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Abstract—Clustering algorithms are attractive for the task of 

class identification in spatial databases. However, the application to 
large spatial databases rises the following requirements for clustering 
algorithms: minimal requirements of domain knowledge to determine 
the input parameters, discovery of clusters with arbitrary shape and 
good efficiency on large databases. The well-known clustering 
algorithms offer no solution to the combination of these 
requirements. In this paper, a density based clustering algorithm 
(DCBRD) is presented, relying on a knowledge acquired from the 
data by dividing the data space into overlapped regions. The 
proposed algorithm discovers arbitrary shaped clusters, requires no 
input parameters and uses the same definitions of DBSCAN 
algorithm. We performed an experimental evaluation of the 
effectiveness and efficiency of it, and compared this results with that 
of DBSCAN. The results of our experiments demonstrate that the 
proposed algorithm is significantly efficient in discovering clusters of 
arbitrary shape and size. 
 

Keywords—Clustering Algorithms, Arbitrary Shape of clusters, 
cluster Analysis. 

I. INTRODUCTION 

ARGE datasets have been collected or produced in many 
application domains, such as bioinformatics, physics, 

geology, and marketing, and some have reached the level of 
terabytes. Since the knowledge hidden in this data is usually 
of great strategic importance [10]. One of the primary data 
analysis tasks is the cluster analysis, which help user to 
uncover the knowledge hidden in the collected data. 
Clustering is one of the most important tasks in data mining 
and knowledge discovery [5]. Clustering groups database data 
into meaningful subclasses in such a way that minimizes the 
intra-differences and maximizes the inter-differences of these 
subclasses [15]. Up to now, many clustering algorithms have 
been proposed, each of these algorithms have drawbacks and 
advantages. A clustering algorithm is considered to be good if 
it satisfies the following requirements, (1) minimal 
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requirements of domain knowledge to determine the values of 
its input parameters, which is very important problem 
especially for large data sets. (2) Discovery of arbitrary 
shaped clusters. (3) good efficiency on large data sets, data set 
may contains large number of objects or the object described 
by large number of features or data is large in both previous 
dimension. The well-known clustering algorithms offer no 
solution to the combination of these requirements.  

In this paper we propose a clustering algorithm based on 
knowledge acquired from the data set, and apply the main idea 
of density based clustering algorithms like DBSCAN.  The 
proposed algorithm will be called density clustering based on 
radius of data (DCBRD). The DCBRD algorithm requires no 
input parameters, discovers arbitrary size and shaped clusters, 
is efficient even for large data sets especially data with large 
dimension. The paper is organized as follows. In section 2, 
some previous clustering algorithms are listed. In section 3, 
simplified review about DBSCAN algorithm is presented. In 
section 4, the overlapped circular regions are presented, and 
we show how these circles are created and how the algorithm 
uses them. Section 5 demonstrates the proposed algorithm. 
We describe the experimental results in section 6 and 
conclude with section 7. 

II.  RELATED WORK 

There are many clustering algorithms proposed, these 
algorithms may be classified into partitioning, hierarchical, 
density and grid based methods [8]. The first two types are the 
most common. Partitioning algorithms are k-means [12]and k-
medoid [11],[13]. Hierarchical algorithms create a hierarchical 
decomposition of a database D. The basic hierarchical 
clustering algorithm works as in[6]. Some hierarchical 
algorithms are single-link [14], complete-link [2], [9], 
average-link method [16], BIRCH [17] and CURE [7].  

Density-Based Clustering algorithms group objects 
according to specific density objective functions. The most 
popular one is probably DBSCAN [3]. In this paper new index 
structure is proposed. This structure also used to obtain an 
optimal value for the radius of the neighborhood. The 
proposed algorithm is based on this structure and the main 
idea of DBSCAN algorithm. 

III. DBSCAN ALGORITHM 
The key idea of density-based clustering is that for each 

object of a cluster the neighborhood of a given radius (Eps) 
has to contain at least a minimum number of objects (MinPts), 
i.e. the cardinality of the neighborhood has to exceed some 
threshold. We will first give a short introduction to DBSCAN. 
For details see [3].  
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Definition 1: (directly density-reachable) An object p is 
directly density-reachable from an object q wrt. Eps and 
MinPts in the set of objects D if : 
1) p∈NEps(q), (NEps(q) is the subset of D contained in the Eps-
neighborhood of q.). 
2) Card(NEps(q)) ≥ MinPts. 
Definition 2: (density-reachable) An object p is density-
reachable from an object q wrt. Eps and MinPts in the set of 
objects D, denoted as p >Dq, if there is a chain of objects p1, 
..., pn, p1 = q, pn = p such that pi ∈D and pi+1 is directly 
density-reachable from pi wrt. Eps and MinPts. 
Definition 3: (density-connected) An object p is density-
connected to an object q wrt. Eps and MinPts in the set of 
objects D if there is an object o ∈D such that both p and q are 
density-reachable from o wrt. Eps and MinPts in D. 

Fig. 1 illustrates the definitions on a sample database of 
objects from a 2-dimensional vector space.  
 

 
Fig. 1 Density-reachability and density-connectivity 

 
Definition 4: (cluster) Let D be a set of objects. A cluster C 
wrt. Eps and MinPts in D is a non-empty subset of D 
satisfying the following conditions: 
1) Maximality: ∀p,q ∈D: if p ∈C and q>D p wrt. Eps and 
MinPts, then also q∈ C. 
2) Connectivity: ∀p,q∈ C: p is density-connected to q wrt. 
Eps and MinPts in D. 
Definition 5: (noise) Let C1 ,..., Ck be the clusters wrt. Eps and 
MinPts in D. Then, we define the noise as the set of objects in 
the database D not belonging to any cluster Ci ,i.e. noise = {p 
∈D | ∀ i: p ∉Ci}. 

To find a cluster, DBSCAN starts with an arbitrary object p 
in D and retrieves all objects of D density-reachable from p 
with respect to Eps and Minpts. If p is a border object, no 
objects are density-reachable from p and p is assigned to noise 
temporarily. Then DBSCAN handles the next object in 
database D. Retrieval of density-reachable objects is 
performed by successive region queries. A region query 
returns all objects intersecting a specified query region 
efficiently by R*-trees. Before clustering the database, R*-tree 
should be built in advance. However, there are some 
DBSCAN algorithm problems limiting its applications. The 
DBSCAN algorithm is sketched in Fig. 2. 

 

 
Fig. 2 DBSCAN Algorithm 

 
The most fundamental open problem is: DBSCAN requires 

the user to specify a global threshold Eps (Minpts is often 
fixed to 4 to reduce the computational amount). In order to 
determine Eps, DBSCAN has to calculate the distance 
between an object and its kth (k=4) nearest neighbor for all 
objects. In addition, DBSCAN is based on R*-tree, and 
calculates the k-dist value on the entire database. The two 
procedures are the most time-consuming phases in the whole 
clustering process, but their computational loads are not 
included in time consumption as in O(n log n), so the actual 
time consumption of DBSCAN may be larger than that of O(n 
log n)[15]. Clustering procedure is very expensive so that it is 
computationally prohibitive for large databases. Eps and 
Minpts determine a density threshold, thus DBSCAN becomes 
a typical density-based clustering method. Furthermore, the 
Minpts usually is fixed to 4, thus the density threshold is 
perfectly determined by Eps.  

 
IV. DATA SPACE PARTITIONING INTO OVERLAPPED CIRCLES 

The key idea of the proposed algorithm is that one can 
greatly reduce the number of distance computations required 
for clustering by partitioning the data into overlapping 
subsets, and then only measuring distances among pairs of 
data points that belong to a common subset. The overlapped 
circle technique thus uses two different sources of information 
to cluster items: a cheap and approximate similarity measure 
(the radius of the overlapped circles that cover all data space) 
and a more expensive and accurate similarity measure (the 
optimal value of Eps). 

The proposed algorithm divides the clustering process into 
two stages. In the first stage, the algorithm use the cheap 
distance measure in order to creates some number of 
overlapping circles (or hyper sphere), any circle is simply a 
subset of the elements (i.e. data points or items) that, 
according to the approximate similarity measure, are within 
some distance threshold from a central point. Significantly, a 
data point may appear under more than one circle, and every 
data point must appear in at least one circle. The circles with 
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solid outlines in Fig. 3 show an example of overlapping 
circles that cover a data set. Note that every solid circle 
(contains nearest adjacent for a central point) is a subset of 
larger dashed circle (contains nearest far adjacent for a central 
point). Dashed circles are used to ensure that no cluster split 
into more than one cluster. If you look at cluster 1, this cluster 
split into two clusters without dashed circle because there is 
no data point in the intersection of the two inner solid circles, 
using the dashed circle when it is required, the algorithm 
detects the actual clusters contained in data set.  

In the second stage, the proposed algorithm executes 
DBSCAN clustering algorithm, the value of Eps is obtained 
from the overlapped circular regions, thus the proposed 
algorithm does not require any input parameter. 

 

 
Fig. 3 An example of three clusters and the overlapped circles cover 

them 

A. Creation of Overlapped Circles 
The proposed algorithm computes the radius (Rad) of 

circles that cover all data points as we will see in the next 
section. Fig. 4 illustrates the creation of overlapped circles. 

 

 
Fig. 4 Creation of circles that cover all data points 

The function takes the first point as the center of the first 
circle (step 2 of Fig. 4), and assign all points whose distances 

from this center are less than or equal to the value of Rad  to 
the list1 (i.e. the list1 contains nearest adjacent for the central 
point of the circle as in step 6). If a point p is covered by more 
than one circle then p.distance keeps it’s distance to the 
nearest circle (step 8 ), also p.circle keeps the identification of 
the nearest circle as in step 9. The function assign all points 
whose distances from this center is larger than Rad and less 
than Rad * 1.5 to the list2 as in step 12 (i.e. points which lie 
between the solid and dashed circle are the nearest far 
adjacent for the central point of the circle as shown in Fig. 3). 
For each point in list1, the algorithm keeps the distance to the 
center of the nearest circle and the identification number of 
that circle as in step 8 and step 9. The center of the next circle 
is the point whose distance is larger than Rad * 1.5 and less 
than or equal to Rad * 2  from the center of current circle to 
ensure from the existence of overlapping (this is shown in step 
14). This process continues tell all points are covered. Steps 
from 20 to 22 search for uncovered points remaining to cover 
them by creating new circles. 

Thus every circle contains two list; the first list contains all 
points inside the solid edge (nearest adjacent for a central 
point as in Fig. 3), the other list contains all points outside the 
solid edge and inside the dashed edge (nearest far adjacent for 
a central point as in Fig. 3). Only, the algorithm uses the 
points inside the solid edge to find maximum of (minimum 
pairs wise distance) to compute the optimal value of Eps, that 
will be used by the DBSCAN algorithm in the next stage.  

When the algorithm retrieves the neighbors of a point, it 
directly goes to the best (nearest) circle that covers the point 
(a point may be covered by more than one circle), computes 
how far is it from all the points in that circle, and returns 
points at distances less than or equal to Eps. If the distance of 
that point to the solid edge is less than Eps then the algorithm 
computes the distances between that point and all the points 
contained in dashed circle (points in list1 and list2), retrieves 
the points in Eps distance, and the point is assigned to current 
cluster if it is a core point, or assigned noise temporally. 

V. THE PROPOSED ALGORITHM 
The proposed algorithm merges ideas from many 

algorithms. It is based on DBSCAN while we try to solve the 
problems of Eps and R*-tree. in this section, the R*-tree is 
discussed, how  the value of Eps is computed, and the 
computation of the radius of all data space. 

A. R*-tree and overlapped circles 
What is R*-tree?. What is the problem of it?. The R*-tree 

[1] generalizes the 1-dimensional B-tree to d-dimensional data 
spaces, specifically an R*-tree manages d-dimensional hyper 
rectangles instead of 1-dimensional numeric keys. An R*-tree 
may organize objects such as polygons using minimum 
bounding rectangles (MBR) as approximations as well as 
point objects as a special case of rectangles. The leaves store 
the MBR of data objects and a pointer to the exact geometry. 
Internal nodes store a sequence of pairs consisting of a 
rectangle and a pointer to a child node. These rectangles are 
the MBR’s of all data or directory rectangles stored in the 
subtree having the referenced child node as its root (Fig. 5).  
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Fig. 5 Sample R*-tree 

 
To answer a region query, we start from the root[4], and the 

set of rectangles intersecting the query region is determined 
and then their referenced child nodes are searched until the 
data pages are reached (i.e. more than one path is searched) 
and the search space become large. Since the overlap of the 
MBR’s in the directory nodes grows with increasing 
dimension d, the R*-tree is efficient only for moderate values 
of d [4].  

We partition the data space into overlapped circular (sphere 
or hyper sphere) regions such that the radius of each circle is 
larger than the expected Eps. We use these overlapped circles 
to answer a region query instead of R*-tree. This idea comes 
from Fig. 1, the overlapped circle of the same radius may be 
used to cover all data space with respect to the radius of circle 
is greater than the expected Eps. Some data points may be 
belonging to more than one circle but we use the nearest circle 
to retrieve it’s neighborhood using Euclidean distance. This 
search time is better than that of R*-tree, since in R*-tree to 
answer a region query, we start from the root, and the set of 
rectangles intersecting the query region is determined and then 
their referenced child nodes are searched until the data pages 
are reached (i.e. more than one path is searched) and the 
search space become large. In the other hand, in the proposed 
algorithm say k of circles cover all data space. Thus, the 
search requires O(mn), where n is the number of data points, 
m=n/k is very small compared with n. For each point we keep 
the nearest circle center and the distance to it. The radius of 
the circle depends on the radius of all data space. 

B. Computation of the Radius of the Data Space and Eps 
How does the proposed algorithm determine the radius of 

all data space? The proposed algorithm accumulates all data 
points in a single cluster called cluster feature (CF); CF is a 
data structure summarizing information about all points in the 

dataset, ),( SLnCF
r
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. So, R is the radius of the circle 

(sphere) that contains all data points in our dataset. we 
compute the area of that circle from the relation “ area = 
3.14*Rd ” (we refer to this area as circular area), then we 
compute the area from other view, by using minimum 
bounding rectangle that contains all data points in the dataset, 

“area =∏
=

d

i
iL

1

”,where d is the dimension of the points, Li is 

the length of dimension i, which is equal to the difference 
between the maximum and the minimum value in dimension i 
(we refer to this area as rectangular area). Figure 6 shows the 
circular area and rectangular area of some data points in 2 
dimension. 

 

 
Fig. 6 Circular and Rectangular area of data space 

 
In Fig. 6, the length of the first dimension is determined by 

the two blue points ( x dimension ). The length of the second 
dimension is determined by the two red points (y dimension ).  

The proposed algorithm partitions data space into 
overlapped circles. The radius of these circles should be 
depends on the dimension of data space, since as the 
dimension increase the data points will be more sparse. Also, 
the radius should be depends on the area of data space, but 
which area we can use? Experimentally the ratio between the 
two area is the best, so ratio area = (circular area / rectangular 
area) or the inverse i.e. ratio area = (rectangular area / circular 
area). The ratio area should be less than or equals to one   i.e. 
0 < ratio area < 1. Experimentally the best relation for the 
radius of the overlapped circles is Rad = d* ratio area + ratio 
area /2 , where d is the dimension of the data space, ratio area 
is the ratio between circular area and rectangular area or the 
inverse. As the dimension increase the radius of the 
overlapped circles increase. Also, as the difference between 
the two areas decrease the ratio area increase and the radius of 
the overlapped circles increase. Always, the radius of the 
overlapped circles is greater than the expected Eps.  

Here, we are ready to apply DBSCAN, but we will use 
circles that cover all data space to calculate the optimal value 
for Eps. To do this, for each point in the solid circle we find 
the distance to its nearest neighbor, then we keep the distance 
between the far nearest pairs, we perform this process for all 
circles, this process is equivalent to distances matrix update in 
the single link algorithm. The following example explain the 
idea. 
Example 1: suppose one of the overlapped circles contains 
the following six points in 2 dimensional space. 
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TABLE I 
SIX POINTS IN 2 DIMENSION 

 
 

Then all pairs wise distances are in Table II (distances 
matrix ) these distances are calculated by using the next 
equation.  

 
 
 
 

Note that, all six points are in list1 i.e. points are inside the 
solid edge only.  

 
TABLE II 

PAIRS WISE DISTANCES (DISTANCES MATRIX ) 

 
 

From Table II we find the nearest neighbor for each point is 
as follow:- 

P1 & P3 at 0.150 
P2 & P6 at 0.233 
P3 & P1 at 0.150 
P4 & P3 at 0.232 
P5 & P3 at 0.277 
P6 & P2 at 0.233 

The nearest pair are p1 and p3 at 0.150.The far nearest pair 
are p5 and p3 at 0.277. 

For this circle, the maximum distance between the nearest 
pair is 0.277 that is between p3 and p5. So the algorithm 
keeps this distance, then the algorithm take the next circle, this 
process is performed for all overlapped circles. Then Eps will 
be the average of these distances. i.e. Eps = Σ maxi / k, where k 
is the number of created overlapped circles and maxi is the 
distance between the far nearest pair of points in circle 
number i. 

We use Eps as calculated before to overcome the presence 
of outliers. In the proposed algorithm the Minpts is fixed to 3 
by the experiments. 

Why Minpts is fixed to 3? 3 points is the best number for 
Minpts according to the method that we used to determine the 
value of Eps, if you examine the points in example 1, you find 
that all the six points are outliers  

When do we use the points in list2 (points between solid 
and dashed circle)? To answer this question, look at the 
following Fig. 7. 

 
 Fig. 7 Neighbors of the green point wrt. Eps 

 
Suppose that Rad = 1, Eps = 0.4, distance between the 

green point p and the red point q (the center) = 0.8, then the 
distance between the green point p to the solid edge = 0.2 and 
this distance is less than Eps. So, in this case we calculate the 
distance between the green point p and all points in dashed 
circle to find its neighbors wrt. Eps (points inside the blue 
circle (the smallest circle)).  

After determination of Eps we apply the basic process of 
DBSCAN. We can summarize the basic process of the 
proposed algorithm in the following steps: 

1- find the center of all data. 
2- calculate the average radius of data (radius of 

circle that covers all data points). 
3- divide the data into overlapped circular regions of 

the same radius such that this radius is larger than 
the expected Eps. 

4- In each region, compute all pair wise distance 
(distance matrix as in Slink algorithm), find the 
maximum of(minimum distances).If we have k 
circles cover all data there will be k values for 
distance, we take the average value of these k 
distances to present the Eps of DBSCAN 
algorithm. 

5- Apply DBSCAN algorithm on data using Eps 
obtained from step 4, to retrieve the neighbors of 
point p, only distances between point p and all 
points share the same region are calculated. This 
data structure is better than R*-tree, since in R*-
tree more than one path is traversed and R*-tree 
works well with low dimensional data. 

 
The proposed algorithm is the same as shown in Fig. 2, 

while Eps is not user input parameter, and overlapped circular 
region is used to answer a region query instead of R*-tree. 

C. Complexity 
As we discussed before, the proposed algorithm composed 

of two stage, in first stage, the algorithm creates k circular 
regions cover the data space, this requires O(nk), where n is 
number of data point. To find the Eps the algorithm find pair 
wise distance in each region, in average each region contains 
m points, where m = n/k, thus this process takes O(m2k ). So 
the time of first stage is O(nk + m2k). In second stage, the 
algorithm applies the DBSCAN, using the circular regions to 
answer query region. The search for the points in Eps distance 
from a random point requires O(m), thus the DBSCAN 
requires O(nm). Hence the total time complexity  of the 
proposed algorithm is O(nk + m2k + nm), where k is the 
number of circles cover the data space, m is the average 
number of points in each circle, m = n/k and n is number of 
points in the data set. 

∑
=

−
d

k
kjki pp

1

2
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VI. EXPERIMENTAL RESULTS 
We evaluated the proposed algorithm on several different 

real and synthetic datasets. We compared our results with that 
of  DBSCAN algorithm in terms of the total quality of clusters, 
both algorithms produce the same result. Our experimental 
results are reported on PC 800 MHZ, 128 MB RAM, 256 KB 
cache. we give a brief description of the datasets used in our 
algorithm evaluation. Table III shows some characteristics of  
the datasets. The real data used in the experiments were taken 
from http://www.cs.utoronto.ca/~delve/data/datasets.html 
(abalone dataset), http://lib.stat.cmu.edu/datasets/ (wind 
dataset) and earthquake dataset is send to me by the author of 
[4]. 

TABLE III 
CHARACTERISTIC OF THE DATASETS 

 
 

In Table IV, we present the results obtained from the 
proposed algorithm, present the optimal value for Eps that is 
always less than the radius of circle (Rad), number of circles 
present total number of circle that cover all data points. This 
number is equivalent to the number of leaf nodes in R*-tree. 
But in case of R*-tree we can not directly reach the required 
leaf node. We may also need to reach to more than one leaf 
node, this problem grows as the dimension of data grow. In 
the proposed algorithm only one circle is directly reached, this 
process saves time. 

Also in Table IV, we present the results obtained from the 
DBSCAN algorithm compared with that of the proposed 
algorithm. The input values for Eps parameter is the same as 
in the proposed algorithm. Comparing the results of the 
proposed algorithm and DBSCAN algorithm, both algorithm 
produce the same results nearly. 

 
TABLE IV 

RESULTS OF THE PROPOSED  AND DBSCAN ALGORITHM 

 

VII. CONCLUSION 
In this paper, we presented a density based clustering 

algorithm require no input parameters. The proposed 
algorithm handles large data set efficiently and discovers any 
arbitrary shaped clusters of any size. This algorithm is based 
on partitioning the data into overlapped circular or hyper 
spherical regions and uses the best region to retrieve the 
neighborhood of any data point. Our experimental results 

demonstrated the efficiency of the proposed algorithm. In 
future work we will study hierarchical clustering algorithms. 
We will propose a hierarchical clustering algorithm handle 
huge dataset that will not be depends on sample as in CURE 
algorithm. 
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