
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3368

Abstract—Clustering algorithms are attractive for the task of

class identification in spatial databases. However, the application to
large spatial databases rises the following requirements for clustering
algorithms: minimal requirements of domain knowledge to determine
the input parameters, discovery of clusters with arbitrary shape and
good efficiency on large databases. The well-known clustering
algorithms offer no solution to the combination of these
requirements. In this paper, a density based clustering algorithm
(DCBRD) is presented, relying on a knowledge acquired from the
data by dividing the data space into overlapped regions. The
proposed algorithm discovers arbitrary shaped clusters, requires no
input parameters and uses the same definitions of DBSCAN
algorithm. We performed an experimental evaluation of the
effectiveness and efficiency of it, and compared this results with that
of DBSCAN. The results of our experiments demonstrate that the
proposed algorithm is significantly efficient in discovering clusters of
arbitrary shape and size.

Keywords—Clustering Algorithms, Arbitrary Shape of clusters,
cluster Analysis.

I. INTRODUCTION

ARGE datasets have been collected or produced in many
application domains, such as bioinformatics, physics,

geology, and marketing, and some have reached the level of
terabytes. Since the knowledge hidden in this data is usually
of great strategic importance [10]. One of the primary data
analysis tasks is the cluster analysis, which help user to
uncover the knowledge hidden in the collected data.
Clustering is one of the most important tasks in data mining
and knowledge discovery [5]. Clustering groups database data
into meaningful subclasses in such a way that minimizes the
intra-differences and maximizes the inter-differences of these
subclasses [15]. Up to now, many clustering algorithms have
been proposed, each of these algorithms have drawbacks and
advantages. A clustering algorithm is considered to be good if
it satisfies the following requirements, (1) minimal

Manuscript received August 27, 2006. This work was supported in part by

the. Department of Computer Science, Faculty of science, Menoufia
University . Paper title is DENSITY CLUSTERING BASED ON RADIUS
OF DATA (DCBRD) or is Density Clustering Based on Radius of Data
(DCBRD).

Ahmed Mahmoud Fahim is PhD student in the faculty of Education, Suez
Canal University, Egypt (e-mail: ahmmedfahim@yahoo.com).

Abdel-Badeeh Mohamed Salem is with Ain shams University, Faculty of
Computers and Information, Computer Science Department, Egypt (e-mail:
absalem@asunet.shams.edu.eg).

Fawzy Aly Torkey is the Dean of Faculty of Computers and Information,
Menoufia University, Egypt (e-mail: fatorkey@Yahoo.com).

Mohamed A. Ramadan is with Faculty of Science, Mathematic
Department, Menoufia University, Egypt (e-mail: mramadan@mailer.eun.eg).

requirements of domain knowledge to determine the values of
its input parameters, which is very important problem
especially for large data sets. (2) Discovery of arbitrary
shaped clusters. (3) good efficiency on large data sets, data set
may contains large number of objects or the object described
by large number of features or data is large in both previous
dimension. The well-known clustering algorithms offer no
solution to the combination of these requirements.

In this paper we propose a clustering algorithm based on
knowledge acquired from the data set, and apply the main idea
of density based clustering algorithms like DBSCAN. The
proposed algorithm will be called density clustering based on
radius of data (DCBRD). The DCBRD algorithm requires no
input parameters, discovers arbitrary size and shaped clusters,
is efficient even for large data sets especially data with large
dimension. The paper is organized as follows. In section 2,
some previous clustering algorithms are listed. In section 3,
simplified review about DBSCAN algorithm is presented. In
section 4, the overlapped circular regions are presented, and
we show how these circles are created and how the algorithm
uses them. Section 5 demonstrates the proposed algorithm.
We describe the experimental results in section 6 and
conclude with section 7.

II. RELATED WORK

There are many clustering algorithms proposed, these
algorithms may be classified into partitioning, hierarchical,
density and grid based methods [8]. The first two types are the
most common. Partitioning algorithms are k-means [12]and k-
medoid [11],[13]. Hierarchical algorithms create a hierarchical
decomposition of a database D. The basic hierarchical
clustering algorithm works as in[6]. Some hierarchical
algorithms are single-link [14], complete-link [2], [9],
average-link method [16], BIRCH [17] and CURE [7].

Density-Based Clustering algorithms group objects
according to specific density objective functions. The most
popular one is probably DBSCAN [3]. In this paper new index
structure is proposed. This structure also used to obtain an
optimal value for the radius of the neighborhood. The
proposed algorithm is based on this structure and the main
idea of DBSCAN algorithm.

III. DBSCAN ALGORITHM
The key idea of density-based clustering is that for each

object of a cluster the neighborhood of a given radius (Eps)
has to contain at least a minimum number of objects (MinPts),
i.e. the cardinality of the neighborhood has to exceed some
threshold. We will first give a short introduction to DBSCAN.
For details see [3].

A.M. Fahim, A. M. Salem, F. A. Torkey, and M. A. Ramadan

Density Clustering Based on Radius of Data
(DCBRD)

L

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3369

Definition 1: (directly density-reachable) An object p is
directly density-reachable from an object q wrt. Eps and
MinPts in the set of objects D if :
1) p∈NEps(q), (NEps(q) is the subset of D contained in the Eps-
neighborhood of q.).
2) Card(NEps(q)) ≥ MinPts.
Definition 2: (density-reachable) An object p is density-
reachable from an object q wrt. Eps and MinPts in the set of
objects D, denoted as p >Dq, if there is a chain of objects p1,
..., pn, p1 = q, pn = p such that pi ∈D and pi+1 is directly
density-reachable from pi wrt. Eps and MinPts.
Definition 3: (density-connected) An object p is density-
connected to an object q wrt. Eps and MinPts in the set of
objects D if there is an object o ∈D such that both p and q are
density-reachable from o wrt. Eps and MinPts in D.

Fig. 1 illustrates the definitions on a sample database of
objects from a 2-dimensional vector space.

Fig. 1 Density-reachability and density-connectivity

Definition 4: (cluster) Let D be a set of objects. A cluster C
wrt. Eps and MinPts in D is a non-empty subset of D
satisfying the following conditions:
1) Maximality: ∀p,q ∈D: if p ∈C and q>D p wrt. Eps and
MinPts, then also q∈ C.
2) Connectivity: ∀p,q∈ C: p is density-connected to q wrt.
Eps and MinPts in D.
Definition 5: (noise) Let C1 ,..., Ck be the clusters wrt. Eps and
MinPts in D. Then, we define the noise as the set of objects in
the database D not belonging to any cluster Ci ,i.e. noise = {p
∈D | ∀ i: p ∉Ci}.

To find a cluster, DBSCAN starts with an arbitrary object p
in D and retrieves all objects of D density-reachable from p
with respect to Eps and Minpts. If p is a border object, no
objects are density-reachable from p and p is assigned to noise
temporarily. Then DBSCAN handles the next object in
database D. Retrieval of density-reachable objects is
performed by successive region queries. A region query
returns all objects intersecting a specified query region
efficiently by R*-trees. Before clustering the database, R*-tree
should be built in advance. However, there are some
DBSCAN algorithm problems limiting its applications. The
DBSCAN algorithm is sketched in Fig. 2.

Fig. 2 DBSCAN Algorithm

The most fundamental open problem is: DBSCAN requires

the user to specify a global threshold Eps (Minpts is often
fixed to 4 to reduce the computational amount). In order to
determine Eps, DBSCAN has to calculate the distance
between an object and its kth (k=4) nearest neighbor for all
objects. In addition, DBSCAN is based on R*-tree, and
calculates the k-dist value on the entire database. The two
procedures are the most time-consuming phases in the whole
clustering process, but their computational loads are not
included in time consumption as in O(n log n), so the actual
time consumption of DBSCAN may be larger than that of O(n
log n)[15]. Clustering procedure is very expensive so that it is
computationally prohibitive for large databases. Eps and
Minpts determine a density threshold, thus DBSCAN becomes
a typical density-based clustering method. Furthermore, the
Minpts usually is fixed to 4, thus the density threshold is
perfectly determined by Eps.

IV. DATA SPACE PARTITIONING INTO OVERLAPPED CIRCLES

The key idea of the proposed algorithm is that one can
greatly reduce the number of distance computations required
for clustering by partitioning the data into overlapping
subsets, and then only measuring distances among pairs of
data points that belong to a common subset. The overlapped
circle technique thus uses two different sources of information
to cluster items: a cheap and approximate similarity measure
(the radius of the overlapped circles that cover all data space)
and a more expensive and accurate similarity measure (the
optimal value of Eps).

The proposed algorithm divides the clustering process into
two stages. In the first stage, the algorithm use the cheap
distance measure in order to creates some number of
overlapping circles (or hyper sphere), any circle is simply a
subset of the elements (i.e. data points or items) that,
according to the approximate similarity measure, are within
some distance threshold from a central point. Significantly, a
data point may appear under more than one circle, and every
data point must appear in at least one circle. The circles with

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3370

solid outlines in Fig. 3 show an example of overlapping
circles that cover a data set. Note that every solid circle
(contains nearest adjacent for a central point) is a subset of
larger dashed circle (contains nearest far adjacent for a central
point). Dashed circles are used to ensure that no cluster split
into more than one cluster. If you look at cluster 1, this cluster
split into two clusters without dashed circle because there is
no data point in the intersection of the two inner solid circles,
using the dashed circle when it is required, the algorithm
detects the actual clusters contained in data set.

In the second stage, the proposed algorithm executes
DBSCAN clustering algorithm, the value of Eps is obtained
from the overlapped circular regions, thus the proposed
algorithm does not require any input parameter.

Fig. 3 An example of three clusters and the overlapped circles cover

them

A. Creation of Overlapped Circles
The proposed algorithm computes the radius (Rad) of

circles that cover all data points as we will see in the next
section. Fig. 4 illustrates the creation of overlapped circles.

Fig. 4 Creation of circles that cover all data points

The function takes the first point as the center of the first
circle (step 2 of Fig. 4), and assign all points whose distances

from this center are less than or equal to the value of Rad to
the list1 (i.e. the list1 contains nearest adjacent for the central
point of the circle as in step 6). If a point p is covered by more
than one circle then p.distance keeps it’s distance to the
nearest circle (step 8), also p.circle keeps the identification of
the nearest circle as in step 9. The function assign all points
whose distances from this center is larger than Rad and less
than Rad * 1.5 to the list2 as in step 12 (i.e. points which lie
between the solid and dashed circle are the nearest far
adjacent for the central point of the circle as shown in Fig. 3).
For each point in list1, the algorithm keeps the distance to the
center of the nearest circle and the identification number of
that circle as in step 8 and step 9. The center of the next circle
is the point whose distance is larger than Rad * 1.5 and less
than or equal to Rad * 2 from the center of current circle to
ensure from the existence of overlapping (this is shown in step
14). This process continues tell all points are covered. Steps
from 20 to 22 search for uncovered points remaining to cover
them by creating new circles.

Thus every circle contains two list; the first list contains all
points inside the solid edge (nearest adjacent for a central
point as in Fig. 3), the other list contains all points outside the
solid edge and inside the dashed edge (nearest far adjacent for
a central point as in Fig. 3). Only, the algorithm uses the
points inside the solid edge to find maximum of (minimum
pairs wise distance) to compute the optimal value of Eps, that
will be used by the DBSCAN algorithm in the next stage.

When the algorithm retrieves the neighbors of a point, it
directly goes to the best (nearest) circle that covers the point
(a point may be covered by more than one circle), computes
how far is it from all the points in that circle, and returns
points at distances less than or equal to Eps. If the distance of
that point to the solid edge is less than Eps then the algorithm
computes the distances between that point and all the points
contained in dashed circle (points in list1 and list2), retrieves
the points in Eps distance, and the point is assigned to current
cluster if it is a core point, or assigned noise temporally.

V. THE PROPOSED ALGORITHM
The proposed algorithm merges ideas from many

algorithms. It is based on DBSCAN while we try to solve the
problems of Eps and R*-tree. in this section, the R*-tree is
discussed, how the value of Eps is computed, and the
computation of the radius of all data space.

A. R*-tree and overlapped circles
What is R*-tree?. What is the problem of it?. The R*-tree

[1] generalizes the 1-dimensional B-tree to d-dimensional data
spaces, specifically an R*-tree manages d-dimensional hyper
rectangles instead of 1-dimensional numeric keys. An R*-tree
may organize objects such as polygons using minimum
bounding rectangles (MBR) as approximations as well as
point objects as a special case of rectangles. The leaves store
the MBR of data objects and a pointer to the exact geometry.
Internal nodes store a sequence of pairs consisting of a
rectangle and a pointer to a child node. These rectangles are
the MBR’s of all data or directory rectangles stored in the
subtree having the referenced child node as its root (Fig. 5).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3371

Fig. 5 Sample R*-tree

To answer a region query, we start from the root[4], and the

set of rectangles intersecting the query region is determined
and then their referenced child nodes are searched until the
data pages are reached (i.e. more than one path is searched)
and the search space become large. Since the overlap of the
MBR’s in the directory nodes grows with increasing
dimension d, the R*-tree is efficient only for moderate values
of d [4].

We partition the data space into overlapped circular (sphere
or hyper sphere) regions such that the radius of each circle is
larger than the expected Eps. We use these overlapped circles
to answer a region query instead of R*-tree. This idea comes
from Fig. 1, the overlapped circle of the same radius may be
used to cover all data space with respect to the radius of circle
is greater than the expected Eps. Some data points may be
belonging to more than one circle but we use the nearest circle
to retrieve it’s neighborhood using Euclidean distance. This
search time is better than that of R*-tree, since in R*-tree to
answer a region query, we start from the root, and the set of
rectangles intersecting the query region is determined and then
their referenced child nodes are searched until the data pages
are reached (i.e. more than one path is searched) and the
search space become large. In the other hand, in the proposed
algorithm say k of circles cover all data space. Thus, the
search requires O(mn), where n is the number of data points,
m=n/k is very small compared with n. For each point we keep
the nearest circle center and the distance to it. The radius of
the circle depends on the radius of all data space.

B. Computation of the Radius of the Data Space and Eps
How does the proposed algorithm determine the radius of

all data space? The proposed algorithm accumulates all data
points in a single cluster called cluster feature (CF); CF is a
data structure summarizing information about all points in the

dataset,),(SLnCF
r

= , where SL
r

 is the linear sum of

the n data points i.e. ∑ =
=

n

i ixSL
1

vv
 , n is the number of

points in dataset, ixr is a d-dimensional data point. The
center of the all data points in the dataset is

∑
=

==
n

i
i nxnSLx

1
0 // vvr

. The radius of the data space is given

by n
i

xixR
n

/
1

)(2
0∑

=
−= vv

. So, R is the radius of the circle

(sphere) that contains all data points in our dataset. we
compute the area of that circle from the relation “ area =
3.14*Rd ” (we refer to this area as circular area), then we
compute the area from other view, by using minimum
bounding rectangle that contains all data points in the dataset,

“area =∏
=

d

i
iL

1

”,where d is the dimension of the points, Li is

the length of dimension i, which is equal to the difference
between the maximum and the minimum value in dimension i
(we refer to this area as rectangular area). Figure 6 shows the
circular area and rectangular area of some data points in 2
dimension.

Fig. 6 Circular and Rectangular area of data space

In Fig. 6, the length of the first dimension is determined by

the two blue points (x dimension). The length of the second
dimension is determined by the two red points (y dimension).

The proposed algorithm partitions data space into
overlapped circles. The radius of these circles should be
depends on the dimension of data space, since as the
dimension increase the data points will be more sparse. Also,
the radius should be depends on the area of data space, but
which area we can use? Experimentally the ratio between the
two area is the best, so ratio area = (circular area / rectangular
area) or the inverse i.e. ratio area = (rectangular area / circular
area). The ratio area should be less than or equals to one i.e.
0 < ratio area < 1. Experimentally the best relation for the
radius of the overlapped circles is Rad = d* ratio area + ratio
area /2 , where d is the dimension of the data space, ratio area
is the ratio between circular area and rectangular area or the
inverse. As the dimension increase the radius of the
overlapped circles increase. Also, as the difference between
the two areas decrease the ratio area increase and the radius of
the overlapped circles increase. Always, the radius of the
overlapped circles is greater than the expected Eps.

Here, we are ready to apply DBSCAN, but we will use
circles that cover all data space to calculate the optimal value
for Eps. To do this, for each point in the solid circle we find
the distance to its nearest neighbor, then we keep the distance
between the far nearest pairs, we perform this process for all
circles, this process is equivalent to distances matrix update in
the single link algorithm. The following example explain the
idea.
Example 1: suppose one of the overlapped circles contains
the following six points in 2 dimensional space.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3372

TABLE I
SIX POINTS IN 2 DIMENSION

Then all pairs wise distances are in Table II (distances
matrix) these distances are calculated by using the next
equation.

Note that, all six points are in list1 i.e. points are inside the
solid edge only.

TABLE II

PAIRS WISE DISTANCES (DISTANCES MATRIX)

From Table II we find the nearest neighbor for each point is
as follow:-

P1 & P3 at 0.150
P2 & P6 at 0.233
P3 & P1 at 0.150
P4 & P3 at 0.232
P5 & P3 at 0.277
P6 & P2 at 0.233

The nearest pair are p1 and p3 at 0.150.The far nearest pair
are p5 and p3 at 0.277.

For this circle, the maximum distance between the nearest
pair is 0.277 that is between p3 and p5. So the algorithm
keeps this distance, then the algorithm take the next circle, this
process is performed for all overlapped circles. Then Eps will
be the average of these distances. i.e. Eps = Σ maxi / k, where k
is the number of created overlapped circles and maxi is the
distance between the far nearest pair of points in circle
number i.

We use Eps as calculated before to overcome the presence
of outliers. In the proposed algorithm the Minpts is fixed to 3
by the experiments.

Why Minpts is fixed to 3? 3 points is the best number for
Minpts according to the method that we used to determine the
value of Eps, if you examine the points in example 1, you find
that all the six points are outliers

When do we use the points in list2 (points between solid
and dashed circle)? To answer this question, look at the
following Fig. 7.

 Fig. 7 Neighbors of the green point wrt. Eps

Suppose that Rad = 1, Eps = 0.4, distance between the

green point p and the red point q (the center) = 0.8, then the
distance between the green point p to the solid edge = 0.2 and
this distance is less than Eps. So, in this case we calculate the
distance between the green point p and all points in dashed
circle to find its neighbors wrt. Eps (points inside the blue
circle (the smallest circle)).

After determination of Eps we apply the basic process of
DBSCAN. We can summarize the basic process of the
proposed algorithm in the following steps:

1- find the center of all data.
2- calculate the average radius of data (radius of

circle that covers all data points).
3- divide the data into overlapped circular regions of

the same radius such that this radius is larger than
the expected Eps.

4- In each region, compute all pair wise distance
(distance matrix as in Slink algorithm), find the
maximum of(minimum distances).If we have k
circles cover all data there will be k values for
distance, we take the average value of these k
distances to present the Eps of DBSCAN
algorithm.

5- Apply DBSCAN algorithm on data using Eps
obtained from step 4, to retrieve the neighbors of
point p, only distances between point p and all
points share the same region are calculated. This
data structure is better than R*-tree, since in R*-
tree more than one path is traversed and R*-tree
works well with low dimensional data.

The proposed algorithm is the same as shown in Fig. 2,

while Eps is not user input parameter, and overlapped circular
region is used to answer a region query instead of R*-tree.

C. Complexity
As we discussed before, the proposed algorithm composed

of two stage, in first stage, the algorithm creates k circular
regions cover the data space, this requires O(nk), where n is
number of data point. To find the Eps the algorithm find pair
wise distance in each region, in average each region contains
m points, where m = n/k, thus this process takes O(m2k). So
the time of first stage is O(nk + m2k). In second stage, the
algorithm applies the DBSCAN, using the circular regions to
answer query region. The search for the points in Eps distance
from a random point requires O(m), thus the DBSCAN
requires O(nm). Hence the total time complexity of the
proposed algorithm is O(nk + m2k + nm), where k is the
number of circles cover the data space, m is the average
number of points in each circle, m = n/k and n is number of
points in the data set.

∑
=

−
d

k
kjki pp

1

2
,,)(),(ji ppd =

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3373

VI. EXPERIMENTAL RESULTS
We evaluated the proposed algorithm on several different

real and synthetic datasets. We compared our results with that
of DBSCAN algorithm in terms of the total quality of clusters,
both algorithms produce the same result. Our experimental
results are reported on PC 800 MHZ, 128 MB RAM, 256 KB
cache. we give a brief description of the datasets used in our
algorithm evaluation. Table III shows some characteristics of
the datasets. The real data used in the experiments were taken
from http://www.cs.utoronto.ca/~delve/data/datasets.html
(abalone dataset), http://lib.stat.cmu.edu/datasets/ (wind
dataset) and earthquake dataset is send to me by the author of
[4].

TABLE III
CHARACTERISTIC OF THE DATASETS

In Table IV, we present the results obtained from the
proposed algorithm, present the optimal value for Eps that is
always less than the radius of circle (Rad), number of circles
present total number of circle that cover all data points. This
number is equivalent to the number of leaf nodes in R*-tree.
But in case of R*-tree we can not directly reach the required
leaf node. We may also need to reach to more than one leaf
node, this problem grows as the dimension of data grow. In
the proposed algorithm only one circle is directly reached, this
process saves time.

Also in Table IV, we present the results obtained from the
DBSCAN algorithm compared with that of the proposed
algorithm. The input values for Eps parameter is the same as
in the proposed algorithm. Comparing the results of the
proposed algorithm and DBSCAN algorithm, both algorithm
produce the same results nearly.

TABLE IV

RESULTS OF THE PROPOSED AND DBSCAN ALGORITHM

VII. CONCLUSION
In this paper, we presented a density based clustering

algorithm require no input parameters. The proposed
algorithm handles large data set efficiently and discovers any
arbitrary shaped clusters of any size. This algorithm is based
on partitioning the data into overlapped circular or hyper
spherical regions and uses the best region to retrieve the
neighborhood of any data point. Our experimental results

demonstrated the efficiency of the proposed algorithm. In
future work we will study hierarchical clustering algorithms.
We will propose a hierarchical clustering algorithm handle
huge dataset that will not be depends on sample as in CURE
algorithm.

REFERENCES

[1] Beckmann N., Kriegel H.-P., Schneider R, and Seeger B. “The R*-
tree: An Efficient and Robust Access Method for Points and
Rectangles”, Proc. ACM SIGMOD Int. Conf. on Management of
Data, Atlantic City, NJ, 1990, pp. 322-331.

[2] DEFAYS, D. An efficient algorithm for a complete link method.
The Computer Journal, vol. 20, 1977, pp. 364-366.

[3] Ester M., Kriegel H.-P., Sander J., Xu X.: “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases
with Noise”, Proc. 2nd Int. Conf. on Knowledge Discovery and
Data Mining, Portland, OR, AAAI Press, 1996, pp. 226-231.

[4] Ester M., Kriegel H-P., Sander J., Xu X. “Clustering for Mining in
Large Spatial Databases”, Special Issue on Data Mining, KI-
Journal, ScienTec Publishing, Vol. 1, 1998, pp. 1-7.

[5] Fayyad U., Piatetsky G., Smyth P., Uthurusay R., “Advances in
knowledge discovery”, AAAI press, Cambridge,1996.

[6] Gordon A. D. “A review of hierarchical classification”, Journal of
the Royal statistical society. Series A, Vol.150, 1987, pp. 119-137.

[7] Guha S., Rastogi R., Shim K.: ”CURE: An Efficient Clustering
Algorithms for Large Databases”, Proc. ACM SIGMOD Int. Conf.
on Management of Data, Seattle, WA, 1998, pp. 73-84.

[8] HAN J., KAMBER M., and TUNG A. K. H. “Spatial clustering
methods in data mining: A survey”. Taylor and Francis, 2001.

[9] Krznaric D. and Levcopoulos C. “Optimal algorithms for complete
linkage clustering in d dimensions”. Theor. Comput. Sci., 286(1),
2002, pp. 139–149.

[10] Kriegel. H-P., Peer K., and Irina G., “Incremental OPTICS:
Efficient Computation of Updates in a Hierarchical Cluster
Ordering.”, Proc. 5th Int. Conf. on Data Warehousing and
Knowledge Discovery (DaWaK'03), Prague, Czech Rep., 2003, pp.
224-233.

[11] Kaufman L., Rousseeuw P. J.: “Finding Groups in Data: An
Introduction to Cluster Analysis”, John Wiley & Sons, 1990.

[12] MacQueen, J.: “Some Methods for Classification and Analysis of
Multivariate Observations”, 5th Berkeley Symp. Math. Statist.
Prob., Vol. 1, 1967, pp. 281-297.

[13] Ng R. T., Han J.: “Efficient and Effective Clustering Methods for
Spatial Data Mining”, Proc. 20th Int. Conf. On Very Large Data
Bases, Santiago, Chile, Morgan Kaufmann Publishers, San
Francisco, CA, 1994, pp. 144-155.

[14] Sibson R.: “SLINK: an optimally efficient algorithm for the single-
link cluster method”. The Computer Journal, Vol. 16, No. 1, 1973,
pp. 30-34.

[15] Shi-hong Y.,Ping L., Ji-dog G.and Shui-geng Z.”A Statistical
Information-based clustering Approach in distance space”, JZUS,
vol. 6A(1), 2005, pp. 71-78.

[16] Voorhees, E.M. “Implementing agglomerative hierarchical
clustering algorithms for use in document retrieval”. Information
Processing and Management, 22, 6, 1986, pp. 465-476.

[17] Zhang T., Ramakrishnan R., Linvy M.: “BIRCH: An Efficient Data
Clustering Method for Very Large Databases”. Proc. ACM
SIGMOD Int. Conf. on Management of Data, ACM Press, New
York, 1996, pp.103-114.

