

active c e : ¬f1,¬f2 S1
c = nil

at c c.parent = a
c.visited Ag1 = 1

local plan f1 at b

terminates moves
at c to a

suspended a terminates,
code at a reports
resumes failure to Ag2

initial location whose parent is null, and the closing location
whose son is null. Based on this information, a hop can be
easily determined at each location. This is illustrated with an
example in Section V-B.

    A. Computation Stages of the Algorithm

The computation stages for the procedures of the agents is
illustrated with a simple network structure as shown in Fig. 6.
The agents start from the two ends of the network. There
is only one f2-location and it is located far away from the
starting point of Ag2; f1 is true only at the locations a, b,
and c. Suppose that no plan exists for the goal E(f1Uf2).
The procedures Ag1.f indplan,Ag2.f indplan are executed
concurrently at the locations. The Table I shows the different
stages of the computation for Ag1.f indplan, where the infor-
mation is that obtained by the agent after the ask operation,
and “data” implies the data at the location. The computation
stages of Ag2.f indplan is similar.

    B. An Example Illustrating Plan Construction

The working of the algorithm to fi nd a plan is illustrated
with respect to a distributed world (DW) shown in Fig. 7 for
Example 3 given in Section I. The goal formula is

E(v[jvm] U v[Es(v[jvm] Us v[app])])
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Fig. 7. A Distributed World

DW consists of the locations l1, . . . , l12 in LG. In the Fig.
only the location tree of l8 and l10 are shown. jvm is true at
l1, l3, l4, l5, l6, l8, l9, l10, l13, l17. So f1 is true at these locations
(shown by ∗). app is true only at l14 and l19. f2 is true at l8
and l10 (shown by $).
Ag1 starts from l1 and Ag2 from l12. The movement of Ag2

is shown by lines with bold arrowheads, and that of Ag1 by
broken lines. Ag1 computes the local plan for f1 and stores
the plan at l1 (enter1, exit). It marks l1 visited. Now Ag1
can select either l3 or l4. Let Ag1 fi rst select l4. So l1.son

is set to l4. At l4 it sets l4.parent to l1, fi nds local plan for
f1. Since no satisfying path exists from l4, so it returns to
l1. It then selects l3, updates l1.son to l3, moves to l3, and
repeats the steps done at l1. At l3 it can select either l5 or
l6. Let it move to l6. At l6 it can move only to l9, which is
a dead-end. So it backtracks. During this time it has not yet
come across a location that is visited by Ag2. Now consider
Ag2’s movements. It fi rst moves to l10, where f2 is true, but
comes back to l12 since l10 is a dead-end. Let it now move to
l11. At l11 it fi nds an f2-location (l8). The local plan at l8 is
enter8, enter13, enter14. From l8 it can move only to l5. At
l8 it sets l8.parent to l5. At l5, it sets l5.son to l8, and comes
to know that Ag1 has already visited l3. Thus it discovers that
a plan exists for the goal. So it sets l5.parent to l3. It moves
to l3 and updates l3.son to l5. It informs Ag1, who is now at
l6, that a plan is found and terminates.

Thus, a plan is stored in a distributed manner. In order
to execute the plan for the given goal proceed follows. First
execute the local plan at l1. Since the son of l1 is l3, so perform
hop1,3. Similarly, execute the local plan at l3 followed by
hop3,5. Now execute the local plan at l5 followed by hop5,8,
and then execute the local plan at l8. Thus, the overall plan is
locl1 , hop1,3, locl3 , hop3,5, locl5 , hop5,8, locl8 .

It is easy to see that Ag1 always moves through f1-locations
and a prefi x of a plan for f exists in at least one of those
locations. Ag2 after fi nding an f2-location always moves
through f1-locations and a suffi x of a plan for f exists in
at least one of those locations. Thus, if an agent combines its
plan path with that of the other agent, the resulting is always
a plan path for f .

VI. PROPERTIES OF THE ALGORITHM

    A. Complexity

Theorem [Time complexity] The worst case time complexity
of the algorithm is O(e+M · |f |) where e is the number

of edges in LG, |f | is the length of an LMA goal formula,
and M is the total number of locations in all the location trees.

Proof: The worst case time complexity of the algorithm is
the sum of the worst case time complexity of the agent’s pro-
cedures. Since the procedures of the two agents are identical
so the time taken by any one agent can be computed. Now
the time spent by an agent is in three ways: (i) time spent
in communicating, (ii) time spent in traversing LG, and (iii)
time spent in location trees.

It is assumed that it takes at most one unit of time to send
(receive) a query (an answer) over each edge, for the commu-
nication between an agent and a location. Thus communication
takes constant time.

The total number of move operations made by an agent in
the worst case is 2 · e, because of backtrack. So this becomes
O(e).

For (iii) the following is to be considered (a) the time taken
to compute the truth of subformulas, and (b) the time taken
to compute local plans.

The (a) part: The truth of the subformulas is obtained using
the model checking algorithm [8], that takes O(m′ · |f |) time,
where m′ is the maximum number of nodes in any location
tree. A location computes the truth of a subformula once, and
since there are at most n locations in LG, so the total time
spent is O(M · |f |), where M = n×m′.

The (b) part: i.e., the time taken by localplan(l, φ).
Let φ = φ1 ∧ . . . ∧ φk . To fi nd a plan for each φi the entire
location tree has to be traversed in the worst case. Since |φ|
is at most |f |, so the total time taken in any location tree is
O(|f | ·m′). Since this may be performed at the n locations,
so the total time becomes O(M · |f |).

Thus the time complexity is O(e+M ·|f |). Q.E.D

Theorem [Space complexity] The space needed by any
location in LG in the worst case is O(n + |f | · m′), where
m′ is the maximum number of nodes in any location tree.

Proof: The space is needed for recording visited information
of the agents, parent/son information, local plans, and infor-
mation of the neighbors.

Visited information is one bit of information. The
information of parent/son requires one bit of information
each. Each location can have at most n − 1 neighbors. Each
local plan has size O(|f | · 2 ·m′) where m′ is the maximum
number of nodes in any location tree. Thus the total space
needed by any location is O(n+ |f | ·m′). Q.E.D

Theorem [Communication complexity] The total number
of messages transfered in the algorithm is at most
6 · e+ 2 · n+ 2 ·M · |f |.

Proof: This involves computing the number of messages
passed by the agents. The agent Ag1 does message passing
for three purposes: (1) [for communication] The number of
neighbors of a node is equal to the degree of a node. Since
at each step the agent communicates with only the unvisited
neighbors, so the sum of all such neighbors is e. This is
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because an agent needs to talk with a location more than once
to know the visited information of Ag2. So the total number
of messages(sending and receiving) is 2 · e;

(2) [for movement in LG] the agent uses a depth fi rst search,
and in the worst case it needs to explore the entire world. Then
the number of movements become 2 · e;

(3) [for movement in location trees] to fi nd a local plan
each location tree is traversed m′ · |f | times and fi nally the
agent comes back to the root of the tree. So the total number of
messages needed is 2·m′ ·|f |. So the total number of messages
in the location trees is the sum of the messages needed in each
tree. This becomes 2 ·M · |f |.

Thus total number of messages for Ag1 is 4 · e+2 ·M · |f |.
For Ag2 messages are passed for: (1) talking with at most n

locations to know the truth of f2: so the number of messages
is 2 · n, and (2) movement for locating an f2-location: which
is 2 · e Thus the total number of messages needed is at most
6 · e+ 2 · n+ 2 ·M · |f |. Q.E.D

    B. Some Other Features of the Algorithm

Each mobile agent performs a distributed computation to
obtain a plan. Thus the overall algorithm is distributed in
nature. A plan is stored in a distributed manner. A plan
found by the algorithm is sound, i.e., the plan path, for the
plan generated, satisfi es f1 U f2. The planning algorithm is
complete, i.e., if there exists a plan for an LMA goal formula,
then the algorithm is guaranteed to fi nd the plan. The algorithm
obtains plans by using little communication among the mobile
agents (Ag1, Ag2). However it has to communicate with the
locations.

Some drawbacks of the approach are: (i) not all local plan
computations are useful and (ii) in the worst case, a single
agent can fi nd a plan all by itself. Some situations are listed,
below, where both the agents play signifi cant roles and thus
influence the total time of completion of the algorithm. This is
illustrated with a simple topological structure of the network,
that can easily be generalized to other structures. Refer to
Fig. 8, where only the location graph is shown. In (a) and
(b) it is assumed that there is only one f2-location, and that
the agents start from the two ends. In (a) and (b) failure is
detected after one step. If a single agent is used, then in both
(a) and (b) Ag1 and Ag2 would have taken the worst case time
respectively to detect failure. In (c) both the agents perform
equal work. So in this case the total time taken is halved. In
(c) the movements are shown by arrows.

    C. Extension of the Algorithm

The adaptability of the algorithm, given in Section V,
for slightly more complicated LMA goals is now consid-
ered. Let a goal formula with nested Es be of the form:
E(v[φ1] U (C[φ2] ∧ E(v[φ3] U C′[φ4])))
This is handled in the following manner. First compute the
subgoals: by parsing the formula and then reducing it to
an equivalent formula. In this case the subgoals are g1 =
E(v[φ1] U C[φ2 ∧ φ3]) and g2 = E(v[φ3] U C′[φ4]). Now
Ag1 works as follows: it fi rst tries to achieve g1, so the closing

Ag1 Ag2
f1

f1

f1 f1

f1

f2

~f1

~f1

Ag1 Ag2

f1

f1

f2

~f1

~f1

f1

f1

f1

f1
f1 f2

Ag1 Ag2

(a)

(b)

(c)

Fig. 8. Cooperative agents

location is named C; now from C it tries to achieve g2. This
can be easily done by Ag1.f indplan.
Ag2 works as follows: it fi rst gets to a location named C′, if

φ4 holds at C ′, it goes through locations where φ3 holds until
it comes across a location that is already visited by Ag1 or
that is named C. This can be easily done by Ag2.f indplan.

VII. RELATED WORK

In [16] plans are pre-computed and fed to the agent.
Complete knowledge about the topology of the network is
assumed in [16] to compute plans. A partially observable
network is considered in this paper where plan computation
cannot be done a priori. However, a planning problem like the
traveling salesman problem is considered in [16]. Such types
of goals are not expressible in LMA and thus cannot be solved
by the algorithm proposed in this paper.

This paper did not consider fi nding shortest paths. However,
this may be useful in some applications. Now a previously
established result is discussed. The problem of fi nding shortest
paths with unknown geography is considered in [18]. They
consider a layered graph of width two–for example the net-
work in Fig. 8(c). It is proved that for such a graph the ratio
of distance traveled to the optimal length is nine. Such a ratio
is an important criterion to evaulate the performance of an
agent. For layered graphs of unbounded width no fi xed ratio
is possible [18]. Real world networks are considered in this
paper that are not necessarily layered graphs of width two. So
the above performance criterion cannot be applied here.

In some situations the only way to decide for a plan is by
performing actions (acting) in the world. This is best illustrated
by the popular Omelette domain that consists of some good
and bad eggs (at least 3 are good), a bowl and a saucer; the
task is to get 3 good eggs. So an egg has to be broken to fi nd
out whether it is good or bad. Classical planners–that produce
a sequence of actions–cannot address this problem. Sensing
actions is proposed in [15] to attack problems of similar nature.
In reactive planning acting may sometimes be necessary [3],
[23]. In [23] failure of actions is considered and a dynamic
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logic is proposed to capture failure and sensing. This is beyond
the scope of this paper. A real-world challenging power supply
restoration domain [24] is another scenario where acting is a
necessary precondition for information acquisition. Thus the
work in this paper is similar to these works since a mobile
agent has to roam across the network to acquire information.

Distributed depth-fi rst-search (DDFS) algorithms have been
widely studied. One of the best known DDFS algorithm is
reported in [22] that has both time and message complexity
O(n), where n is the number of nodes in the network. The
planning problem considered in this paper is different from
the DDFS problem. The comparison is made for two reasons:
(i) since the search techniques are DFS and (ii) to illustrate
why the complexities are more in the algorithm presented
here. The algorithm in [22] obtains the complexity by using
messages of length O(n) which allows global information
of the network. The algorithm presented here uses fi xed
size messages, performs additional steps beside exploration–
for example computation of truth of subformulas and local
plans. It also uses communication with neighbors to chose the
next move for the agents, which is not needed in the DDFS
algorithm. Thus more messages are needed by this algorithm.

VIII. CONCLUSIONS AND FUTURE WORK

A hierarchical computer network is considered where mo-
bile agents are supposed to achieve network management
tasks. The logic LMA is presented that can elegantly spec-
ify such tasks. This paper made an endeavor to justify the
importance of fi nding plans for mobile agents. A distributed
planning algorithm using two collaborative mobile agents is
developed when the tasks are expressed in LMA.

Although there has been some work on planning for mobile
agents, those works did not really address or deal with
planning issues. This paper makes a fi rst attempt in this
direction. The hope is that the theory developed will lead
to the implementation of a fully functioning system. Some
interesting issues that need to be addressed are listed below.
First, to come up with a logical language to express a much
wider variety of tasks that a mobile agent is usually asked to
achieve. Second, faults are common in networks. How can the
planning problem be addressed in such scenarios?

Some future works that are planned include: (i) automatic
generation of sub-formulas for complicated LMA formulas
with nested Es, (ii) to obtain optimal number of agents needed
for a task, and (ii) to obtain the lower/upper bounds on the
communication complexity to achieve a task.
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