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Abstract—In this paper, we consider the problem of tracking 

multiple maneuvering targets using switching multiple target motion 
models. With this paper, we aim to contribute in solving the problem 
of model-based body motion estimation by using data coming from 
visual sensors. The Interacting Multiple Model (IMM) algorithm is 
specially designed to track accurately targets whose state and/or 
measurement (assumed to be linear) models changes during motion 
transition. However, when these models are nonlinear, the IMM 
algorithm must be modified in order to guarantee an accurate track. 
In this paper we propose to avoid the Extended Kalman filter because 
of its limitations and substitute it with the Unscented Kalman filter 
which seems to be more efficient especially according to the 
simulation results obtained with the nonlinear IMM algorithm (IMM-
UKF). To resolve the problem of data association, the JPDA 
approach is combined with the IMM-UKF algorithm, the derived 
algorithm is noted JPDA-IMM-UKF. 

 
Keywords—Estimation, Kalman filtering, Multi-Target Tracking, 

Visual servoing, data association. 

I.  INTRODUCTION 
HIS paper hope to be a contribution within the field of 
visual-based control of robots, especially in visual-based 

tracking [3]; tracking maneuvring targets, which may 
themselves be robots, is a complex problem, to ensure a good 
track when the target switches abruptly from a motion model 
to another is not evident. Because of the complexity and 
difficulty of the problem, a simple case is considered. The 
study is restricted to 2-D motions of a point, whose position is 
given at sampling instants in terms of its Cartesian 
coordinates. This point may be the center of gravity of the 
projection of an object into a camera plane, or the result of the 
localisation of a mobile robot moving on a planar ground.  

Several of maneuvering targets tracking algorithms are 
developed. Among them, the interacting multiple model 
(IMM) method based on the optimal Kalman filter, yields 
good performance with efficient computation especially when 
the measurement and state models are linear. However, if the 
latter are nonlinear, the standard Kalman filter should be 
substituted, in our study we choose the recent Unscented 
Kalman Filter (UKF). The other problem treated in this paper, 
is about the data association. Effectively, at each sample time,  
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the sensors (cameras) present, several measures and 
observations, coming from different targets; the problem is 
how to affect each measure to the correct target, to resolve this 
problem we choose the JPDA algorithm. The algorithm 
derived from the combination of JPDA and the non linear 
IMM algorithms is noted JPDA-IMM-UKF. 

The paper is organized as follows. In section II the 
mathematical formulation of 2-D motion is presented. In 
section III we briefly present the UKF. We describe in section 
IV the nonlinear IMM algorithm UKF based. In section V we 
present the JPDA-IMM-UKF algorithm. In section VI we 
present and discuss the results of simulations. Finally in 
section VII we draw the conclusion. 

 

II.  MATHEMATICAL FORMULATION OF 2-D MOTION 
The mathematical formulation of 2-D motion used is mainly 

inspired from Danes, Djouadi, and al in [4]. They make the 
hypothesis that the measurements are only the 2-D Cartesian 
coordinates of the moving point.  

Let s(.) denote the curvilinear abscissa of M over time onto 
its trajectory, the origin of curvilinear abscissae is set 
arbitrarily. Functions x(.) and y(.), represent the Cartesian  
coordinates of M. The measurement equation may be written 
as: 
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Where ( )p .  is a parameter vector function of minimal size. 
We can see that equation (1) is independent of the type of the 
motion of M onto its trajectory. 
The state equation could be written as: 
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, with As the n x n zero matrix with ones 

added on its first upper diagonal, and 0 the matrices of 
convenient sizes. The continuous time state equation (2) is 
linear time invariant and independent of M’s trajectory, except 
on the sizes of ( )s . and ( )p . . Moreover, it may be shown 
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  The dynamic and measurement noises are supposed to be 
stationary, white and Gaussian, non inter-correlated with 
known covariances. 
 

A. Canonical Motion Equations  
The point M is supposed to move on straight or circular 

trajectories at constant or uniformly time-varying speed 
(constant speed or constant acceleration). Those motions 
belong to the set of the possible behaviours of a non-
holonomic robot whose wheels are driven at constant 
velocities or accelerations. 

 
1) Output equations: One minimal description of a straight 
line is defined by the vector ( )p= , Tdα shown in figure 1(a), 
which is related to Plucker coordinates. Concerning a circular 
trajectory one minimal description is defined by the 
vector Τ= ),,0(p 00 yxR  shown in figure 1(b). The origin of 
curvilinear abscissa is uniquely defined from those 
parameterizations. 
 
 
 
 
 
 
 
 
 

 
 

          (a) Line 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) Circle 

Fig. 1 Trajectory Parameterization 
 
The output equations are as follows (trajectory parameter are 
considered time-invariant): 
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with )(ks distance covered by the target and )(⋅v  zero mean 
Gaussian noise, { } { } kkvvv ′=⋅= ,

T R(k)(k)E,0(k)E   δ  
 

2) State Equations 

Constant velocity   ( )

( ) ( ) ( )⎪
⎩

⎪
⎨

⎧

+=+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+

kwk           k

kwkk

p

s

p1p

    )(s
1       0
T       1

)1(s              (5) 

 
       
Constant acceleration 
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 where the random vectors                                       
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III.  THE UNSCENTED KALMAN FILTER 
The basis of the UKF is the unscented transform, where a 

distribution is approximated using a number of vectors which 
are passed through the nonlinear function to determine the 
probability distribution of the output from the function. 
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A.  The Unscented Transform 
According to Julier and Uhlmann in [5, 6], the unscented 

transform is based on the intuition that it is simpler to 
approximate a Gaussian distribution than it is to approximate 
an arbitrary nonlinear function. A set of vectors, selected to be 
representative of the probability distribution, are chosen so 
that their mean and covariance are respectively x   and  Pxx . 

The nonlinear function is applied to each point; the result is a 
set of transformed points with the statistics

yyy P and . The 
selection of these vectors is not arbitrarily done but according 
to a deterministic algorithm. 

The n-dimensional random variable x with mean and 
covariance respectively x   and  Pxx  is approximated by 2n+1 

weighted points given by: 
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The transformation procedure occurs in three steps: 
 

1. The transformed set of vectors are: )(f iiy χ=              (8) 
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3. The covariance is given by :        
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According to Julier and Uhlmann [5,6], many interesting 
properties could be noticed about this algorithm, for instance it 
leads to greater accuracy and permit rapid implementation, 
thanks to the mean and covariance which are calculated using 
standard vector and matrix operations.   

B. The Unscented Kalman Filter  
The unscented Kalman filter is obtained by occurring little 

modifications on standard one; this, by restructuring the state 
vector and process and measurement models [5, 6]. 

Consider the following discrete-time nonlinear dynamical 
system: 

                       )()),(),(x(f)1(x kwkkukk +=+  
                               )(  )),(),h(x()z( kvkkukk +=  
 
Where x(k+1) ∈ ℜn is the state vector, z(k) ∈ ℜm the 
measurement vector, w(k) ∈ ℜq and v(k) ∈ ℜm are Gaussian 
random vectors with zero mean and covariance matrices Q≥0 
and R>0, respectively.  

At first the state vector is augmented with the process and 
noise terms this leads to an an n q= +  dimensional vector. 
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The process model is now a function of ( )xa k , 
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The Kalman filter algorithm computes on two principles 

phases: 
- Prediction of the state vector and its covariance matrix 
- Estimation of the state vector and its covariance matrix 

by updating the prediction with the current 
measurement. 

 
 The prediction phase using the unscented transform is as 

follow: 
 
1. The set of vectors are created by applying equation (7) 

to the augmented system given by equation (13) 
2. The transformed set of vectors are given by 
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3. The predicted mean is calculated by 
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4. The predicted covariance is calculated by 
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5. Each prediction vector is instantiate through the 
measurement model 

 
                    ( )kkukkkk i ),(),1(h)1(zi +=+ χ                        (17) 
6. The predicted observation is calculated by 
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7. Assuming the fact the measurement noise is additive 

and independent, the innovation covariance is 
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8. The cross correlation matrix is calculated by 
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Given these predicted values the state and covariance 
estimates are computed according to the equations: 
 
                )1()1(K)1(x̂)11(x̂ ++++=++ kkkkkk γ                (21)      
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with )1( +kγ   the innovation and K(k+1) the weight chosen to 
minimise the mean squared error of the estimate. 
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IV. THE NONLINEAR INTERACTING MULTIPLE MODEL 
ALGORITHM 

 
A.  The IMM Algorithm 
Let a system be described by the equations (notations are 

chosen according to [2])  
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with ( )⋅w Gaussian process noise and )(⋅v measurement 
Gaussian noise. 
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Where M(k) denotes the model at time k. It’s a finite state 
Markov process tacking values in{ }

1

r

j j
M

=
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Markov transition probability matrix p assumed to be known, 
v and w represent white Gaussian processes and are assumed 
to be mutually independent.  
 

A cycle of the IMM algorithm could be summarized in four 
steps: 

 
1. The mixed initial condition for filters 
Starting with ( )x̂ 1 1i k k− − , we compute the mixed initial 

condition for the filter matched to Mj(k)  
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the covariance corresponding to the above is 
 

[ ]

[ ] rjikkkk

kkkkkk

kkkk
r

i
ji

....1,)1/1(x)1/1(x̂

)1/1(x)1/1(x̂)1/1(Ρ

)1/1()1/1(Ρ

0ji

0jii

1

0j

=
⎭
⎬
⎫

−−−−−

⋅−−−−−
⎩
⎨
⎧

+−−

⋅−−=−− ∑
=

Τ

μ
   (25) 

Where: 

     ( ) ( )1
1 1 1       , 1, ...,i j ij i

j

k k p k i j r
c

μ μ− − = − =         (26) 

is the probability that model Mi was in effect at k-1 given that 
Mj  is in effect at time k conditioned on Zk-1. 
And where:  
 

- ( )1i kμ −  the probability that the mode Mi is in effect 
at time k-1 , 
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= −∑ the normalizing constants . 

 
2. Model-matched filtering  
The above estimate and covariance are used as input to the 

filter matched to Mj(k), which uses z(k) to obtain 
( ) ( )x̂   and  Pj jk k k k . 

 
3. Model probability update  
The r model probabilities are updated from the innovation 

of the r Kalman filters. 
The likelihood functions corresponding to the r filters are 
given by: 
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4. Estimation and covariance combination 
The output estimates and covariances are computed 

according to the mixture equations    
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The problem here is that this algorithm is designed with the 
assumption that the target motion models are linear, so, for its 
optimality, the use of the Kalman filter is recommended.  
However, in the case on which the motion models are 
nonlinear we propose to use the UKF detailed in section III. 
The modification to operate on the IMM algorithm is to use as 
state and covariance estimator the UKF. 

Thanks to this modification we hope to track accurately 
targets whose models are nonlinear, the resulting algorithm is 
called the Nonlinear Interacting Multiple Model and noted 
(IMM-UKF). 

V. JPDA-IMM ALGORITHM  
The principle of the JPDA algorithm is the computation of 

probabilities association for each track and new measurement. 
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These probabilities are then used as weighting coefficients in 
the formation of the averaged state estimate, which is used for 
updating each track. For a better description of the JPDA 
algorithm, see  [2,7]. 

The combination of the JPDA and the IMM-UKF 
algorithms done as follows. A single set of validated 
measurements for JPDA-IMM-UKF is obtained by 
considering the intersection Zk, of r sets of measurements 
corresponding to individual models: 

 
j

k

r

j
k ZZ

1=
= ∩  

Where j
kZ  represents the set of validated measurements 

under the assumption that model j is effective. The combined 
likelihood functions for the r modes of the IMM-UKF 
algorithm are computed as in [8]. 

The prior mixed state estimates for model j and the 
validation regions for individual models are also computed as 
in [2,8]. The new mode probabilities, output state estimates, 
and corresponding error covariances are obtained as in [2,8]. 

To consider multiple sensors, modifications on the later 
algorithm are made according to [10].  

VI. SIMULATIONS AND RESULTS  
In this section, we perform some simulations to evaluate our 

algorithm (JPDA-IMM-UKF). In our simulations we 
considered the case of two sensors. 

The motion models considered are: - constant velocity on 
straight line (M1), -constant acceleration on straight line (M2), 
- constant velocity on circle (M3), - constant acceleration on 
circle (M4).   

To explore the capability of our JPDA-IMM-UKF 
algorithm to track maneuvring targets, various scenarios are 
considered; among of them we select the typical case of three 
highly maneuvring targets with crossing trajectories.  

We assume that the target is in a 2-D space and its position 
is sampled every T=1s. For all cases we assume: 

- The measurement noise is zero mean, white, independent 
of the process noise, and with variance σv

2=0.01. 
- The process noise is zero mean, white, independent of 

the measurement noise, and with variance σw
2=0.001. 

 
    -   The probability transition matrix of four models is  
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     -   The initial probability of selecting a model is 0.25, that’s    

to say, at the start all models have the same chance to be 
selected. 

     -  The curvilinear abscissa s (.) remains continuous even if 
a trajectory jump occurs.  

 
 

A.  Considered Scenario 
We consider that we have to track simultaneously three 

maneuvring targets. In order to complicate the scenario, we 
suppose that the targets follow during their movements, 
crossing trajectories. 

a) Target 1(black) 
The target starts moving according to model M1 until the 

50th sample when an abrupt trajectory change occur  and still 
moving according to this during 50 samples (switching from 
model M1 to M3). 

b) Target 2 (blue) 
The target starts moving according to model M3 until the 

50th sample when an abrupt acceleration about 0.2 m/s2 occur  
and still moving according to this during 50 samples 
(switching from model M3 to M4). 

c) Target 3 (green) 
The target starts moving according to model M1 until the 

50th sample when an abrupt acceleration about 0.2 m/s2 occur  
and still moving according to this during 50 samples 
(switching from model M1 to M2). 
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Fig. 1 Real and Esteemed Trajectories 
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Fig. 2 Models Probabilities for target 1 
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Fig. 3 Models Probabilities 2 

 

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Step

m
od

el
s 

pr
ob

ab
ili

tie
s 

of
 ta

rg
et

 3

M1
M2
M3
M4

 
Fig. 4 Models Probabilities 3 
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Fig. 5 RMS x and y position error 
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Fig. 6 RMS Acceleration and Speed Error 
 
 
 

B.  Results Interpretation 
Fig. 1 shows that the esteemed and the real trajectory for the 

three targets are superposable and almost identical even if an 
abrupt change occurs on the tracked target dynamic. This 
result is confirmed by the Figs. (2,3,4,5,6), from this we can 
say that the tracker based IMM-UKF algorithm is a pertinent 
solution to the problem of visual-based tracking highly 
maneuvering targets. In the Other hand Fig. 1 shows also that 
the data association is correctly done even if the trajectories 
cross each other. This should permit us to say that the JPDA 
algorithm computes perfectly and its combination with the 
IMM-UKF algorithm (JPDA-IMM-UKF) would be an 
efficient solution to the problem of highly maneuvering multi-
target visual-based tracking. 

VII.  CONCLUSION 
The model-based body motion estimation by using data 

coming from visual sensors still an open problem on which we 
try to provide a contribution. In this paper we presented a 
nonlinear algorithm which attempts to track efficiently a 
highly maneuvering target whose trajectory and/or dynamic 
could change abruptly, the algorithm proposed is noted IMM-
UKF.  To extend this algorithm to multi-target case, we 
combined the later with the JPDA algorithm to ensure good 
data association. 

Simulations show that the JPDA-IMM-UKF is a good 
investment while we are asked to track a highly maneuvrable 
targets whose measurement and/or state models present a 
strong nonlinearities, and when there different trajectories 
cross each other.  
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